Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multifractal Detrended Cross Correlation Analysis (MFDCCA)
2.2. Multifractal Indices
2.2.1. The Degree of Multifractality
2.2.2. Degree of Asymmetry (AI)
2.2.3. Singularity Parameters
2.2.4. The Hurst Index (H)
3. Empirical Results
3.1. Descriptive Statistics
3.2. Multifractal Detrended Cross Correlation Analysis (MFDCCA)
3.3. Rolling Windows Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, R.; Mao, Y.; Zhang, J.; Clarke, K. Economic burden of illness in Canada, 1993. Chronic Dis. Inj. Can. 1997, 18, 1F. [Google Scholar]
- Jahoda, M. Economic recession and mental health: Some conceptual issues. J. Soc. Issues 1988, 44, 13–23. [Google Scholar] [CrossRef]
- Huang, R.; Ghose, B.; Tang, S. Effect of financial stress on self-rereported health and quality of life among older adults in five developing countries: A cross sectional analysis of WHO-SAGE survey. BMC Geriatr. 2020, 20, 288. [Google Scholar] [CrossRef]
- Sturgeon, J.A.; Arewasikporn, A.; Okun, M.A.; Davis, M.C.; Ong, A.D.; Zautra, A.J. The psychosocial context of financial stress: Implications for inflammation and psychological health. Psychosom. Med. 2016, 78, 134. [Google Scholar] [CrossRef]
- Taylor, M.; Stevens, G.; Agho, K.; Raphael, B. The impacts of household financial stress, resilience, social support, and other adversities on the psychological distress of Western Sydney parents. Int. J. Popul. Res. 2017, 2017, 6310683. [Google Scholar] [CrossRef]
- Åslund, C.; Larm, P.; Starrin, B.; Nilsson, K.W. The buffering effect of tangible social support on financial stress: Influence on psychological well-being and psychosomatic symptoms in a large sample of the adult general population. Int. J. Equity Health 2014, 13, 85. [Google Scholar] [CrossRef]
- Altman, E.I.; Hotchkiss, E. Corporate Financial Distress and Bankruptcy; John Wiley & Sons: New York, NY, USA, 1993; Volume 1998. [Google Scholar]
- Davis, C.G.; Mantler, J. The Consequences of Financial Stress for Individuals, Families, and Society; Centre for Research on Stress, Coping and Well-Being, Carleton University: Ottawa, ON, Canada, 2004. [Google Scholar]
- Frank, C.; Davis, C.G.; Elgar, F.J. Financial strain, social capital, and perceived health during economic recession: A longitudinal survey in rural Canada. Anxiety Stress Coping 2014, 27, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Durand, R.B.; Dai, L.; Chang, M. Financial distress: Lifecycle and corporate restructuring. J. Corp. Financ. 2015, 33, 19–33. [Google Scholar] [CrossRef]
- Setiany, E. The effect of investment, free cash flow, earnings management, and interest coverage ratio on financial distress. J. Soc. Sci. 2021, 2, 64–69. [Google Scholar]
- Efthyvoulou, G. The impact of financial stress on sectoral productivity. Econ. Lett. 2012, 116, 240–243. [Google Scholar] [CrossRef]
- Cardarelli, R.; Elekdag, S.A.; Lall, S. Financial stress, downturns, and recoveries. IMF Work. Pap. 2009, 2009, WP/09/100. [Google Scholar]
- Ahir, H.; Dell’Ariccia, G.; Furceri, D.; Papageorgiou, C.; Qi, H. Financial Stress and Economic Activity. IMF Work. Pap. 2023, 2023, WP/23/217. [Google Scholar]
- Mundra, S.; Bicchal, M. Asymmetric effects of monetary policy and financial accelerator: Evidence from India. J. Econ. Asymmetries 2023, 27, e00296. [Google Scholar] [CrossRef]
- Apostolakis, G.; Papadopoulos, A.P. Financial stress spillovers in advanced economies. J. Int. Financ. Mark. Inst. Money 2014, 32, 128–149. [Google Scholar] [CrossRef]
- Ishrakieh, L.M.; Dagher, L.; El Hariri, S. A financial stress index for a highly dollarized developing country: The case of Lebanon. Cent. Bank Rev. 2020, 20, 43–52. [Google Scholar] [CrossRef]
- Ilesanmi, K.D.; Tewari, D.D. Financial stress index and economic activity in South Africa: New evidence. Economies 2020, 8, 110. [Google Scholar] [CrossRef]
- Cevik, E.I.; Dibooglu, S.; Kenc, T. Financial stress and economic activity in some emerging Asian economies. Res. Int. Bus. Financ. 2016, 36, 127–139. [Google Scholar] [CrossRef]
- Hubrich, K.; Tetlow, R.J. Financial stress and economic dynamics: The transmission of crises. J. Monet. Econ. 2015, 70, 100–115. [Google Scholar] [CrossRef]
- Apostolakis, G.; Papadopoulos, A.P. Financial stability, monetary stability and growth: A PVAR analysis. Open Econ. Rev. 2019, 30, 157–178. [Google Scholar] [CrossRef]
- Ozcelebi, O. Assessing the impacts of financial stress index of developed countries on the exchange market pressure index of emerging countries. Int. Rev. Econ. Financ. 2020, 70, 288–302. [Google Scholar] [CrossRef]
- Vermeulen, R.; Hoeberichts, M.; Vašíček, B.; Žigraiová, D.; Šmídková, K.; de Haan, J. Financial stress indices and financial crises. Open Econ. Rev. 2015, 26, 383–406. [Google Scholar] [CrossRef]
- Altman, E.I.; Hotchkiss, E. Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 289. [Google Scholar]
- Jadoon, I.A.; Mumtaz, R.; Sheikh, J.; Ayub, U.; Tahir, M. The impact of green growth on financial stability. J. Financ. Regul. Compliance 2021, 29, 533–560. [Google Scholar] [CrossRef]
- Geetha, K.; Suganthi, L.M.; Vasanthi, K.; Kavitha, B. Financial stress testing in US banking sector. Mater. Today Proc. 2021, 37, 2252–2255. [Google Scholar] [CrossRef]
- Cardarelli, R.; Elekdag, S.; Lall, S. Financial stress and economic contractions. J. Financ. Stab. 2011, 7, 78–97. [Google Scholar] [CrossRef]
- Cevik, E.I.; Dibooglu, S.; Kutan, A.M. Measuring financial stress in transition economies. J. Financ. Stab. 2013, 9, 597–611. [Google Scholar] [CrossRef]
- Chen, L.; Verousis, T.; Wang, K.; Zhou, Z. Financial stress and commodity price volatility. Energy Econ. 2023, 125, 106874. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, C.; Wang, J. Financial stress and returns predictability: Fresh evidence from China. Pac.-Basin Financ. J. 2023, 78, 101980. [Google Scholar] [CrossRef]
- Hoque, M.E.; Soo-Wah, L.; Tiwari, A.K.; Akhter, T. Time and frequency domain connectedness and spillover among categorical and regional financial stress, gold and bitcoin market. Resour. Policy 2023, 85, 103786. [Google Scholar] [CrossRef]
- Mezghani, T.; Boujelbène, M.; Boutouria, S. Forecasting the impact of financial stress on hedging between the oil market and GCC financial markets. Manag. Financ. 2023. [Google Scholar] [CrossRef]
- Sohag, K.; Kalina, I.; Elsayed, A.H. Financial stress in Russia: Exploring the impact of oil market shocks. Resour. Policy 2023, 86, 104150. [Google Scholar] [CrossRef]
- Adam, T.; Benecká, S.; Matějů, J. Financial stress and its non-linear impact on CEE exchange rates. J. Financ. Stab. 2018, 36, 346–360. [Google Scholar] [CrossRef]
- Apostolakis, G.; Papadopoulos, A.P. Financial stress spillovers across the banking, securities and foreign exchange markets. J. Financ. Stab. 2015, 19, 1–21. [Google Scholar] [CrossRef]
- Li, Y.; Liang, C.; Huynh, T.L.D. Combination forecast based on financial stress categories for global equity market volatility: The evidence during the COVID-19 and the global financial crisis periods. Appl. Econ. 2023, 1–36. [Google Scholar] [CrossRef]
- Armah, M.; Bossman, A.; Amewu, G. Information flow between global financial market stress and African equity markets: An EEMD-based transfer entropy analysis. Heliyon 2023, 9, e13899. [Google Scholar] [CrossRef]
- Chau, F.; Deesomsak, R. Does linkage fuel the fire? The transmission of financial stress across the markets. Int. Rev. Financ. Anal. 2014, 36, 57–70. [Google Scholar] [CrossRef]
- Sousa, R.M. Wealth-to-income ratio, government bond yields and financial stress in the Euro Area. Appl. Econ. Lett. 2012, 19, 1085–1088. [Google Scholar] [CrossRef]
- Liang, C.; Hong, Y.; Huynh, L.D.T.; Ma, F. Asymmetric dynamic risk transmission between financial stress and monetary policy uncertainty: Thinking in the post-covid-19 world. Rev. Quant. Financ. Account. 2023, 60, 1543–1567. [Google Scholar] [CrossRef]
- Gomis-Porqueras, P.; Ruprecht, R. A Financial Stress Index for a Small Open Economy: The Australian Case; Board of Governors of the Federal Reserve System: Washington, DC, USA, 2023. [Google Scholar]
- Zhang, H.; Wang, P. Does Bitcoin or gold react to financial stress alike? Evidence from the US and China. Int. Rev. Econ. Financ. 2021, 71, 629–648. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Uddin, G.S. Do financial stress and policy uncertainty have an impact on the energy and metals markets? A quantile regression approach. Int. Rev. Econ. Financ. 2016, 43, 284–298. [Google Scholar] [CrossRef]
- Miah, M.D.; Shafiullah, M.; Alam, M.S. The effect of financial stress on renewable energy consumption: Evidence from US data. Environ. Dev. Sustain. 2023, 1–24. [Google Scholar] [CrossRef]
- Apostolakis, G.N.; Floros, C.; Gkillas, K.; Wohar, M. Financial stress, economic policy uncertainty, and oil price uncertainty. Energy Econ. 2021, 104, 105686. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, H.; Li, L. Oil Price Uncertainty, Financial Distress and Real Economic Activities: Evidence from China. Pac. -Basin Financ. J. 2023, 81, 102103. [Google Scholar]
- Cifarelli, G.; Paladino, G. A dynamic model of hedging and speculation in the commodity futures markets. J. Financ. Mark. 2015, 25, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Mu, X. Asymmetric volatility in commodity markets. J. Commod. Mark. 2021, 22, 100139. [Google Scholar] [CrossRef]
- Ghoshray, A. Do international primary commodity prices exhibit asymmetric adjustment? J. Commod. Mark. 2019, 14, 40–50. [Google Scholar] [CrossRef]
- Andreasson, P.; Bekiros, S.; Nguyen, D.K.; Uddin, G.S. Impact of speculation and economic uncertainty on commodity markets. Int. Rev. Finance. Anal. 2016, 43, 115–127. [Google Scholar] [CrossRef]
- Liu, L. Cross-correlations between crude oil and agricultural commodity markets. Phys. A Stat. Mech. Its Appl. 2014, 395, 293–302. [Google Scholar] [CrossRef]
- Bhardwaj, G.; Janardanan, R.; Rouwenhorst, K.G. The first commodity futures index of 1933. J. Commod. Mark. 2021, 23, 100157. [Google Scholar] [CrossRef]
- Aepli, M.D.; Füss, R.; Henriksen, T.E.S.; Paraschiv, F. Modeling the multivariate dynamic dependence structure of commodity futures portfolios. J. Commod. Mark. 2017, 6, 66–87. [Google Scholar] [CrossRef]
- Mulvey, J.M.; Kim, W.C.; Lin, C. Optimizing a portfolio of liquid and illiquid assets. In Optimal Financial Decision Making under Uncertainty; Springer: Berlin/Heidelberg, Germany, 2017; pp. 151–175. [Google Scholar]
- Monin, P.J. The OFR financial stress index. Risks 2019, 7, 25. [Google Scholar] [CrossRef]
- Robillard, R.; Saad, M.; Edwards, J.; Solomonova, E.; Pennestri, M.-H.; Daros, A.; Veissière, S.P.L.; Quilty, L.; Dion, K.; Nixon, A. Social, financial and psychological stress during an emerging pandemic: Observations from a population survey in the acute phase of COVID-19. BMJ Open 2020, 10, e043805. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, W.; He, S.; Hu, B. How do uncertainties affect the connectedness of global financial markets? Changes during the Russia-Ukraine conflict. Asia-Pac. J. Account. Econ. 2023, 1–28. [Google Scholar] [CrossRef]
- Li, Z.-C.; Xie, C.; Zeng, Z.-J.; Wang, G.-J.; Zhang, T. Forecasting global stock market volatilities in an uncertain world. Int. Rev. Financ. Anal. 2023, 85, 102463. [Google Scholar] [CrossRef]
- Adrian, T. Safeguarding Financial Stability amid High Inflation and Geopolitical Risks. Available online: https://www.imf.org/en/Blogs/Articles/2023/04/11/global-financial-system-tested-by-higher-inflation-and-interest-rates (accessed on 14 January 2024).
- Shahzad, U.; Mohammed, K.S.; Tiwari, S.; Nakonieczny, J.; Nesterowicz, R. Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective. Resour. Policy 2023, 80, 103190. [Google Scholar] [CrossRef]
- Gadanecz, B.; Jayaram, K. Measures of financial stability-a review. Irving Fish. Comm. Bull. 2008, 31, 365–383. [Google Scholar]
- Consolini, G.; De Michelis, P. A Joint Multifractal Approach to Solar Wind Turbulence. Fractal Fract. 2023, 7, 748. [Google Scholar] [CrossRef]
- Zhou, W.-X. Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 2008, 77, 066211. [Google Scholar] [CrossRef]
- Kojić, M.; Mitić, P.; Minović, J. Gold and Sustainable Stocks in the US and EU: Nonlinear Analysis Based on Multifractal Detrended Cross-Correlation Analysis and Granger Causality. Fractal Fract. 2023, 7, 738. [Google Scholar] [CrossRef]
- Duanzhu, S.; Wang, J.; Jia, C. Hotel Comment Emotion Classification Based on the MF-DFA and Partial Differential Equation Classifier. Fractal Fract. 2023, 7, 744. [Google Scholar] [CrossRef]
- ECB. Financial Stability Review. Available online: https://www.ecb.europa.eu/pub/pdf/fsr/financialstabilityreview201206en.pdf (accessed on 11 October 2023).
- Gençyürek, A.G. Leading and lagging role between financial stress and crude oil. Stud. Econ. Financ. 2023. [Google Scholar] [CrossRef]
- Yan, X.; Bai, J.; Li, X.; Chen, Z. Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures? Resour. Policy 2022, 75, 102521. [Google Scholar] [CrossRef]
- Bouri, E.; Gupta, R.; Lau, C.K.M.; Roubaud, D.; Wang, S. Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles. Q. Rev. Econ. Financ. 2018, 69, 297–307. [Google Scholar] [CrossRef]
- SARI, S.S. Predicting Financial Stress Index Using Wavelet Transform Artificial Neural Networks. J. Int. Sci. Res. 2022, 7, 282–296. [Google Scholar]
- Bhardwaj, G.; Gorton, G.; Rouwenhorst, G. Facts and Fantasies About Commodity Futures Ten Years Later; National Bureau of Economic Research: Cambridge, MA, USA, 2015. [Google Scholar]
- Acharya, R.N.; Gentle, P.F.; Paudel, K.P. Examining the CRB index as a leading indicator for US inflation. Appl. Econ. Lett. 2010, 17, 1493–1496. [Google Scholar] [CrossRef]
- Katris, C.; Kavussanos, M.G. Time series forecasting methods for the Baltic dry index. J. Forecast. 2021, 40, 1540–1565. [Google Scholar] [CrossRef]
- Bakshi, G.; Panayotov, G.; Skoulakis, G. The Baltic Dry Index as a Predictor of Global Stock Returns, Commodity Returns, and Global Economic Activity; Georgetown University: Washington, DC, USA, 2010. [Google Scholar]
- Bildirici, M.E.; Kayıkçı, F.; Onat, I.Ş. Baltic Dry Index as a major economic policy indicator: The relationship with economic growth. Procedia-Soc. Behav. Sci. 2015, 210, 416–424. [Google Scholar] [CrossRef]
- Han, L.; Wan, L.; Xu, Y. Can the Baltic Dry Index predict foreign exchange rates? Financ. Res. Lett. 2020, 32, 101157. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. New evidence on the information and predictive content of the Baltic Dry Index. Int. J. Financ. Stud. 2013, 1, 62–80. [Google Scholar] [CrossRef]
- Park, J.; Lim, B. Testing efficiency of the London metal exchange: New evidence. Int. J. Financ. Stud. 2018, 6, 32. [Google Scholar] [CrossRef]
- Dedi, V.; Mandilaras, A. Trader positions and the price of oil in the futures market. Int. Rev. Econ. Financ. 2022, 82, 448–460. [Google Scholar] [CrossRef]
- Gao, X.; Li, B.; Liu, R. The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia? J. Commod. Mark. 2023, 30, 100274. [Google Scholar] [CrossRef]
- Naqvi, B.; Mirza, N.; Umar, M.; Rizvi, S.K.A. Shanghai crude oil futures: Returns Independence, volatility asymmetry, and hedging potential. Energy Econ. 2023, 128, 107110. [Google Scholar] [CrossRef]
- Watorek, M.; Drożdż, S.; Oświȩcimka, P.; Stanuszek, M. Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Econ. 2019, 81, 874–885. [Google Scholar] [CrossRef]
- Yarlagadda, H.; Patel, M.A.; Gupta, V.; Bansal, T.; Upadhyay, S.; Shaheen, N.; Jain, R.; Patel, M.; Bansal, T.K. COVID-19 vaccine challenges in developing and developed countries. Cureus 2022, 14, e23951. [Google Scholar] [CrossRef]
- Kasal, S. What are the effects of financial stress on economic activity and government debt? An empirical examination in an emerging economy. Borsa Istanb. Rev. 2023, 23, 254–267. [Google Scholar] [CrossRef]
- IMF. The Outlook is Uncertain Again Amid Financial Sector Turmoil, High Inflation, Ongoing Effects of Russia’s Invasion of Ukraine, and Three Years of COVID. Available online: https://www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-april-2023 (accessed on 13 September 2023).
- EIA. Today in Energy. Available online: https://www.eia.gov/todayinenergy/detail.php?id=34372 (accessed on 19 September 2023).
- Aslam, F.; Ali, I.; Amjad, F.; Ali, H.; Irfan, I. On the inner dynamics between Fossil fuels and the carbon market: A combination of seasonal-trend decomposition and multifractal cross-correlation analysis. Environ. Sci. Pollut. Res. 2023, 30, 25873–25891. [Google Scholar] [CrossRef]
- Jiang, Z.-Q.; Zhou, W.-X. Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E 2011, 84, 016106. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, C.; Shi, K.; Liu, Y. Multifractal detrended cross-correlation analysis on NO, NO2 and O3 concentrations at traffic sites. Phys. A Stat. Mech. Its Appl. 2018, 502, 605–612. [Google Scholar] [CrossRef]
- Li, B.-G.; Ling, D.-Y.; Yu, Z.-G. Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors. Phys. A Stat. Mech. Its Appl. 2021, 573, 125920. [Google Scholar] [CrossRef]
- Song, J.; Shang, P. Effect of linear and nonlinear filters on multifractal detrended cross-correlation analysis. Fractals 2011, 19, 443–453. [Google Scholar] [CrossRef]
- Devaguptapu, A.; Dash, P. Global commodity prices and inflation expectations. Int. J. Emerg. Mark. 2023, 18, 1053–1077. [Google Scholar] [CrossRef]
- Aslam, F.; Zil-E-Huma; Bibi, R.; Ferreira, P. The Nexus Between Twitter-Based Uncertainty And Cryptocurrencies: A Multifractal Analysis. Fractals 2023, 31, 2350027. [Google Scholar] [CrossRef]
- Aslam, F.; Ferreira, P.; Mohti, W. Investigating efficiency of frontier stock markets using multifractal detrended fluctuation analysis. Int. J. Emerg. Mark. 2023, 18, 1650–1676. [Google Scholar] [CrossRef]
- Daglis, T. The Tourism Industry’s Performance During the Years of the COVID-19 Pandemic. Comput. Econ. 2023, 1–17. [Google Scholar] [CrossRef]
- Daglis, T. The dynamic relationship of cryptocurrencies with supply chain and logistics stocks–the impact of COVID-19. J. Econ. Stud. 2023, 50, 840–857. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Cheng, H.; Zhang, H. Cross-correlations between price and volume in China’s crude oil futures market: A study based on multifractal approaches. Chaos Solitons Fractals 2021, 144, 110642. [Google Scholar] [CrossRef]
- Ghazani, M.M.; Khosravi, R. Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil prices. Phys. A Stat. Mech. Its Appl. 2020, 560, 125172. [Google Scholar] [CrossRef]
- Anand, B.; Paul, S.; Nair, A.R. Time-varying effects of oil price shocks on financial stress: Evidence from India. Energy Econ. 2023, 122, 106703. [Google Scholar] [CrossRef]
- de la Torre, J.C.; Pavón-Domínguez, P.; Dorronsoro, B.; Galindo, P.L.; Ruiz, P. Multi-Signal Multifractal Detrended Fluctuation Analysis for Uncertain Systems—Application to the Energy Consumption of Software Programs in Microcontrollers. Fractal Fract. 2023, 7, 794. [Google Scholar] [CrossRef]
- Kristoufek, L. Multifractal height cross-correlation analysis: A new method for analyzing long-range cross-correlations. EPL Europhys. Lett. 2011, 95, 68001. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhuang, X.-T.; Jin, X. Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2009, 388, 2189–2197. [Google Scholar] [CrossRef]
- Telesca, L.; Thai, A.T.; Cao, D.T.; Cao, D.T.; Dinh, Q.V.; Mai, X.B. Fractal and Spectral Analysis of Seismicity in the Lai Chau Area (Vietnam). Fractal Fract. 2023, 7, 776. [Google Scholar] [CrossRef]
- Freitas, D.B.d.; Nepomuceno, M.M.F.; Nepomuceno, M.M.F.; Leão, I.C.; Chagas, M.L.D.; Chagas, M.L.D.; Martins, B.L.C.; Medeiros, J.R.D. New Suns in the Cosmos. IV. The Multifractal Nature of Stellar Magnetic Activity in Kepler Cool Stars. Astrophys. J. 2017, 843, 103. [Google Scholar] [CrossRef]
- Hampson, K.M.; Mallen, E.A. Multifractal nature of ocular aberration dynamics of the human eye. Biomed. Opt. Express 2011, 2, 464–470. [Google Scholar] [CrossRef]
- Hurst, H.E. Long term storage: An experimental study. J. R. Stat. Soc. Ser. A 1965, 129, 591–593. [Google Scholar]
- Seuront, L. Fractals and Multifractals in Ecology and Aquatic Science; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Podobnik, B.; Wang, D.; Horvatic, D.; Grosse, I.; Stanley, H.E. Time-lag cross-correlations in collective phenomena. Europhys. Lett. 2010, 90, 68001. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.W. The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. J. Portf. Manag. 2004, 30, 15–29. [Google Scholar] [CrossRef]
- Kristoufek, L.; Vosvrda, M. Measuring capital market efficiency: Global and local correlations structure. Phys. A Stat. Mech. Its Appl. 2013, 392, 184–193. [Google Scholar] [CrossRef]
- Hasan, R.; Salim, M.M. Power law cross-correlations between price change and volume change of Indian stocks. Phys. A Stat. Mech. Its Appl. 2017, 473, 620–631. [Google Scholar] [CrossRef]
- Ferreira, P. Assessing the relationship between dependence and volume in stock markets: A dynamic analysis. Phys. A Stat. Mech. Its Appl. 2019, 516, 90–97. [Google Scholar] [CrossRef]
- Ruan, Q.; Jiang, W.; Ma, G. Cross-correlations between price and volume in Chinese gold markets. Phys. A Stat. Mech. Its Appl. 2016, 451, 10–22. [Google Scholar] [CrossRef]
- Ihlen, E. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Wang, G.-J.; Xiong, L.; Zhu, Y.; Xie, C.; Foglia, M. Multilayer network analysis of investor sentiment and stock returns. Res. Int. Bus. Financ. 2022, 62, 101707. [Google Scholar] [CrossRef]
- Cao, G.; Han, Y.; Cui, W.; Guo, Y. Multifractal detrended cross-correlations between the CSI 300 index futures and the spot markets based on high-frequency data. Phys. A Stat. Mech. Its Appl. 2014, 414, 308–320. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, H.; Ruan, W. Time-varying long-term memory in Bitcoin market. Financ. Res. Lett. 2018, 25, 280–284. [Google Scholar] [CrossRef]
Index | Symbol | Coverage | Weights |
---|---|---|---|
Commodity Research Bureau Index | CRBI | Basket of 19 Agricultural, Energy and Food commodities | 41% to agriculture, 39% to energy, and the remainder to others. |
Baltic Dry Index | BDI | Shipping freight rates of coal, iron ore, and other commodities. | 40% Capesize, 30% Supramax and Panamax 30% cost on shipping routes carrying coal, grains, iron ore, and other commodities. |
London Metal Exchange | LME | Industrial Metals Aluminum, Copper, Zinc, Lead, Nickel and Tin. | The average global production volume and trade liquidity for the previous five years are used to determine the weight of the six metals, i.e., aluminum, copper, zinc, lead, nickel, and tin (42.8%, 31.2%, 14.8% 8.2%, 2% & 1%), respectively. |
Brent Oil Price Index | BROIL | Brent Crude spot | Prices per barrel in US dollars. |
FSI | CRBI | BDI | LME | BROIL | |
---|---|---|---|---|---|
Mean | −0.0012 | 0.0386 | 0.2649 | 0.8367 | 0.0145 |
Standard Deviation | 0.2695 | 2.3279 | 54.1240 | 40.3048 | 1.6843 |
Range | 5.5010 | 28.82 | 594.0 | 400.0 | 25.64 |
Kurtosis | 33.5989 | 6.0868 | 5.8149 | 2.9636 | 11.4127 |
Skewness | 2.8494 | −0.7096 | 0.1125 | −0.1907 | −1.1543 |
Jarque-Bera test | 1022 *** | 1759 *** | 370 *** | 118 *** | 2305 *** |
ADF | −11.74 *** | −10.64 *** | −10.31 *** | 11.18 *** | −10.641 *** |
Order | FSI-CRBI | FSI-BDI | FSI-LME | FSI-BROIL |
---|---|---|---|---|
−5 | 0.6335 | 0.6482 | 0.6124 | 0.6717 |
−4 | 0.6113 | 0.6319 | 0.5952 | 0.6506 |
−3 | 0.5873 | 0.6128 | 0.5879 | 0.6256 |
−2 | 0.5639 | 0.6035 | 0.5772 | 0.5968 |
−1 | 0.5441 | 0.5910 | 0.5596 | 0.5665 |
0 | 0.5437 | 0.5810 | 0.5445 | 0.5397 |
1 | 0.5421 | 0.5694 | 0.5331 | 0.5311 |
2 | 0.5327 | 0.5491 | 0.5234 | 0.5213 |
3 | 0.5193 | 0.5132 | 0.5148 | 0.4919 |
4 | 0.5139 | 0.4775 | 0.5057 | 0.4815 |
5 | 0.5072 | 0.4551 | 0.4964 | 0.4716 |
Pair | Hurst Average | ∆H | ∆α | AI | C |
---|---|---|---|---|---|
FSI-CRBI | 0.5545 | 0.1263 | 0.2419 | 3.9688 | 0.3018 |
FSI-BDI | 0.5666 | 0.1931 | 0.3079 | 1.2845 | 0.7607 |
FSI-LME | 0.5500 | 0.1253 | 0.2313 | 1.8599 | 0.5407 |
FSI-BROIL | 0.5589 | 0.2001 | 0.3241 | 2.2047 | 0.4692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Aslam, F.; Ferreira, P. Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices. Fractal Fract. 2024, 8, 96. https://doi.org/10.3390/fractalfract8020096
Ahmed H, Aslam F, Ferreira P. Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices. Fractal and Fractional. 2024; 8(2):96. https://doi.org/10.3390/fractalfract8020096
Chicago/Turabian StyleAhmed, Haji, Faheem Aslam, and Paulo Ferreira. 2024. "Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices" Fractal and Fractional 8, no. 2: 96. https://doi.org/10.3390/fractalfract8020096
APA StyleAhmed, H., Aslam, F., & Ferreira, P. (2024). Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices. Fractal and Fractional, 8(2), 96. https://doi.org/10.3390/fractalfract8020096