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Abstract: This article discusses the adaptive output synchronization problem of coupled fractional-
order memristive reaction-diffusion neural networks (CFOMRDNNSs) with multiple output couplings
or multiple output derivative couplings. Firstly, by using Lyapunov functional and inequality
techniques, an adaptive output synchronization criterion for CFOMRDNNSs with multiple output
couplings is proposed. Then, an adaptive controller is designed for ensuring the output synchroniza-
tion of CFOMRDNNSs with multiple output derivative couplings. Finally, two numerical examples
are given to verify the effectiveness of the theoretical results.

Keywords: fractional-order; coupled memristive reaction-diffusion neural networks; adaptive control;
output synchronization

1. Introduction

In recent years, coupled neural networks (CNNs) have received significant attention
because their dynamical behaviors have been applied in many fields such as chaos gener-
ators design, image processing and secure communication. As an important dynamical
behavior of CNNs, synchronization has been widely discussed during the past decade [1-5].
With the help of convex combination technique and time-varying Lyapunov functions,
Long et al. [3] investigated the synchronization of coupled switched neural networks af-
fected by stochastic disturbances and impulses. The state synchronization of CNNs was
studied in above works [1-5], however, state synchronization is often difficult to achieve.
Actually, sometimes only partial state variables are needed to be synchronized. Hence,
some scholars have considered the output synchronization of CNNs [6-10]. Wang et al. [6]
solved the output synchronization problem of directed and undirected CNNs by employing
matrix theory and inequality technique.

In practical situations, it is more appropriate to use multiple weighted complex net-
works to describe various real networks (e.g., communication networks, public transport
networks, etc.). Since CNNSs are a special type of complex networks, some authors have
considered the dynamical behaviors of multiple weighted CNNs [11,12]. In [11], some
synchronization criteria were established for CNNs with multistate couplings by designing
suitable event-triggered controller. In [1-12], the authors discussed networks with state
coupling. As a matter of fact, output coupling is also an important coupling form in CNNSs.
Recently, some investigations about the output synchronization of CNNs with multiple out-
put couplings have been reported [13-15]. A class of CNNs with multiple output couplings
was introduced by Liu et al. [14], and the output synchronization problem for the proposed
networks was investigated by exploiting the Barbalat’s lemma and adaptive controller. On
the other hand, different time derivatives of node states may lead to different changes of
other nodes in some real networks. Thus, considering the dynamical behaviors for CNNs
with derivative coupling is meaningful [16-18]. Tang et al. [16] designed an impulsive
pinning control strategy to ensure that the derivative CNNs are synchronized.
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It is worth pointing out that [1-18] only focused on integer-order coupled neural
network models. In fact, compared with integer-order derivatives, fractional-order deriva-
tives can better describe the memory and hereditary properties of diverse materials and
processes. Furthermore, fractional calculus can also be applied to biological neurons. For
example, fractional-order derivatives afford basic and universal computation for individual
neuron that can facilitate stimulus anticipation and information processing in [19]. Hence,
more and more authors have shown interest in the coupled fractional-order neural networks
(CFONNs) and have obtained important results [20-23]. In [20], a kind of multi-weights
CFONN s with and without uncertain parameters was introduced, and several output syn-
chronization criteria for such networks were derived based on Mittag-Leffler functions and
Laplace transforms. Additionally, considering the diffusion phenomenon is inevitable in
CNNs when electrons are moving in a nonuniform electromagnetic field, some researchers
investigated the dynamical behaviors of CFONNSs with reaction-diffusion terms [24-27].
Wang et al. [26] presented a multiple weighted coupled fractional-order neural network
model with reaction-diffusion terms and solved the synchronization problem for proposed
model by using adaptive schemes and some inequality techniques. Regrettably, the output
synchronization of CFONNSs with reaction-diffusion terms has not been studied.

As is well known, in 2008, HP Labs first produced nanoscale memristor devices. In the
implementation of neural network circuits, resistors can be replaced by memristors to sim-
ulate synaptic structures. Therefore, a memristive neural network model was established
successfully [28,29]. Li et al. [29] presented a quaternion-valued fuzzy memristive neural
network and derived several quasi-synchronization criteria for such a network. Moreover,
due to the fractional-order systems having property of long-term memory, there has been
growing attention about the dynamical behaviors of fractional-order memristive neural
networks [30-34]. Ma et al. [30] introduced a delayed coupled fractional-order memristive
neural network model with parameter mismatch and designed a discontinuous controller
to ensure that the proposed model can achieve synchronization. On the basis of Lyapunov
functionals and fractional-order derivative inequalities, Mao et al. [31] addressed the syn-
chronization issue of fractional-order multidimensional memristive neural networks with
time-varying delays. Unfortunately, the output synchronization of coupled fractional-order
memristive reaction-diffusion neural networks (CFOMRDNNSs) under adaptive controller
has never been considered.

This article discusses the output synchronization of CFOMRDNNs with multiple
output couplings or multiple output derivative couplings via adaptive control. The main
contributions of this article are as follows.

(1) This article introduces a type of CFOMRDNNSs with multi-output derivative cou-
plings. Different from the existing coupled fractional-order reaction-diffusion neural net-
work models [24,26], derivative coupling is considered in the network model of this article
because the state change velocities of neighbor nodes have a great influence on each node.

(2) An output feedback controller and an adaptive scheme are designed to ensure the
output synchronization of CFOMRDNNSs with multi-output derivative couplings. Consid-
ering that in many cases only partial state variables are required to be synchronized, this
article explores the output synchronization problem of CFOMRDNNSs with multi-output
derivative couplings, which is different from the synchronization of coupled fractional-
order reaction-diffusion neural networks investigated in [26].

(3) Under the help of the Laplace transform and Lyapunov functional, an output
synchronization criterion is presented for CFOMRDNNs with multi-output couplings.
It is evident that tackling the output synchronization problem of CFOMRDNNSs with
multi-output couplings is very meaningful, as it has not been discussed before.

2. Preliminaries

Let Ap(Q) and Ay, (Q) mean the maximum and the minimum eigenvalues of the
real symmetric matrix Q, respectively. ® represents the Kronecker product. * means
the convolution operator. R and R™ denote the set of all real numbers and the set of all
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positive real numbers, respectively. R” and R"*7 stand for the set of all n-dimensional
real-valued vectors and the set of all n x o real-valued matrices, respectively.
= {p= (¢, ¢2,...,¢n)T €RN|| ¢ |< a;,] =1,2,...,N}, 0D is the boundary of ® and
® = U ID. Forany z(p,t) = (z1(¢,t),z2(P, 1), ..., 20(p, 1)) € R” with (¢, 1) € P xR,

2¢Oz =/ Jo X 27 (9, £)d¢p.

Definition 1 (See [26]). Letting (t) € C'([0, +o0], R), the Caputo fractional derivative for 7y (t)
is given by

Ly
oI = =g Jy et O

where 0 < q < 1.

Definition 2 (See [35]). The Mittag—Leffler function is defined by

(UK

)= ¥, oy

where p, v € R, w € C. Whenv =1,E,(w) = Ey1(w) = 5% T Ky+1)'

Lemma 1 (See [36]). For any continuously differentiable function 5(¢,t) : RN x R* — R, one has
oD} (87 (¢, )WS(9, 1)) < 257 (¢, )W oD 8(, 1),
where 0 < W € R7”*7and 0 < g < 1.

Lemma 2 (See [37]). Set ® bea cube | x; |< a;(I =1,2,...,N) and set T(x) be a real-valued
function belonging to C' (®) which vanishes on the boundary 0® of ®,i.e, T(x)|3o = 0. We have

ot \?
2 d<2/< )d,
A)T(x)x_wz o\ax; ) X

in which x = (X1, X2,---, XN) -

3. Output Synchronization of CFOMRDNNSs with Multiple Output Couplings
3.1. Network Model

The coupled fractional-order reaction-diffusion neural network model with multiple
couplings considered in [26] is described by

OD?”m((Prt) = GA”m (¢ t) = Yum (¢, t) + Qf (um(¢,t)) + C
+ Z Y boHo Eann(9,8),  m=12,.. @

a=1n=1

1)

where g € (0,1); um(¢,t) = (1 (P, t), upa(P,t), ..., tmr(¢,£))T € R’ represents the
state vector of the mth node; G = diag(g1,92,-..,87) > 0; A = Zf\il aanz is the Laplace
1

diffusion operator on ®; Y = diag(y1,v2,...,yr) > 0; f(-) denotes the activation function;
C = (cq,0¢9,.. .,cr)T € R; R™" 5 Q denotes a constant matrix; b, € Rt (a=1,2,...,8)
represents the coupling strength of the ath coupling form; 0 < E, € R"™*" is the inner
coupling matrices; H? = (H%,)oxo € R*?(a = 1,2,...,{) is the outer coupling ma-
trix in the ath coupling form, in which Hj,, € R satisfies the following condition: if
there is an edge between node m and node n, then HE, = H%, > 0(m # n); otherwise,
Hyyy = Hpyy = 0(m # n); and Hy,,, = — X5 Hpype

nm

Based on model (1), in order to mvestlgate the output synchronization, the CFOMRDNNs
with multiple output couplings are presented in this section, which are given as
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oDJum(¢,t) = GAuwm(p,t) g Yy (¢, t) + Qf (um (¢, t)) +C
+ 1 bog, Eaen(9,1) ®)
em(p,t) = Xumu(;), ?)7, m=1,2,...,®,

where g, uy(¢,t),G,A,Y,Q, f(+),ba, C,H* = (H)oxo € RP*? have similar meanings
as these in network (1); e (¢, t) = (€1 (P, 1), ema (P t), ..., e€mo(P,t)) € RI(1 < 0 < 1)
denotes the output vector of the mth node;

xyx 0 0 -~ 0 0 --- 0
0 x 0 -~ 0 0 --- 0
R*"35X=| 0 0 x5 --- 0 0 o |,
0 0 0 - x 0 --- 0
inwhichxy e RT,0=1,2,...,0;
e 0 0 0
0 e 0 0
0 0 e 0
RYXUBE[I: e N o o ,
0 0 0 e
0 o0 o0 0
0O 0 o0 0

whereelf9 eRt,8=1,2,...,0.

Consider the following CFOMRDNNSs with multiple output couplings consisting of
@ identical fractional-order memristive reaction-diffusion neural networks with multiple
output ouplings:

oDfum(p,t) = GAum(¢,t) = Yuum(9,t) + Q(ttm (¢, 1)) f (ttm (¢, 1)) + C

{ o N
+ Y ¥ baHpEaen(P,t) +0m(p,t), 3)
a=1n=1
em(p,t) = Xum (¢, 1), m=12,...,®,

where uy (¢,t),em($,t),G,A,Y, f(+), by, C,H* = (H%,)oxo € R®*?,E,;, X have similar
meanings as these in network (2); Q(u(¢,t)) is the memristor connection weight and

(P, t) = (Ou1(P,t), 0ma(P,t), ..., 0mr(¢,1))T € R” represents the control input of the
mth node.

The memristor connection weight Q(u, (¢, t)) = (%j(“mz‘(@ £)))rxr is defined as
i umi(e, )] = Oy,
Qij(Umi(P,t) = 1 | (4)
e Gijip  |umi(p,t)] < ©;,

in which ®; denotes the switching jump, 4ij, qij are known constants, i,j =1,2,...,r.
Define

D (@) QP (i (¢, t
> Qi) = ( Golime) Qoo )

in which Q) (i (¢, 1)) € R7*7, QP (i (9, 1)) € R” =), Q) (u (@, 1)) € RU—)x(=0),

Q® (up(¢,1)) € RU=9%7 The matrix Q1 (u, (¢, 1)) = 0 is considered in the following
part of this article, then we can get

(1)
B 5 Ol (1)) — ( Qunip) | ¢ ) ®
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In many cases, only a fraction of state variables of the nodes are needed to reach
synchronization. In the circumstances, these state variables may not be affected by the
other state variables in the state of each node. Hence, the connection weight Q (1, (¢, t)) is
selected in the form of (5) throughout this article.

By taking @y (¢, ) = (w1 (P, £), 2 (P, t), - -, ime (P, t))T € R, 0p(P,t) = (Vm (P, 1),

Om2(,t), -, ome (¢, 1))T € RY, E, = diag(ed, €3, ...,e%) € R7*7, G = diag(g1,82,---,80),

f(ﬁ (@ 8) = (fi(tm (@, 1), fo(uma (1)), -, fa(tme(¢,1))T, Y = diag(y1,y2,---yo),
C=(C,Cy,...,Co)Tand X = diag(x1, x2,... %), one gets from (3) and (5) that

A

oDl (p,t) = GAm($,t) }Yﬂm(w)+Q<”(um(¢,t>)f<ﬁm(¢,t>)+C

+ Y ¥ baHS, Eaen(¢,t) + 0m(,t), (6)
a=1n=1
em(p,t) = Xt (¢, 1), m=1,2,...,®

Base on the switch rules in (4), the state of |u,,;(¢,t)| can be |u,;(¢,t)| > ©; or
lmi(¢p, )] < O; if the index i of ©; is fixed. Since the connection weight coefficient
qij(4mi(¢, 1)) is determined according to the threshold value of |u,;(¢, )|, there are two

possible values for g;;(u,,i(¢,t)). Hence, the number of possible forms of QW (uy (¢, 1)) is
29°. The characteristic function is defined as follows:

™ Um\P, =
F,((/),t)—{l’ QW (um(9,1) = Q

0, otherwise,

)

02
where: € {1,2,..., 20° }. We can reach the conclusion that Zle I',(¢,t) = 1. Based on (6)

and (7), we have
27

oDfin(9,) = GAu(g,t) = Yiu(g,t) + LT L9, )Quf (Am(g, 1)) +C

+ Z Z b,H Easn((Prt) +ﬁm(¢'t)r
em(p,t) = X ( t), m=12,...,®

(72
where Z%:l L(¢p,t)Q = Q(l)(“m(‘l’/t) . .
For simplicity, define 4;; = max(ﬁij, zjij), i,j=12,...,0.Q= diag(Z}’:l ‘ﬁjr Z;‘Tzl q%j'

o 42
j=1 %j)-
In this article, the network (3) is connected and function fy(-)(¢ =1,2,...,0) meets
the Lipschitz condition, namely, there exists Rt > 0 which satisfies

[ fo(ihr) = fo(2)| < Bsltpr — 2
for any 1, ¥, € R. Furthermore, define ® = diag(G%, 9%, o, 02).
The Dirichlet boundary condition and initial value of network (3) are given as

um(¢9,0) = om(p) €R7, ¢ € P,
um(p,t) =0, (¢, t) € 0P x [0, +00),

where Qm(¢)( =1,2,...,@)1is ontmuous on P.
Denote f(u(¢,t)) = f(Xu(¢, 1)), in which u(¢,t) € R. Then, it can be derived
from (8) that
2

oDfen(p/t) = GChen(gt) = Yeu(g,t) + X L L9, Qi (en(e,1))

on & A .
C+ ¥ 21 boHE XEaen (9, t) + X0w (o, 1),
a=1n=

wherem =1,2,...,®.
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By taking &(¢,t) = £ Y9, e,(¢, t), we can acquire

~ N @ 27 o
oDien(pt) = Chtn(9,t) ~Vem(9,)+ & E X T 9. QFlens,1)
+XC+ 3 5 ﬁ bu( % H,‘;m)f(ﬁasn(q),t)—&-% % X (¢, 1)
a=1n=1 m= 5 m= (10)
A @ 27 oA
= Goenlg ) = Va9, + 5 L X E L9, 0Q (en(@,) + XC

Define zy (¢, t) = (zp1 (¢, 1), zm2 (P, 1), ..., zZme (0, )T = em(¢p,t) — (¢, t) € RY.
By (9) and (10), we derive

oDizn(¢,t) = CAzn(@,t) = Vzu(@,t) + X T L@ )Quf (en(:)) + Kb (9,1)

|
IS

Tms‘\fms

—_

ISIC

wherem =1,2,...,®.
In the following, the output synchronization is defined for the network (3).

Definition 3. The network (3) can achieve output synchronization if

) —% isn(-,t)

lim
t—4oo

2

3.2. Adaptive Control for Output Synchronization
Design following output feedback controller and adaptive scheme for the network (3)

(12)

By (5 (£) = &),

‘Um(gb t) *):5 1 basy, ( )Eazm(ﬁbr )r
0DYs5,(t) = ba [4 2 (¢, ) RPEazi (9, ) — 3715

M

wherem =1,2,...,@,R7* 3 P >0,§, € R",and % (t) e RT.
Define

2(p,t) = (21 (9, 1), 25 (@, 1), .., 25 (¢, 1)) T,
u(p,t) = (uf (@, 8),u3 (1), ..., ub(¢, )"

Theorem 1. Under the adaptive controller (12) , the network (3) can realize output synchronization.

Proof. Construct the Lyapunov functional for the network (3):

B = o +Ki),
— T

0i(t) = fq)m;glzm@,t)zﬁzm(@t)d@ .

k) = Ly -2

where 0 < P = diag(p1, p2,...,po) € R7*7.
By (11), (13) and Lemma 1, one has



Fractal Fract. 2024, 8,78 7 of 19

oD]O1(t)

IN

2Jy £ 250, 0P0Dzn (9, )

€82 (9,1) ~ Yan(9,1) + X £ (0,0 Flente.1)

= 2/, ilzz,;(qb,t)P

~Fe(g.0) + Fe@,1)) — & & X T T )QuF(ep(0,1) (14)

Because fy(-) (9 =1,2,..., o) satisfies the Lipschitz condition, one obtains

-

(@)PXEIK¢)Q{ﬂ@A¢D)—ﬂd¢Uﬂ

2 o2 T

Ti(¢, t)zp (¢, 1) PXQ, < L Tu(e, DEAC t)PXQ,>

N
2

8
™ ‘iF%

IN

1

3
Il
-
Il

-

1{%Mam—fw¢mfpkﬂ¢m_f@¢m] (15)
45: plzx q]Z 1(¢/ )+ Z Z Glgzmlg((P f)

i=1j=1 m=109=
2l (¢,1) [PXQXP + @ zp(¢, t).

+
INAgS]

IN
WO
Il s

3
Il
—

I
e

—_

Since

]
N
2
&
=

I
s
s

(em(¢,t) — &

3
Il
—
3
Il
—

[l

agls}
A

65

3
Il
—

=
gl
m
=
5
=
N——

I
s

m
3
N
Nt

|
m
by
s
=

I
o8
I
=
[
N

2

ﬁzlz%(w)X(Zg L9, H)Q.f(e(p, 1)) — 3’;1 LT (¢,t)Q[f(85(¢,t))> =0,  (16)

>: zn(9,H)X ( éﬁi@ﬁ(w)) =0. (17)
Additionally,
2 Jo 2z ,H)PGAzZy (¢, t)de
= 2€§1 pese fd)zm§ ¢, ) Az (¢, 1)dg
2
P R Dz (p1)
B 21§1 ggl pese Jo ( P ) % (18)
N o
S 2% 5 X pesc Jo (9 )de

—_

=1
Jo 20 (@, ) PGz (¢, )dp.

Il

|

N
Ttz 1
R
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From (14)—(18), we can derive

N A N A
oDIOI(E) < % [pzh(@t)| —2 % 26 —2PY 4 PROXP + ©| z,u(¢, )
1

m— =
125 £ P beH, o 209, PREazy(9, g (19)
u:l m:1 n=1
-2 2 Z bast, () [ 20 (¢, ) PXEaz (¢, t)d¢p.
a=1m=1

By (12), (13) and Lemma 1, one has

® ¢
oDIKi(t) < 2% X (sh,(t) —85)oDfsm(t)

m=1a=1

IN

m=1a=1

o ¢ AoA
2y Z(S%(t)—%)(ba Jo 2m (¢, ) XPEazin (¢, t)d¢p (20)

_2/\1&(13) (an(t) - §?n)> .

In the light of (19) and (20), we have

oDIVi(t) < z Jozh -2 z ——2PY+PXQXP+® zm (¢, t)dg
+2 21 fl f Do [ 2 (@) PREaza(9, £)dp
g
-2 21 f bast, (1) [o 25 (¢, 1) YPXEqzm (¢, t)de
+2 % % bast, (1) [o 2k (¢, 1) YPXEqzm (¢, t)de
m=1a=1
-2 % gbast;’n o 25 (9, ) PXEazi (¢, t)dep
ml_la_wl ¢ a 2
e L, uzl<sm<t> )
= % Jo 2L (¢ l zz —2PY + PXQXP + © |z (¢, t)dg
. @
+2 21 21 Y baHS,, [o 2L (¢, 1) PXEazy (¢, t)dep

g on
-2 % z ba8% [ 2] (¢, ) PXEozy (¢, t)dgp — #(P)Kl(t)

= [p2T Iw®( 22—72PY+PXQXP+®)

+2§l b,H* ® (PXE,) *2; b.5* ® (PXE,) |z(, t) — /\Ml(P)Kl(t) (21)
S [A 2§ b (8 ® (PRED |2(0,0) — ki )

where A = Ip ® [ —2 z E — 2PY + PROXP + @} +2 z bH* @ (PXE,),

$* = diag(8},85,...,85)(a =1, 2 gf) and &%, € RT.
Select sufficiently large 37, such that

/\M( ) 2 Z bu/\m( )Am(PXEa) <-L (22)

a=1
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Furthermore, it follows from (21) and (22) that
oDIVA(8)+ || () [3< — 74 (23)
By (13), one has
Am(P) [ (1) 13< Va(t) < Am(P) || z( 1) |3 +Ka (1) (24)
Combining (23) and (24), one derives
oD{Vi(H)Am(P) < —Vi(t). (25)
Based on (24), there exists a 0 < ¢(t) € R such that
oD V(1) + () = =73y (26)
Let ¥(s) = L[yp(t)] and V1 (s) = L]V;(t)]. According to (26), one acquires
sV (s) — sT71V4(0) + ¥ (s) = — A‘;fl}). (27)
From (27), we have ,
Vi(s) = S00 ¥ (28)
Sq+m Sq+W
The inverse Laplace transform is used for (28), one has
Vi(t) = Vl(O)Eq(—ﬁ(P)tq) —p(F) % 11— EM( ﬁp)w). (29)

In consideration of the fact that ¢(t) and E, 4 (f mtq ) are nonnegative, it is derived
from (24) and (29) that

0 < An(P) | 2(,) I3 Va(t) < Vi(0)Eq (— 5 2p5t7). (30)

Based on (30), we could gain
limy s 4 ool|z(-, t)[|, = 0. (31)
Thus, the network (3) under the adaptive controller (12) attains output synchronized. [

4. Output Synchronization of CFOMRDNNSs with Multiple Output
Derivative Couplings

4.1. Network Model
The CFORDMNN s with multiple output derivative couplings discussed are described as

oD{um(9,t) = GAum(gbf) Yum(fPr ) + Qe (¢, £)) f (um (¢, ) + C

+ 21 Z boH%,EqoDfen(,t) + vm(p,t), (32)
em(@ ) = ’ )Zmup H, m=1,2,.

where q, um (¢,1), D, em($,1),G,Y, £(-),ba, C,om(p, 1), H* = (H%, ) oxo € R®*?, E,, X have
the same meanings as these in network (3) and Q(um(¢,t)) = (q;j(umi($,t)))rxr have the
same meanings as it in network (4).

The Dirichlet boundary condition and initial value of network (32) are given as

un($,0) = on(¢) ER’, p €,
um(p,t) = 0, (§,t) €9P x [0, +00),
where 0,,(¢)(m =1,2,...,®) is continuous on P.

According to (5) and (32), we have
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oD (¢, t) = GAu(e, )(: Vit (¢,t) + QW (um (9, 1)) f (A (¢, 1)) + C
+ ;1 i b HmnEuODq5n<47 t) +0m(¢,t), (33)
en(pt) = im0, m=12.. 0

where Q ) (1t (¢, 1)) has the same definition as it in (5); @, (¢, £), D (¢, 1), f (i (P, 1)), Es, G, Y,
€ and X have the same definitions as these in (6).
By (7) and (33), one gets

o2

oDf (9, t) = GAdw($,t) = Vitm(e,t) + Z Tu(¢, ) Quf (im (e, 1)) + C

(34)
+ Z Z baHmnEaOD en(¢,t) + (4>,t),

A

en(gt) = Ringr),  m=12.

o2

in which T,(¢,t) and Q, have the same definitions as these in (7) and Z (g, )Q, =
=1
QW (um (¢, 1))-

On the basis of (34), we can obtain
o2

oDlem(p,t) = Ghew(¢p,t) — Yeu(gp,t) +X gl T.(¢,t)Quf (em(¢,t))

(35)
. R N
+XC+ Y. ¥ byHA, XEsoD]en (¢, t) + Xom(e,t),
a=1n=1
inwhichm =1,2,...,®, f () has the same definition as it in (9).
()
Letting £(¢,t) = > ¥ eu(¢,t), one has
m=1
@ o2
oDJEm(p,t) = GAgw(¢p,t) — Yeu(d,t) + % 21 X 21 T, )Quf (em(e,t)) + XC
m= 1=
1 g @ @ A q 1 @ A
+5 L L ba| X ann)XanD en(P,t) + 5 L Xom(p,t)
a=1n=1 m=1 ) m=1 (36)
A .27 A
= GAeu(p,t) —Yem(pt) +5 L X 21 Li(¢, 1) Quf (em(¢,t)) + XC
m= 1=

Denoting zy, (¢, t) = (zu1(¢, t),zmz(gb,t),...,zma(gb,t))T = en(p,t) —&(p,t) € RY,
we derive

oDfzm(p,t) = Ghzn(d,t) = Yzm(g,t) + X ZF(4> HQuf (em(9,1)) + Xom (1)

N

12 Y S 2y He RE DI 37)
wﬁglx LT (9, )Qf (ep(0, 1)) + LY baHyy XEa0Dyzn (¢, t)
_éﬁilXUA’B((P,t ,

wherem =1,2,...,®.

4.2. Adaptive Control for Output Synchronization
An adaptive output feedback controller for the network (32) is devised as follows:

ﬁm(‘P t) =— Z basy, ( )Eazm(¢/t)/
oDJst, (1) = ba fq> ¢, ) RPEozi (9, 1)dp — iy (55, (1) — 87,),

(38)
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wherem =1,2,...,@,R7*7 5 P > 0,87 € R" and s (t) € R .
Theorem 2. The network (32) is output synchronized under the adaptive controller (38).

Proof. Take the following Lyapunov functional for the network (32):

W(t) = Oz(t‘2)+K2(t)
Oot) = fq,mglzﬁ<4>,t>l’zm(¢,t)d¢

- f be [ 27 (¢,1) [H @ (PXEL)]2(¢, £)dgh, (39)

I
g
g
—~

%2
§&
—~

~
~—

|

203
SS
~—

N
~

Ka(t)

in which 0 < P = diag(Py, Py, ..., Py) € R7*7.
From (37), (39) and Lemma 1, one obtains

D}02(1) < 2y & zh(pH)PoDIzu (14

2 5. b (9, 1) [H' ® (PREQ)] DI2(p, 1)

a=1

2 [o ilzfn(qb,t)P

20”

Czn(9,t) = Van(9,1) + X T 10 )Q(Flen(o,1))

—ﬂa¢m+fM¢w0—éﬁ (0, )QF(ep(9,1))

s? (1) XEqzn(, t) (40)

Z

=1

¢
+ Z Z baHrngEaOD Zn((l)/ ) ;

Sﬁ

ﬁf X6(9,1)

Using (15) to (18) and according to (40), we can derive

8=

dp — 2a§1 bz (¢, t) [H* ® (PXE,)],Diz(¢, t)d¢.

Zm (P, t)de

oDIOs (1) < zfq) [ 22—72PY+P)A(QXP+®
(41)

-2 Z 2 bast, () [ 21 (¢, ) PXEaz (9, ),

a=1m=1
. P : . 4 . d 22 z 22 J 2
where §;; = max(qij, %’j)/ i,j=1,2,...,0,Q = diag 'Zl fijr '21 Gjr- s 'Zl i |-
= = =
By (38), (39) and Lemma 1, one gets

oDIKy(t) < 2 % % (s4,(t) —85)0Dfsm(t)

IN

© ¢ A A
2 x Z(an(f)—5751)(bafq>251(¢,f)XPEaZm(¢/f)d¢ (42)

In view of (41) and (42), we have



Fractal Fract. 2024, 8,78

12 of 19

oDIVa(t) < f Jozh(¢,t) —2%%?—2PY+PXQXP+® Zm (¢, t)d¢
1 =1 "1
¢ @
2% % besi () [ip2h (¢, ) PREazm (¢, £)dgp
@
+2 ; ; bas?,( fq) ,YPXEazi (¢, t)dg

® ¢
-2 Zl Y b,sY, fq> PXEazm(gb, t)dep

(43)

— 2 Jozh —22E—2PY+PXQPX+® Zm (¢, t)dep

-2 Z Z ba8ly [ Zm (@, ) XPEazi (¢, t)dp — ﬁKz(f)

m=1a=1

= [T [Iw@)( E——ZPYJrPXQXPJr@)

¢, o
-2 glbu5“®(PXEa) z(¢, 1) = oy Ke (D)

IA

g R .
Joz (.t —ZaglbaAm(S“)@@(PXEg) z(¢>,t)—AM1(P)K2(t),

N
where & = I, ® [— 2y 1; —2PY + PRORP + @} = diag(s%,8%,...,5%) and &1, € R+,
I=1
Select sufficiently large 4%, such that

Am(E) — 22bm( YAm(PRE;) < —1. (44)

a=1

Moreover, we can obtain from (43) and (44) that

oDfVa(t)+ || 2(,) IB< — 32 (45)

Similar to the proof from (24) to (30), we can obtain

limy_, yool|2(+, 1) ]|, = 0. (46)

Therefore, the network (32) can realize output synchronization under the adaptive
controller (38). O

5. Numerical Examples
5.1. Example 1

Consider the following CFOMRDNNSs with multiple output couplings:
0.81 — gPunleh)
0Dy (p,1) = G507 = Yum (@, £) + Q(um (¢, 1)) f (um(,£)) +C

5 . 5 -
+0.2 ¥ H},Eren(¢,t) +0.5 ¥ HZ,Eren(¢,t)
n=1 n=1 (47)

5 ~
+0.3 ¥ H3,Ezen(¢,t) + om(9,t),
n=1
em (¢, 1) = Xuw(¢,t), m=1,2,...5
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where ® = {¢| —05 < ¢ < 05}, fo(n) = (In+1—|n—1))/8, n € R, ¢ = 1,2,3,
G = diag(0.7,0.52,0.94,0.51), Y = diag(0.27,0.42,0.16,038), C = (0.33,0.29,0.54,0.66) and

034 0 0 075 0 0
£ 0 025 0 5 0 046 O
1= 0 0 048 | 2~ 0 0 043 |’
0 0 0 0 0 0
0‘38 oiz 8 04 0 0 0
B, = o o o7 |-X=| 0 05 o0 0|
0 0 0 0 0 067 0

H! = 0 08 —-17 0 09 |,
05 07 0 -12 0

-0.7 02 0 0.5 0
02 —-09 05 0.2 0

05 02 0 =07 0

o
=
o
—_
—_
o

-15 . .
04 -09 03 0.2 0

H? = 0 03 —-08 O 05 |,
1.1 02 0 -13 0
0 0 0.5 —05
026 0 0 0 0
0 026 0 0 0
St = 0 0 027 0 0o |,
0 0 0 022 0
0 0 0 0 0.19
027 0 0 0 0
0 019 0 0 0
§2 = 0 0 026 0 0o |,
0 0 0 017 0
0 0 0 0 021
023 0 0 0 0
0 022 0 0 0
$3 = 0 0 021 0 0o |,
0 0 0 025 0
0 0 0 0 015

_05/ |uml ((P/ t)| S 1/
0.46, |1y (¢, )] > 1,

—0.45, [upn (¢, 1) <1,

—0.3, |um1(p, t)| > 1, gr2(tm (P, 1)) = {

q11 (U1 (¢, ) = {

034 Jum (¢ ) <1, 052, Jum (e )| <1,
ol (@0) = {—0.18, ()| >1, 0 {—03& (9 1)] > 1,
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0.27, |uma (¢, £)] < 1,

—0.6, |luyp(o,t)] <1, <
[umz (¢, t)] q22(uma (P, 1)) = {

0.38, |um2 (¢, t)| > 1,

q21 (umZ((P/ t)) = { —0-33/ |um2(¢/t)| > 1’

—0.61, [upp(p, 1) <1,
0.67, |upa (¢, )| > 1,

—0.75, |uma (¢, 1) <1,

0.66, [um (¢, t)| > 1, 924 (U2 (P, 1)) = {

923 (um2 (¢, 1)) = {

—0.31, |ums(¢,t)| <1,
—0.44, [ups(,t)] > 1,

0.53, |uma (¢, t)| <1,

0.39, |ums (¢, t)| > 1, 932 (Uma(P,t)) = {

331 (um3 (¢, 1)) = {

—0.54, [ums(p, 1) <1,

34 (una (¢, 1)) = {—0.47, [umz (¢, t)] ; L

0.59, [um3 (¢, t)| <1,

q33 (U3 (¢, 1)) = {—0.74, |um3(,£)| > 1.

061, |utma(e, )] <1,
028, |ita(e, )] > 1,

0.73, [uma(9, 1) < 1,

046, |uya(¢p,t)] > 1, qa2(Uma (P, 1)) = {

a1 (Uma (P, t)) = {

055, [um(¢, )] <1, =059, [uma(p,t)| <1,
43 (uma (P, 1)) = {—0.38, s ()] > 1, Taa(1tma(9,1)) = {—0.74, |ta(p,t)] > 1.

Obviously, the function fy(-)(¢ = 1,2,3) fulfills the Lipschitz condition with
6y = 0.25. Based on Theorem 1, the network (47) attains output synchronization un-
der the adaptive controller (12). Figure 1 displays the changing processes of norms of error
vectors zy, (-, t),m = 1,2,...,5 in the networks (47). From Figure 1, it is clear that the norms
of error vectors z, (-, t),m = 1,2,...,5 can converge to 0, which reflects the effectiveness
of the designed adaptive controller. Figure 2 depicts the change curves of the adaptive
feedback gains s, (t) for the networks (47).

6 T T T T T
1210 t)l]2
l1z2(- t)l]2
5} llza(-s )2
l[z4(- )]
125 (- )]
4t
3 -
\
2 | -
1 = -
0 L
0 1 2 3 4 5 6 7

Figure 1. ||zy (-, t)|2,m=1,2,...,5.
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1.2

0.8

Figure 2. s%,(t),m=1,2,...,5,a=1,2,3.

5.2. Example 2
Take into account the following CFOMRDNNSs with multiple output derivative couplings:

%1 (¢, 1)

0DP P u (¢, £) =G——=2-2" = Yy (¢, £) + Q(uum (¢, 1)) f (i (¢, 1)) + C

9P?

5 5
+04 Y Hy,E10D?en(¢,t) +0.5 Y HyyEooDPen(¢,t) us)
n=1 n=1

5
+0.6 Z H%nEZ%OD?'QSSn (@, t) +vm(¢,t),
n=1

em(p,t) =Xum(¢p,t), m=1,2,...,5

where ® = {¢| —05 < ¢ < 05}, fo(n) = (In+1—-|n—1))/8, n € R, ¢ = 1,2,3,
G = diag(0.5,0.52,054,0.59), Y = diag(0.47,0.42,0.46,038),C = (0.43,0.49,0.54,0.41) and

044 0 0 055 0 0
B 0 045 0 £ _ 0 046 0
1= 0 0 048 |77 0 0 043 |’
0 0 0 0 0 0
0'(;58 022 8 047 0 0 0
E; = 0 0 067 , X = 0 055 0 0 |,
0 0 0 0 0 066 0
—-053 0 0.23 0.3 0
0 —055 0 023 032
H! = 0.23 0 —0.44 0 021 |,
0.3 0.23 0 —0.63 0.1

0 032 021 01 —0.63
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0 0.3 0
—0 75 0.25 0.3 0
025 —0.55 0 0.3 ,
0 —0.6 0
03 0 -03
_04 0 0.3 0
—O 45 0.15 0.2 0
0 15 —0.55 0 0.4 ,
0 —0.5 0
0.4 0 —04
05 0 0 0
0 0.6 0 0 0
S'=| o o0 06 0 0 |,
0 0 0 06 O
0 0 0 0 07
04 O 0 0 0
0 07 O 0 0
=10 0 06 0 0 |,
0 0 0 05 O
0 0 0 0 05
05 0 0 0 0
0 06 O 0 0
$=]1 0 o0 04 0 0 |,
0 0 0 07 0
0 0 0 0 05
) —0.55, [ty (9, 1) <1 ") 046, [uy (¢, 1)] <1,
u u
Mm@ =1 045 a0 =1, T2 Z 05 (g 0] > 1,
—0.48, |11 (¢, 1)) <1 —047, |up1 (¢, 1) <1,
u ,t)) = u ’
13t (¢:1) 048 [y (g, )] > 1, Um0 0.54, |um (¢, )] > 1,
") 0.48, [un2(¢, )| <1, 0) —0.53, [um (¢, )| <1,
u u
102 = o a0l > 1, PR T 07 (g 0] > 1,
oy = {086 (@) <1, py = | 068 luna(eHl <1,
u u
2m @)= 055, w1 > 1, PP = 035, a6 > 1,
( ( t)) 0.49, |um3(¢/ t)| <1 ( ( i’)) —044, |um3(¢, t)| =l
u , = u ! -
931 (Um3 (P 0.53, [1ms (¢, )| > 1, 923\ —0.31, [ups(p,t)] > 1,
D) —0.51, [ums (¢, 1) < 1 (is(,) —0.51, [uma (¢, 1) <1,
u , = u ’ -
q33\Um3 4) 0.59, |um3(4)/ t)| > 1. 34 \Mm3 4) —-0.71, |um3(¢/ t)' >1,
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35 T T T T T
[[21(, )]
[[z2(-, )] |2
3t [[23( D)2 A
[[24(, )]
[1z5(-, t)] |2
2.5
2 H -
2 3 4 5 6 7

t(s)

Figure 3. ||zy (-, t)|l2,m =1,2,...,5.

1 T T T T T
5%(15) — 5%(,5) f(t)
5(t) 85 (t) 5(t)
o9l s3(1) si(t) e HON
’ si(t) s3(t) i)
55(1) s5(t) s 3()
0.8 b

Figure 4. s%,(t),m=1,2,...,5,a=1,2,3.

0.4, |4 (, 1)| <1,

Ga1 (tma (P, 1)) = {0.63, [tma (@, t)] > L

041, |uta(¢, )] < 1,

43 (uma (P, 1)) = { 0.58, [uma(¢, t)] ; 1

qa2(Uma (P, 1)) = {

—0.62, [upa(¢p, )| <1,
—0.53, [upma(p, t)] > 1,

041, |ta(¢, )] < 1,

Gaa(Uma(p,t)) = { -

—0.63, [1a(, )] > 1.
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Evidently, the function fy(-) (9 = 1,2, 3) satisfies the Lipschitz condition with 6y = 0.25.
From the Theorem 2, it is found that the network (48) is output synchronized under the adaptive
controller (38). From Figure 3, we can see the norms of error vectors z, (-, t),m = 1,2,...,5 can
converge to 0, which reflects the designed adaptive output feedback controller in the networks
(48) is effective. Figure 4 shows the change curves of the adaptive feedback gains s, (t) for the
networks (48).

6. Conclusions

In this article, two types of CFOMRDNNSs with multiple output couplings or multiple
output derivative couplings have been presented. We have addressed the problem of output
synchronization of CFOMRDNNSs with multiple output couplings with the assistance of
the inverse Laplace transform and the properties of Mittag—Leffler function. Taking into
account the effect of derivative coupling, the output synchronization of CFOMRDNNSs
with multiple output derivative couplings has been further studied by employing adaptive
control strategy. At last, two numerical examples have substantiated the effectiveness of
the derived output synchronization criteria.
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