
Citation: Chen, H.; He, M.; Han, W.;

Liu, S.; Wei, C. A Discrete-Time

Fractional-Order Flocking Control

Algorithm of Multi-Agent Systems.

Fractal Fract. 2024, 8, 85. https://

doi.org/10.3390/fractalfract8020085

Academic Editors: Cristina I. Muresan

and Ping Gong

Received: 22 December 2023

Revised: 20 January 2024

Accepted: 25 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Discrete-Time Fractional-Order Flocking Control Algorithm of
Multi-Agent Systems
Haotian Chen, Ming He *, Wei Han, Sicong Liu and Chenyue Wei

Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China;
cht0304@126.com (H.C.); mxyacc@nuaa.edu.cn (W.H.); liusc86@sina.com (S.L.); wcy20000425@126.com (C.W.)
* Correspondence: heming@aeu.edu.cn

Abstract: In this paper, a discrete-time fractional flocking control algorithm of multi-agent systems is
put forward to address the slow convergence issue of multi-agent systems. Firstly, by introducing
Grünwald-Letnikov (G-L) fractional derivatives, the algorithm allows agents to utilize historical
information when updating their states. Secondly, based on the Lyapunov stability theory, the
convergence of the algorithm is proven. Finally, simulations are conducted to verify the effectiveness
of the proposed algorithm. Comparisons are made between the proposed algorithm and other
methods. The results show that the proposed algorithm can effectively improve the convergence
speed of multi-agent systems.
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1. Introduction

A multi-agent system (MAS) consists of multiple autonomous and perceptually-abled
agents that interact, communicate, and compete with each other based on specific rules to
solve complex problems and accomplish tasks collectively. MASs span various domains,
including robotics, network science, sociology, and economics, and have been widely
applied in practical scenarios such as consensus control [1], logistics management, and
decision support [2].

Flocking control of multi-agent systems has become a research hotspot in recent years.
It refers to emergent collective behaviors in a swarm system where agents interact locally
and achieve stability, order, and other specific goals [3]. Flocking control originates from
the study of natural biological swarms which exhibit intelligent characteristics, such as
fish schools, bird flocks, and insect colonies [4–6]. In 1987, Reynolds [7] introduced the
Boids model, a discrete-time and space-based multi-agent system used to describe the
behavioral interaction in bird-like animal swarms, such as seagulls or flocks of pigeons. The
Boids model proposes three basic principles for agent behavior, separation, alignment, and
cohesion, which enable collective synergy. On the basis of the Boids model, Vicsek et al. [8]
focused only on the alignment principle and proposed the well-known Vicsek model. In
this model, each particle adjusts its movement direction by perceiving and responding to
the positions and orientations of surrounding particles.

Based on these models, flocking control in multi-agent systems has been extensively
studied. Olfati et al. formulated the theoretical framework for swarm control in multi-
agent systems based on Reynolds’ three principles, providing a theoretical analysis of the
flocking phenomenon from the perspective of nonlinear control theory [9]. In 2019, Jia
et al. [10] introduced a hierarchical mechanism to the classical Vicsek model, proposing a
hierarchical flocking model to explain the collaborative behaviors of specific agents. It is
worth noting that the existing research on swarm control in multi-agent systems mainly
focuses on integer-order dynamics, such as first-order dynamics [11,12] and second-order
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dynamics [13,14], while studies based on fractional-order dynamics are relatively scarce.
Fractional calculus has been widely applied in natural sciences and engineering fields, such
as linear and nonlinear dynamics, intelligent algorithm optimization, and characterizing
the internal structures of complex functions. Fractional calculus is a good approach for
modeling complex physical systems [15,16] and improving system convergence rates
[17,18]. Due to the “memory” property of fractional calculus, many complex phenomena
in nature that integer-order dynamics cannot explain can be naturally described by the
cooperative behaviors of agents with fractional-order dynamics, such as the foraging of
microorganisms and the collective movement of bacteria [19]. Therefore, it is meaningful to
investigate flocking control in multi-agent systems based on fractional-order dynamics. In
addition, discrete-time systems are suitable to investigate this, since in continuous systems,
in order to execute an implementation, the systems have to be discretized because there are
no exact formulas of the solutions.

Inspired by the above results, this paper discusses the flocking control of discrete-time
multi-agent systems with fractional dynamics. The main contributions are summarized
as follows.

1. A discrete-time multi-agent flocking control algorithm was derived based on Grünwald-
Letnikov (G-L) fractional derivatives. Compared with existing flocking methods
where only integer-order dynamics are considered, our algorithm allows agents to use
historical information, which means that the current states of the agents depend on
both recent and historical values. Thus, our method conforms more with the reality
that individuals always exhibit a time-dependent memory effect in nature;

2. Compared with existing research [18] where only the leaderless condition is taken into
account, this paper investigates the fractional-order flocking control of multi-agent
systems under the leader-following strategy. Based on the Lyapunov stability theory,
the convergence of this algorithm is proven. Experimental results demonstrate that
the proposed algorithm achieves consensus among agents and effectively improves
the convergence rate.

This paper is organized as follows. In Section 2, some notations and basic defini-
tions are given. In Section 3, the model formulation for the discrete-time flocking control
algorithm of multi-agent systems is proposed, and the convergence of which is proven.
In Section 4, simulations are given to verify our results. Finally, some conclusions are
presented in Section 5.

2. Preliminaries

In this section, basin graph theory and definitions of the G-L fractional derivative
are given.

2.1. Graph Theory

Let xi(t) ∈ R2, vi(t) ∈ R2 and ui(t) ∈ R2 be the position vector, velocity vector
and control input of agent i at time t, respectively. The topology of agents is described
as an undirected graph G = (V, E), where V = {1, 2, · · · , N} denotes n agents and
E = {(i, j) ∈ V × V, j ∈ Ni(t)} indicates that there is a communication link between
agent i and agent j. Ni(t) is the set of neighbors of agent i at time t. Let r denote the
communication radius, then Ni(t) = {j|∥xi(t)− xj(t)∥ ≤ r, j ∈ V, j ̸= i}. A = [aij]N×N
denotes the adjacency matrix with aij = 1 if j ∈ Ni and aij = 0 otherwise. The Laplacian
matrix of graph G is defined as L = [lij]N×N with lii = ∑j ̸=i aij and lij = −aij for i ̸= j.

In order to avoid the collision among agents, the agents need to keep a distance
between the safety distance rs and communication radius r; therefore, the expected distance
between every two agents is defined as

∥xi(t)− xj(t)∥ = d, (i, j) ∈ E(t), rs < d < r. (1)
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Equation (1) is called the α-lattices system [9]. However, due to the interaction between
individuals, the system cannot reach the ideal system and eventually evolves into the α-
lattices-like system with error δ, which is shown in Figure 1.

(a) α-lattices system (b) α-lattices-like system

Figure 1. The α-lattices system and α-lattices-like system.

2.2. Fractional Derivative

Fractions calculus, as a branch of mathematics, has evolved over several centuries,
resulting in varying definitions. In this paper, we employ the Grunwald-Letnikov fractional
derivative, which is defined as follows [20]:

Dα(x(t)) = lim
h→0

(
1
hα

+∞

∑
k=0

(−1)kΓ(α + 1)x(t − kh)
Γ(k + 1)Γ(α − k + 1)

)
, (2)

where h is a positive real number and k ≥ 0 is an integer. α ∈ (0, 1] is the fractional order
and Γ(·) is the Gamma function with Γ(x) =

∫ +∞
0 tx−1e−tdt. Dα(x(t)) is called the G-L

fractional derivative of x(t) with order α.
In discrete-time implementation, Equation (2) is given by

Dα(x(t)) =
1

Tα

m

∑
k=0

(−1)kΓ(α + 1)x(t − kT)
Γ(k + 1)Γ(α − k + 1)

, (3)

where t = eT, e is a positive integer, T is the sampling period and m is the truncation order.

Remark 1. Equations (2) and (3) demonstrate a vital characteristic of fractional differentiation:
it comprises an infinite series of terms, unlike integer differentiation, which consists of a finite
series. Consequently, integer differentiation is referred to as a local operator, as it solely relies on
the function’s value at a single point in time and its finite derivative. In contrast, fractional differ-
entiation incorporates historical information throughout the evolutionary process, metaphorically
representing the “memory” of all past events. It can be recognized as a non-local operator with
memory effects. This particular property is crucial in accurately depicting the dynamic behavior
observed in numerous natural, physical, and engineering systems.

Remark 2. t = eT where e is a positive integer is applied for all the following equations. Thus all
the time t is in the discrete-time domain in the rest of this paper.

3. The Proposed Flocking Control Method

In the current section, the proposed flocking control of multi-agent systems based on
the G-L fractional derivative is given. Furthermore, the convergence of the algorithm is
analyzed by using the Lyapunov stability theory.
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3.1. Dynamics Model of Multi-Agent Systems

We consider that there are N agents in two-dimensional Euclidean space. In the
general flocking control models [21–23], agents always update their states by integer-order
dynamics, that is {

xi(t + T) = xi(t) + vi(t)T
vi(t + T) = vi(t) + ui(t)T

i = 1, 2, · · · , N, (4)

where T is the time step. Now, let us see the updating speed of the agents. vi(t + T) =
vi(t) + ui(t)T can be written as

vi(t + T)− vi(t)
T

= ui(t). (5)

Equation (5) is equivalent to

D1(vi(t + T)) = ui(t). (6)

The above equation suggests that in the traditional integer-order flocking control, only
current information is used to update the agents’ states. To apply the historical information
to boost the performance of swarm flocking, we replace the plain derivative with the G-L
fractional-order derivative with fractional order α ∈ (0, 1], as defined in Section 2.2, then
we obtain the following relation:

Dα(vi(t + T)) =
1

Tα

m

∑
k=0

(−1)kΓ(α + 1)vi(t + (1 − k)T)
Γ(k + 1)Γ(α − k + 1)

= ui(t), (7)

where D1(x(t)) denotes the first-order derivative of x(t). Without loss of generality, the
first four terms of the fractional derivative, as given by Equation (3), are considered, then
we obtain

xi(t + T) = xi(t) + vi(t)T

vi(t + T) =αvi(t) +
1
2

α(1 − α)vi(t − T) +
1
6

α(1 − α)(2 − α)vi(t − 2T)

+
1

24
α(1 − α)(2 − α)(3 − α)vi(t − 3T) + ui(t)T.

, (8)

Equation (8) reveals that the speed of the agents, based on fractional-order dynamics at
time t, is a comprehensive result of historical information from the previous four moments.
This contrasts integer-order flocking control, which relies solely on the information of the
current state. Importantly, when α = 0, the fractional-order flocking control algorithm
regresses to the traditional integer-order flocking control.

In order to make all agents move in the desired direction, a virtual leader is added,
and the dynamics of which are designed as{

x0(t + T) = x0(t) + v0(t)
v0(t + T) = v0(t)

, (9)

where x0(t) and v0(t) represent the position vector and speed vector of the virtual leader
at time t.

3.2. Control Protocol of the Agents

Now, we consider the control protocol of the agents. Assume that the control input of
agent i at time t is

ui(t) = f g
i (t) + f v

i (t) + f γ
i (t), (10)
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where f g
i (t) is the relative distance control term, which is used to achieve aggression and

separation. The definition of f g
i (t) is

f g
i (t) = −∇xi(t) ∑

j∈Ni(t)
ϕa(∥xj(t)− xi(t)∥σ), (11)

where ∥z∥σ = 1
ε [
√

1 + ∥z∥2 − 1] with parameter ε > 0, and

ϕa(∥z∥σ) =
1
2

[
(a + b)

∥z∥σ + c√
1 + (∥z∥σ + c)2

+ (a − b)

]
, (12)

where the parameters a, b and c satisfy 0 < a < b and c = ∥a − b∥/
√

4ab. The gradient of
σ-norm is ∇∥z∥σ = z/

√
1 + (∥z∥σ + c)2. The term f v

i (t) is used to control the agents to
achieve speed alignment, which is expressed as

f v
i (t) = ∑

j∈Ni(t)
(vj(t)− vi(t)). (13)

f γ
i (t) is used for the agents to follow the virtual leader, which is defined as

f γ
i (t) = −c1(xi(t)− x0(t))− c2(vi(t)− v0(t)), (14)

where c1 and c2 are positive real numbers, representing the feedback parameters.

Assumption 1. The initial states of the multi-agent systems are connected, which means that the
undirected graph G(0) is connected.

Assumption 2. There are no collisions between agents in the initial state of the system.

Assumption 3. All the agents can simultaneously receive instructions from the virtual leader.

Theorem 1. Consider that Assumptions 1–3 are valid. For the multi-agent system described in
Equations (8) and (9) with the control input in (10), if the sampling period is small enough such
that T → 0, then we can obtain

1. The system will be asymptotic stable, and the agents’ positions will eventually tend to lattices;
2. The speed of all agents will tend towards the virtual leader;
3. There will be no collisions among the agents.

Proof of Theorem 1. Here, we use the same technique as described in the stability analysis
of flocking in [9,24] to prove the stability of our proposed model.
Let x̃i(t) = xi(t)− x0(t), ṽi(t) = vi(t)− v0(t); hence, it is obviously that x̃ij(t) = xij(t),
where xij(t) = xj(t)− xi(t). The total energy of a multi-agent system is composed of the
total potential energy and the relative kinetic energy. According to Equations (10)–(14), the
total energy of the system at time t is

Q(t) =
1
2

N

∑
i=1

(Ui(t) + ṽi(t)T ṽi(t)), (15)

where Ui(t) is the total potential energy at time t [24]

Ui(x̃i(t)) =
N

∑
j=1,j ̸=i

ϕa(∥x̃ij(t)∥σ) + c1 x̃i(t)T x̃i(t). (16)
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where x̃ij(t) = x̃j(t)− x̃i(t). For simplicity, let Wi(x̃ij) = ∑N
j=1,j ̸=i ϕa(∥x̃ij(t)∥σ), then we

have

lim
T→0

1
2

Ui(t + T)− Ui(t)
T

=
1
2

U̇i(t) = ṽi(t)T∇x̃i(t)Wi(x̃ij(t)) + c1ṽi(t)T x̃i(t). (17)

The energy function can be written as

Q(t) =
1
2

N

∑
i=1

(Ui(t) + ṽi(t)T ṽi(t))

=
1
2

N

∑
i=1

(Wi(x̃ij(t)) + c1 x̃i(t)T x̃i(t) + ṽi(t)T ṽi(t)).

(18)

Then we obtain

lim
T→0

Q(t + T)− Q(t)
T

= Q̇(t)

=
1
2

N

∑
i=1

(U̇(t) + ṽi(t)Tui(t)).
(19)

From the definition of ui(t), invoking Equations (10)–(14),

Q̇(t) =
N

∑
i=1

(ṽi(t)T∇x̃i(t)Wi(x̃ij(t)) + c1ṽi(t)Txi(t) + ṽi(t)Tui(t))

=− ṽ(t)T(L(t)⊗ In)ṽ(t)− c2

N

∑
i=1

ṽi(t)T ṽi(t)

=− ṽ(t)[(L(t) + c2 IN)⊗ In]ṽ(t),

(20)

where ṽ(t) = [ṽ1(t) ṽ2(t) · · · ṽN(t)]T, L(t) is the Laplacian matrix of the system at time t, and
⊗ denotes the Kronecker product. Since L(t) is a positive semi-definite matrix, L(t) + c2IN
is a positive matrix. Then we obtain Q(t + T)− Q(t) < 0, which means Q(t) is decreasing.
Therefore, Q(t) < Q(0) for any t > 0, and the system will be asymptotically stable.

Assume that agents i and j collide during tc ∈ [tm, tn]. Then Ui(t) and Qi(t) will
increase, which contradicts that Q(t) is decreasing. Therefore, the agents will not collide.
Using the same method, the agents will not collide at each period [tk, tk+1]. This completes
the proof.

3.3. Flow Chart of Our Proposed Algorithm

Figure 2 illustrates the procedure of the discrete-time fractional-order flocking control
algorithm of multi-agent systems. First, the agent’s speed and position are set up. Next,
the interaction force on the agent is calculated using Equations (10)–(14). After this, the
agent updates its fractional speed based on the interaction force and Equation (8). Finally,
the agent’s position is updated using Equation (8).
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Figure 2. Flow chart of our proposed flocking algorithm.

4. Simulation Results

In this section, some numerical simulations based on MATLAB are provided to illus-
trate the effectiveness of our proposed fractional-order flocking control algorithm.

4.1. Tests of the Fractional-Order Flocking Control Algorithm

The current simulation investigates the speed and position changes of agents based on
G-L fractional-order dynamics. The multi-agent system is composed of 100 agents, and the
initial location and direction angle are randomly generated in a [0, 100]× [0, 100] area and
[−π, π], respectively, which is shown in Figure 3a. The red arrow represents the direction
of the agents. Consider the communication radius r = 6, the subsequent expected distance
between every two agents is d = 5, and besides c1 = 0.2 and c2 = 0.5, the sampling period
T = 0.02. The initial position of the virtual leader is (25, 25), and the speed of it is constant
(0.5, 0.5). The fractional order is α = 0.8.

Figure 3 illustrates the status of the multi-agent system based on our method at
different time intervals. Figure 3a shows the initial states of the system, which are complete
disorder. Figure 3b,c present the agents’ states after 150 and 300 iterations, respectively.
Observably, with increasing iterations, the system transitions from disorder to order, and
the speed of the agents gradually approach that of the virtual leader. The system’s final
state is shown in Figure 3d, where all agents converge to a uniform state, exhibiting a
lattice-like structure (verifying the first condition in Theorem 1).
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(a) Initial states (b) 150 iterations

(c) 300 iterations (d) Final states

Figure 3. The status of the agents.

The motion trajectories of the agents are shown in Figure 4. It can be seen that, at first,
the whole system is disordered. With an increase in iterations, the degree of order of the
system is improved through interactions between agents; in the end, the system reaches
convergence, and all the agents move towards the upper-right direction.

Figure 4. The trajectories of the agents.

We define the speed error between agents and the virtual leader as{
ex

i (t) = vx
i (t)− vx

0(t)
ey

i (t) = vy
i (t)− vy

0(t)
i = 1, 2, · · · , N, (21)

where ex
i (t) and ey

i (t) are the speed error in the direction of X-axis and Y-axis at time t,
respectively. vx

i (t), vx
0(t) and vy

i (t), vy
0(t) are the speed components in the direction of
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X-axis and Y-axis at time t, respectively. Then, the global error between the agents and the

virtual leader can be expressed as ei(t) =
√
(ex

i (t))
2 + (ey

i (t))
2. The speed error between

the agents and the virtual leader based on fractional-order flocking control is shown in
Figure 5. Figure 5a is the speed error in the direction of the X-axis, and Figure 5b is the
speed error in the direction of the Y-axis. Figure 5c shows the global error between the
agents and the virtual leader. We can see that in the initial time, the speed error between
the agents and the virtual leader is significant because the initial speed of the agents is
random. Under the control of the fractional-order flocking algorithm, the agent’s speed
gradually approaches the leader’s speed, and finally the speed error tends to 0. At this time,
the speed of the agents and the virtual leader is consistent (verifying the second condition
in Theorem 1).

(a) Speed error in the direction of the X-axis (b) Speed error in the direction of the Y-axis

(c) Global error

Figure 5. The speed error between the agents and the virtual leader.

Above all, the multi-agent systems based on the fractional-order flocking control
algorithm proposed in this paper can achieve flocking effectively. The speed of all agents
gradually tends to that of the virtual leader over time. In addition, the distance between
agents is always greater than 0, and thus Theorem 1 is verified.

4.2. Performance Test

In order to further illustrate the advantages of the proposed fractional-order flocking
control method in this paper, comparisons were made among this method and two other
commonly used flocking control algorithm, which are flocking control based on integer-
order dynamics [9] and betweenness centrality with the influence degree (BCID) [25]. The
selected system consists of 200 agents in a [0, 50]× [0, 50] area. To avoid randomness and to
obtain general results, 50 simulations are conducted, each with a maximum of 300 iterations.
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Other parameters were the same as those in Section 4.1. The states of the agents can be
quantitatively expressed by the velocity direction order parameter Φ, which is defined as

Φ =
1
N

∥∥∥∥∥ N

∑
i=1

vi(t)
∥vi(t)∥

∥∥∥∥∥. (22)

Φ describes the degree of order of the agents’ movements. When Φ = 0, all agents
in the system move in random directions and the system is completely disordered. When
Φ = 1, all agents move in the same direction, and the system is ultimately ordered. It was
found that the system will show apparent order when Φ = 0.9 [26].

The results are shown in Figure 6. The initial state of the system is strongly disordered;
therefore, the degree of order for all three methods is poor in the beginning. With the
increase in iterations, the speed of the agents tend towards the virtual leader’s speed, and
consequently the system gradually becomes ordered. Note that when there are fewer
than 120 iterations, the convergence rate of our proposed fractional-order flocking control
algorithm is no better than the other two algorithms. This is because the agents with
fractional-order dynamics utilize the historical information to update their states; however,
the order of the system at each moment in this period (less than 120 iterations) is relatively
poor, and the use of such poor information will reduce the order of the system. However, as
the order of the system gradually increases, "high-quality" historical information (the degree
of order is relatively high) will accelerate the convergence rate of the system. Therefore,
when the number of iterations reaches 120, the convergence rate of the multi-agent system
based on the fractional-order flocking control algorithm is significantly higher than that of
the integer-order method and BCID method, and the consistency of the system is eventually
realized much faster.

Figure 6. The convergence rate comparison of the algorithms.

5. Conclusions

A discrete-time flocking control algorithm for multi-agent systems was proposed by
introducing a G-L fractional derivative to the speed updating process of agents, which
enables agents to utilize historical information. The convergence of this algorithm is
proven. The simulation results demonstrate that multi-agent systems can achieve flocking
based on this algorithm. Furthermore, our proposed algorithm can effectively improve the
convergence rate of multi-agent systems. In future work, we will focus on applying this
algorithm to multi-vehicle and multi-robot systems.
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