Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems
Abstract
:1. Introduction
2. Basic Definitions
3. Time-Optimal Control Problem for Caputo Fractional Differential System
4. Existence Theorem
5. Bang-Bang Theorem
- Let Then we may easily verifyConsequently
- We check that
6. Optimality Conditions
7. Application
8. Open Problems
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; A Wiley- Interscience Pub.; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 81–92. [Google Scholar] [CrossRef]
- Agrawal, O.P. A General formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 2004, 38, 323–337. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional optimal control of a distributed system using eigenfunctions. J. Comput. Nonlinear Dyn. 2008, 3, 1–6. [Google Scholar] [CrossRef]
- Baleanu, D.; Agrawal, O.P. Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 2006, 56, 1087–1092. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Baleanu, D. A Hamiltonian formulation and direct numerical scheme for fractional optimal control problems. J. Vib. Control 2007, 13, 1269–1281. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Defterli, O.; Baleanu, D. Fractional optimal control problems with several state and control variables. J. Vib. Control 2010, 16, 1967–1976. [Google Scholar] [CrossRef]
- Gastao, F.F.; Torres Delfim, F.M. Fractional optimal control in the sense of Caputo and the fractional Noether’s Theorem. Int. Math. 2008, 3, 479–493. [Google Scholar]
- Jajarmi, A.; Baleanu, D. Suboptimal control of fractional-order dynamic systems with delay argument. J. Vib. Control 2017, 23, 1–17. [Google Scholar] [CrossRef]
- Bahaa, G.M. Time-optimal control problem for parabolic equations with control constraints and infinite number of variables. IMA J. Math. Control Inform. 2005, 22, 364–375. [Google Scholar] [CrossRef]
- Bahaa, G.M. Fractional optimal control problem for variational inequalities with control constraints. IMA J. Math. Control Inform. 2018, 35, 107–122. [Google Scholar] [CrossRef]
- Bahaa, G.M. Fractional optimal control problem for differential system with control constraints. Filomat 2016, 30, 2177–2189. [Google Scholar] [CrossRef]
- Bahaa, G.M. Fractional optimal control problem for infinite order system with control constraints. Adv. Differ. Eq. 2016, 250, 1–16. [Google Scholar] [CrossRef]
- Bahaa, G.M. Fractional optimal control problem for differential system with control constraints with delay argument. Adv. Differ. Eq. 2017, 69, 1–19. [Google Scholar]
- Bahaa, G.M. Fractional optimal control problem for variable-order differential systems. Fract. Calc. Appl. Anal. 2017, 20, 1447–1470. [Google Scholar] [CrossRef]
- Bahaaa, G.M.; Hamiaz, A. Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler Kernel. Adv. Differ. 2018, 2018, 257. [Google Scholar] [CrossRef]
- Bahaa, G.M. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu’s derivatives and application. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 485–501. [Google Scholar]
- Bahaa, G.M.; Kotarski, W. Time-optimal control of infinite-order distributed parabolic systems involving multiple time-varying lags. J. Numer. Funct. Opt. 2016, 37, 1066–1088. [Google Scholar] [CrossRef]
- Baleanu, D.; Defterli, O.; Agrawal, O.P. Central difference numerical scheme for fractional optimal control problems. J. Vib. Control. 2009, 15, 583–597. [Google Scholar] [CrossRef]
- Hasan, M.M.; Tangpong, X.W.; Agrawal, O.P. Fractional optimal control of distributed systems in spherical and cylindrical coordinates. J. Vib. Control. 2011, 18, 1506–1525. [Google Scholar] [CrossRef]
- Hasan, M.M.; Tangpong, X.W.; Agrawal, O.P. A Formulation and Numerical Scheme for Fractional Optimal Control of Cylindrical Structures Subjected to General Initial Conditions. In Fractional Dynamics and Control; Baleanu, D., Machado, J., Luo, A., Eds.; Springer: New York, NY, USA, 2012; pp. 3–17. [Google Scholar]
- Tricaud, C.; Chen, Y.Q. Time-optimal control of systems with fractional dynamics. Int. J. Differ. Eq. 2010, 2010, 461048. [Google Scholar] [CrossRef]
- Fattorini, H.O. Infinite Dimensional Linear Control Sytems: The Time Optimal and Norm Optimal Problems; North-Holland Math. Stud; Elsevier: Amsterdam, The Netherlands, 2005; Volume 201. [Google Scholar]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 170. [Google Scholar]
- Wang, G.; Wang, L. The bang-bang principle of time optimal controls for the heat equation with internal controls. Syst. Control Lett. 2007, 56, 709–713. [Google Scholar] [CrossRef]
- Phung, K.D.; Zhang, C. Bang-bang property for time-optimal control of similinear heat equation. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis; Elsevier: Amsterdam, The Netherlands, 2014; Volume 31, pp. 477–499. [Google Scholar]
- Chen, N.; Yang, D.H. Time-varying bang-bang property of time optimal controls for the heat equation and its applications. Syst. Control Lett. 2018, 112, 18–23. [Google Scholar] [CrossRef]
- Jarad, F.; Maraba, T.; Baleanu, D. Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 2010, 62, 609–614. [Google Scholar] [CrossRef]
- Jarad, F.; Maraba, T.; Baleanu, D. Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. Comput. 2012, 218, 9234–9240. [Google Scholar] [CrossRef]
- Mophou, G.M. Optimal control of fractional diffusion equation. Comput. Math. Appl. 2011, 61, 68–78. [Google Scholar] [CrossRef]
- Mophou, G.M. Optimal control of fractional diffusion equation with state constraints. Comput. Math. Appl. 2011, 62, 1413–1426. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J.T. Linear Operators. Part I. Interscience; John Wiley & Sons: Hoboken, NJ, USA, 1958. [Google Scholar]
- Mophou, G.M.; Fotsing, J.M. Optimal control of a fractional diffusion equation with delay. J. Adv. Math. 2014, 6, 1017–1037. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abel-Gaid, S.H.; Qamlo, A.H.; Mohamed, B.G. Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems. Fractal Fract. 2024, 8, 84. https://doi.org/10.3390/fractalfract8020084
Abel-Gaid SH, Qamlo AH, Mohamed BG. Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems. Fractal and Fractional. 2024; 8(2):84. https://doi.org/10.3390/fractalfract8020084
Chicago/Turabian StyleAbel-Gaid, Shimaa H., Ahlam Hasan Qamlo, and Bahaa Gaber Mohamed. 2024. "Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems" Fractal and Fractional 8, no. 2: 84. https://doi.org/10.3390/fractalfract8020084
APA StyleAbel-Gaid, S. H., Qamlo, A. H., & Mohamed, B. G. (2024). Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems. Fractal and Fractional, 8(2), 84. https://doi.org/10.3390/fractalfract8020084