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Abstract: Financial stress can have significant implications for individuals, businesses, asset prices
and the economy as a whole. This study examines the nonlinear structure and dynamic changes
in the multifractal behavior of cross-correlation between the financial stress index (FSI) and four
well-known commodity indices, namely Commodity Research Bureau Index (CRBI), Baltic Dry
Index (BDI), London Metal Index (LME) and Brent Oil prices (BROIL), using multifractal detrended
cross correlation analysis (MFDCCA). For analysis, we utilized daily values of FSI and commodity
index prices from 16 June 2016 to 9 July 2023. The following are the most important empirical
findings: (I) All of the chosen commodity market indices show cross correlations with the FSI and
have notable multifractal characteristics. (II) The presence of power law cross-correlation implies
that a noteworthy shift in FSI is likely to coincide with a considerable shift in the commodity indices.
(III) The multifractal cross-correlation is highest between FSI and Brent Oil (BROIL) and lowest
with LME. (IV) The rolling windows analysis reveals a varying degree of persistency between FSI
and commodity markets. The findings of this study have a number of important implications for
commodity market investors and policymakers.

Keywords: FSI; financial stress; commodity prices; cross correlation; MFDCCA; econophysics

1. Introduction

Financial stress can have significant implications for individuals, business, and economies.
It can harm individuals’ physical and mental health, relationships and work, leading to
substance abuse and even in some cases to suicide [1–6]. It refers to a discomfort or strain that
individuals or entities face due to taking on a high risk or increasing the gap between their
obligations and available means [7]. Financial stress also leads to an increased crime rate and
damages the social fabric of society [8,9]. It is well documented that financial stress not only
impacts on business operations (i.e., staff lay-off, production cut-backs), but also impacts on
trading and investment strategies [10–12]. To avoid extreme losses, investors become reluctant
to trade and withdraw their investment during periods of high stress and uncertainty. Increased
financial stress leads to lower business activity and slows down economic expansion [13,14].
The situation can also precede a trust deficit in the financial system [14,15], which can make it
difficult for businesses to borrow and invest funds. It also adversely affects the economy and
can lead to a significant decline in consumer spending and investment, which slows down
the rhythm of economic growth. It spreads among developed economies through financial,
trade, and economic channels, and may extend to emerging economies [16–20], affecting
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macroeconomic indicators [15,20,21] and causing currency market crises [22,23]. Financial
stress can be connected to financial instability through entities’ failures [24]. For instance, if the
banking system is under stress, banks may be more likely to fail [13,19,25,26]. The situation
of loss of trust in the financial system followed by a rise in inflation can make it difficult
for borrowers and businesses to access funding [27]. It increases poverty and inequalities,
disrupting trade and capital flows and having long-term negative effects on the global economic
system. It reduces economic growth, increases unemployment and causes volatility in stock [28]
and commodity markets [29].

A growing body of research shows that financial stress affects the performance of
stock, cryptocurrency, forex, energy, commodities, and other markets, as well as managerial
decisions. Its ups and downs impact asset prices, such as stocks, bonds, gold, oil and
cryptocurrencies [30–33]. Past research shows that financial stress affects different classes of
economies and main markets, circulating within countries as well as expanding to different
economic sectors. The literature reports its spread to various markets and expansion, mainly
in financial markets, showing a connection with the foreign exchange market [15,22,34],
banking crises [23,26,35] oscillations in equity and bond markets [30,36–39] monetary
policy [40,41] and the crypto market [42]. As for commodities, a great amount of research
has focused on energy related commodities, Refs. [43–46] revealing a meaningful association
with energy markets. There is a dynamic relation with the FSI (Financial Stress Index)
and linkages between commodity spot and futures prices through channels of inflation,
the demand supply gap and investors searching for a safe haven to mitigate portfolio
risk [43,47–50].

Researchers and academics have recently focused more on the commodity market,
looking at the relationship between the commodity market and financial stress. Investors
in commodities take into account the financial stress that is prevalent in the global economy
due to any cause. A large number of studies have focused on the linkage between financial
stress and different asset categories and market indices as well as different categories of
commodity market future prices such as agriculture, metals and energy [51]. Ordinarily,
commodities are far from being a uniform asset class and show a wide range of character-
istics. While some commodities, like industrial and precious metals, may be inventoried,
others, including energy and livestock products, can only be stored for shorter periods at
extremely high costs. In addition, commodities’ return distributions differ from conven-
tional assets. Commodity returns typically have positive skews, which reduces downside
risk but also produces fat tails [49,52]. Energy commodities show volatile behavior in
correlation with financial markets and, in contango times, dependency on their past returns
condition capitalizes to prices rising more and falling prices keep falling [53]. In the re-
sponse of GFC 2008, financialization of commodity markets has enhanced their correlations
and diminished the heterogeneity of several key commodities’ returns, especially indexed
commodities [54]. It is a fact that commodity prices over the decades underwent booms
and slumps. Such changes in commodity prices can have disastrous economic and social
consequences because many developing nations depend heavily on commodities as their
primary source of income [21,55]. Its contagion has not been explored with the composite
indices of commodities like CRBI, BDI, LME and BROIL. Financial stress attracted more
attention after the recession and inflation episodes in response to the recent catastrophic
occurrences of the global financial crises 2007–2009, European credit risk crises 2010–2012,
COVID-19 pandemic recession and recovery period shocks [56–58], and the Russian in-
vasion of Ukraine in 2022. There are numerous causes of financial stress but the most
important are natural disasters, geopolitical tensions [59,60], structural vulnerabilities [33],
economic shocks, and corporate failures [61].

This work differs from previous studies in at least three ways. First, using a Fractal
Market Hypothesis framework, it looks at the cross-correlations between the FSI and four
commodity market indices, covering the prices of many different commodity returns: the
BDI, LME, BROIL, and CRBI. The dynamics of a wide range of significant commodity
indexes, which are still subject to scholarly attention, are examined in this paper. Second, it
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is unknown how the cross-correlation between the commodity markets and the FSI exhibits
multifractal behavior. To be more precise, a multifractal measure can be understood broadly
mathematically as a fractal measure defined on a fractal domain or set, where multifractality
results from the interaction of two families of singularities [62]. We use the econophysics-
based MFDCCA, which was first presented by [63], to look into cross correlations between
the commodity market indices and the FSI. When it comes to finding nonlinear relationships,
which linear approaches frequently fail to reveal, MFDCCA is a better option [64,65].
Thirdly, by applying the rolling windows approach, this study, grounded on the perspective
of the commodity market, provides a more thorough understanding of that market’s
dynamics over time. In particular, the power law cross-correlation between fluctuations in
FSI and commodity prices indicates that, rather than the other way around, a major change
in the FSI was likely caused by a big shift in commodity market prices. Different degrees of
multifractality are discovered, with the FSI BROIL showing the highest levels of multifractal
cross-correlation and the FSI and LME showing the lowest. Furthermore, the commodity
markets show more dependable persistent cross-correlations for small swings than for major
ones. These results will enable regulators and institutional investors to develop efficient
investment plans and policies while taking the FSI’s fluctuations and alerts into account.
To maintain financial stability amid these challenges, policy makers, global economic
forums, and regulatory bodies need to adopt a coordinated, comprehensive approach. They
must take precautionary measures such as strengthening financial oversight, for instance
FSI, and responding promptly to its alerts. Larger buffers should be formed by reducing
incentives for higher risk taking and increasing capital and liquidity requirements, as stated
by Cardarelli, Elekdag and Lall [27]. Financial stability enables the efficient propagation of
financial means within a society, by timely and effective allocation of funds and initiating
profitable investment [66].

2. Materials and Methods

We applied the MFDCCA method to explore cross-correlations between FSI and four
commodity market composite indices. The daily datasets range from 16 June 2016 to 9 July
2023. The first dataset consists of daily values of FISI retrieved rom the official website of
Office of Financial Research (www.financialreseach.gov, accessed on 14 January 2024). The
FSI was developed by Office of Financial Research (OFR) to detect the threat of financial
crises in advance [18,67]. The index utilizes a unique and flexible methodology using daily
data from global financial markets. Analysis of the FSI index covers the period from 2000 to
2018. The paper highlights that the OFR_FSI performs well in identifying systemic financial
stress, as demonstrated through a logistic regression framework and the use of government
intervention dates as proxies for stress events. Additionally, alerts of increased financial
stress, as indicated by the OFR FSI, can help predict decreases in economic activity, as
shown by a Granger causality analysis comparing the index with the Chicago Fed National
Activity Index. It is used to measure and assess the level of strains and risks in a financial
system or economy. It provides signals in advance in order to address adverse events and
helps in developing appropriate responses. Ref. [55] argues it is typically positive when
the stress level is above average and negative when stress is below average. Additional
classifications included in the OFR_FSI are credit, fundings, equity valuation, safe assets,
and volatility. It is typically designed by compounding a variety of variables that emulate
several facets of the financial system, such as credit spreads, market volatility, bank funding
and liquidity [31]. The FSIs are found to be useful in predicting economic and financial
outcomes, improving forecasts, and identifying high-stress episodes, particularly OFR-FSI
used as global measure of financial stress [31,36,68,69]. They also highlight the non-linear
effects of financial stress on several variables. Overall, FSIs play a crucial role in monitoring
and managing financial stability and can assist policymakers and researchers in making
informed decisions [60,70].

The other data set is commodity market indices including the CRBI, BDI, LME and
BROIL. The daily prices (USD) of commodity indices are collected from DataStream. Global
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commodity market indices are essential for the global economy because they provide useful
data, benchmarks, and clues with an impact on numerous types of economic activities
around the world. This study focuses mainly on the four global commodity indices. The
motivation for selecting these commodity indices is the vast coverage of the different cate-
gories of global commodities, for instance energy, agriculture, metals or shipping costs of
commodities. The CRBI index weighs 41% for agriculture and 39% for energy commodities.
It is one of the most liquid indices representing the global commodity markets and is
considered a measure that comprehensively tracks movements in all economic sectors [71].
The effectiveness of a commodity price index as a precursor to inflation is investigated
by multiple studies [71,72]. Since 1956, it has kept track of a broad index of commodity
prices. BDI covers the cost of main shipping routes, carrying industrial, energy and food
commodities. Crises like COVID-19 pandemic lockdowns, trade tensions, recession, and
inflation cause fluctuations in the global financial system reflected in BDI, which is consid-
ered a world import indicator [73] to gauge economic activity. It is an effective predictor
of commodity, stock returns and economic activity [74,75], major currencies’ exchange
rates [76], industrial production and financial asset prices [77]. LME reflects the prices of
the six most liquid industrial base metals: aluminum, copper, zinc, lead, nickel, and tin [78].
Crude oil is one of the oil price benchmarks, being a basic commodity and major influencer
of many facets of world policies and economies [79–81]. These commodity indices represent
a diverse range of global commodities. The particulars of the commodity data set, their
coverage and weights are provided in Table 1. For the execution of MFDCCA, commodity
datasets are matched with FSI after performing the data cleaning process. We removed
extreme inorganic observations from the FSI for the sake of brevity, as these showed abrupt
unnatural negative and positive changes in daily stress changes. We converted the indices
into daily changes to determine the cross-correlation between the FSI and certain chosen
commodity indices.

Table 1. Commodity Index Weights and Coverage.

Index Symbol Coverage Weights

Commodity Research
Bureau Index CRBI Basket of 19 Agricultural,

Energy and Food commodities
41% to agriculture, 39% to energy, and the remainder

to others.

Baltic Dry Index BDI
Shipping freight rates of coal,

iron ore, and other
commodities.

40% Capesize, 30% Supramax and Panamax 30%
cost on shipping routes carrying coal, grains, iron

ore, and other commodities.

London Metal Exchange LME
Industrial Metals Aluminum,

Copper, Zinc, Lead, Nickel
and Tin.

The average global production volume and trade
liquidity for the previous five years are used to

determine the weight of the six metals, i.e.,
aluminum, copper, zinc, lead, nickel, and tin (42.8%,

31.2%, 14.8% 8.2%, 2% & 1%), respectively.

Brent Oil Price Index BROIL Brent Crude spot Prices per barrel in US dollars.

We transformed the original series into daily changes, aiming to calculate the cross-
correlation between them. The daily commodity market returns are calculated by applying
the commodity indices’ closing price as usual, i.e.,

rt,j =

(
pt,j − pt−1,j

)
pt−1,j

(1)

Similarly, Financial stress index FSI’s daily changes are calculated as follows.

∆FSI =

(
FSIt,j − FSIt−1,j

)
FSIt−1,j

(2)
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Figure 1 plots the daily index of FSI and plots a graph line for the sample period
from 16 July 2016 to 9 July 2023. From July 2016 to February 2020, FSI remained below
the average line, except for a single spike in 2018 for a shorter time span. This established
that global economies were recovering after the global financial crises of 2008. The policies
and structures incorporated to tackle such crises and policies strengthen the confidence
of investors and the business community to participate in economic activities and make
investment. In the interim, decision-makers focused on developing policies and precau-
tionary steps to avert crises of this nature. The period from 2012 to 2017 is particularly
captivating because of the positive bubble in the US currency and the negative bubble
in the oil market [82]. Moreover, a short span stress spike cropped up during the last
quarter of 2018 due to the US-China trade conflict [42]. Throughout the sample period,
the largest stress spikes were observed during the COVID-19 period from the end of the
first quarter of 2020 to the end of the second quarter of 2022. On 11 March 2020, the WHO
declared COVID-19 as a global pandemic [83], and in April 2020 suggested lockdown.
Lockdown caused a sudden rise in financial stress from the beginning of the second quarter
of 2020 [84]. With the relaxation of lockdown, financial stress decreased below the average
line and financial conditions remained stable from the end of the second quarter of 2020
through the last quarter of 2021 as seen in the graph. The FSI graph line again exhibited a
rising trend from February 2022 because of the Ukraine–Russia war [85], Russia invaded
Ukraine on 24 February 2022. The stress time span is longer during this period, with the
FSI line remaining above the average line from February 2022 to December 2022. For the
remaining period till July 2023, the FSI graph remained stable on the average line.
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Figure 1. Daily Index values of FSI.

Panel A of Figure 2 shows the CRBI daily values graph on average remains stable with
minor variations from June 2016 to March 2020, with a sharp decline from April 2020 to May
2020 and reaching its lowest point in the sample period during the COVID-19 lockdown
period. It rises gradually and then sharply from December 2021. Commodity prices have
increased significantly as lockdowns around the world have decreased and economies
return to a more normal trend. In response to the market recovery period after COVID-19,
the CRBI graph touched its highest point in February and March 2022. However, from July
2022 the CRBI graph line shows a gradual declining phase and a sharp decline in March
2022 because of the Russia–Ukraine war. The index line shows that since the start of 2023
commodity prices have dropped 13.02 points, or 4.3%. Compared to pre COVID-19, prices
remained elevated till July 2023. Commodity prices will remain high in 2023 due to high
energy costs, shortages of agricultural supply brought about by the Russia-Ukraine war,
and unfavorable weather patterns.
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Panel B of Figure 2 shows the daily values of the BDI and shows a downward trend as
2016 got underway amid worries about China’s slowing economy, which had an impact on
the demand for commodities globally. Lower shipping costs and a drop in the BDI were
caused by decreased Chinese imports. Due to an oversupply of ships, the index continued
to fall in December 2016 and did so into the first quarter of 2017. As long as commodity
prices were high, economies started to increase again in March 2017. By May, it had reached
its peak and was therefore quite stable. The BDI’s upward trajectory was disrupted once
more in December 2017 as trade tensions between the US and China increased concerns
about world trade. It was further affected from March 2018 to May 2018 due to the Iranian
sanctions. Due to trade concerns, the downward trend persisted until January 2019. The
index began to rise once again in February 2019 as trade tensions between the US and China
briefly subsided. Downward trends through January 2020 were brought on by Brazilian
iron ore extraction and increased shipping costs. The BDI showed very minor variations
at the end of the year in December 2019. The COVID-19 pandemic caused a large fall in
shipping demand from February 2020, which caused the BDI to decline sharply. From April
through June 2020, the BDI reached its lowest point of the year. After the first phase of the
COVID-19 crises, lockdowns were relaxed, and an inclining trend started. The multiple
COVID-19 pandemic episodes, lockdowns, and corresponding seasonal changes all had an
ongoing impact on BDI. It began to rise as the economic recovery got underway but was
still below pre-pandemic levels. As global trade and commodity demand started to recover
in February 2021, the BDI kept moving upward. Continuous supply chain disruptions
led to changes in shipping costs in May 2021. Because of these factors, the BDI reached
its peak in October 2021. In 2021, there was a significant demand for several important
commodities, including grain, iron ore, and coal. Shipping costs rose significantly because
of China’s high demand for iron ore. The demand for large quantities of commodities was
also influenced by the recovery of the global construction sector and the demand for energy
resources. Industrial raw material caused the index to maintain its pre-pandemic level
after the boom until January 2022. In February 2022, there were many noticeable seasonal
variations, but in March, the Russia–Ukraine war’s impact on the closure of shipping lanes
caused a spike in shipping expenses. Due to fewer coal imports to Europe and China’s slow
economic recovery, the BDI showed a severe downward trend from January to February
2023. From March onward, the index returned to its usual threshold, but in the second half
of June started to decline again and fell below 1000 points, 13% down in July for the first
time in a month due to the diminished shipment of coal and Iron.

Panel C plots the graph line of LME, interestingly showing a similar pattern from the
beginning of the sample period, during the US–China trade conflict in 2018, and the COVID-
19 crises in 2020, as well as a similar pattern after the COVID-19 recovery period. It was
different during the Ukraine–Russia war and showed a sharp declining trend, remaining
unstable during the period as compared to CRBI.

Finally, Panel D shows the BROIL throughout the period of our study. The first notable
downward trend is from April through June 2016, due to the oversupply of U.S crude oil
from 384,000 b/d to 9.2 million b/d, this dent being created by supply pressure on oil
prices [86]. This increased the price differential between Brent and WTI while decreasing the
demand for Brent crude oil, which serves as the benchmark for the majority of global crude
oil trade. Furthermore, in May 2017, OPEC, and its collaborators, including Russia, agreed
to extend their production cuts through March 2018. While this was projected to stabilize
prices, it also highlighted the ongoing challenges in rebalancing the market. Despite the
November 2018 sanctions, the US granted exceptions to eight countries, allowing them
to keep importing oil from Iran. This allayed the supply shortfall worries that had raised
prices earlier in the year. Oil production in Saudi Arabia, Russia, and the US all reached
new highs, outpacing the rate of increase in demand from November through December
2018. The BROIL started an inclining trend due to the supply demand gap and remained
stable till February 2020 before the COVID-19 outbreak. The Brent oil price decreased to
the lowest ever as the WHO declared the COVID-19 lockdown in March 2020, remaining
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down throughout COVID-19 because of the crunch in global oil demand. From May
2020 onwards, after the easing of COVID lockdowns, BROIL started a gradual increase,
experiencing a recovery period after the longest recession period after COVID-19. March
2022 shows increasing spikes in response to the Ukraine–Russia war because Russia is the
second largest oil producer in the world. There was fear of the widening supply demand
gap throughout the world. Brent prices gradually returned to their normal prices after June
2022 and remain stable thereafter.

2.1. Multifractal Detrended Cross Correlation Analysis (MFDCCA)

Comprising several nonlinearly interacting elements, the complex systems of physical
quantities include ecological, biological, technical, social, and financial variables. It has
been demonstrated that these factors display long-range correlations [87]. To uncover the
multifractal properties of two cross-correlated non-stationary indicators, Zhou [63] devised
multifractal detrended cross-correlation analysis (MFDCCA, alternatively termed MFDXA),
a consolidation of the MFDFA and DCCA methods. Since then, DCCA and MFDCCA
have been extensively utilized in fields such as finance, chemistry and geophysics [88–91].
Regarding empirical investigation, several studies applied the MFDCCA approach to
explore the cross-correlations between two financial time series, for instance efficiency of
stock prices, Cryptocurrency prices and economic policy uncertainty, commodity prices
and energy market, tourism and supply chain management [92–99].

Zhou [63] states that the following phases summarize the MFDCCA algorithm:
With N denoting the length of the time series, we can calculate the remaining com-

ponent for the commodity market composite indices and the FSI by taking into account
the two times series { (x i)} and { (y i)} of an equal length. X(i) and Y(i) signal profiles are
initially put together as follows.

X(i) =
j

∑
i=1

(xi − x),

i = 1, 2, 3, . . . , N,
(3)

Y(i) =
j

∑
i=1

(yt − y),

i = 1, 2, 3, . . . , N,
(4)

where the mean values of { (x i)} and { (y i)}, respectively, are represented by x and y. The
profiles X(i) and Y(i) are divided into Ns = int N

s boxes of the same length s. Even so, as t
N might not always be a non-multiple of s, the reserve series of the profile is maintained
using the same technique, yielding 2Ns without overlapping splits being gained.

Third, we investigate each portion’s local pattern Xv (i) and Yv (i) of each segment
and probe the variance for each v = 1, 2, . . . , 2Ns as:

F2(s, v) =
1
s

s

∑
i=1

|X [(v − 1) s + i]− Xv (i) | . |Y[ (v − 1) s + i] −Yv(i)| (5)

for each divide v = 1, 2, . . . , Ns and

F2(s, v) =
1
s

s

∑
j=1

|X[N − (v − Ns)s + i] − Xv(i)|.|Y[N − (v − Ns)s + i]− Yv(i)| (6)

for v = Ns, . . . , 2Ns.
Fourth, we use the following equation to compute the qth sequence variations function.

Fq (s) =

 1
2Ns

2Ns

∑
v=1

[
F2 (s, v)

]q/2


1/q

(7)
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For any q ̸= 0, while for q = 0 it is shown as:

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

ln
[

F2(s, v)
]}

(8)

Here, with Fq(s) being an increasing function of s, we retrieve the conventional DCCA
at q = 2.

Finally, in order to identify the multi-scaling pattern of the fluctuation, we investigate
the log-log plots of Fq(s) against s for each q.

Fq(s) ∼ sHxy(q) (9)

In this case, the scaling exponent Hxy(q) denotes the power-law relationship between
two non-linear time series, which shows the magnitude of Fq(s) as a function of the scale
step s. When there is similarity between the two time series of { (x i)} and { (y i)}, MFDCCA
indicates a distinctive case of MFDFA.

The long-range cross-correlations of two time series coexisting simultaneously can
be characterized using multifractal detrended cross-correlation analysis (MFDCCA) [100].
If a normal stationary time series occurs, the Generalized Hurst Exponent at Hxy(2), is
comparable to the conventional Hurst exponent h [101]. Moreover, Hxy(2) = 0.5 shows
that there is no cross-correlation between the two series. On the other hand, the presence
of cross-correlation between the two time series is persistent at Hxy (2) > 0.5, indicating
positive correlation between the two series. The cross-correlation shows anti-persistence
behavior and inverse association, or -ve cross-correlations, where Hxy(2) < 0.52). We
calculated the fluctuation function Fxyq(S) with growing scaling order q from −5 to + 5,
and scales are selected according to the series length N. The maximum scale is taken
as Smax < N

5 and the maximum range of moment is approximated as |q_max| = |ln
N_points| − 1

According to ref. [102], the multifractality degree ∆H is defined as follows:

∆H = Hmax(q)− Hmin(q) (10)

The ∆H reflects the strength of multifractality. A larger value of ∆H denotes the
strongest level of multifractality. Furthermore, with further cross-correlations, the corre-
sponding values of Hxy(q) can show the degree of multifractality. Through the Legendre
transform, the following can be acquired to calculate the degree of multifractality.

α = H(q) + q.H′
xy(q) (11)

Consequently, the singularity spectrum f (α) can be constructed as follows:

f (α) = q
(
α − Hxy(q)

)
+ 1 (12)

2.2. Multifractal Indices
2.2.1. The Degree of Multifractality

The multifractal strength can be estimated by the following spectrum width ∆α.

∆α = αmax − αmin (13)

A larger multifractality is represented by a broader multifractal spectrum.

2.2.2. Degree of Asymmetry (AI)

The asymmetric intensity likewise represented as the skewness of f (α) spectrum, can
be acquired as under:

AI =
αmax − α0

α0 − αmin
(14)
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The fractal exponent, represented by the power law exponent α, is the fractal onset
time, quantifies the strength of time-clustering, and delimits the lower bound of significant
scaling behavior in the variables [103]. However, the value of α is represented by the
α0, if f (α) is at its maximum. It has three different shapes associated with the values
of A, which indicate the asymmetry position as positive-skewed (AI > 1), symmetric
(AI = 1), or negative-skewed (0 < AI < 1), according to Freitas et al. [104]. The extreme
values of the singularity exponent are represented by the right end point, αmax and the
left end point, αmax which correspond to the minimum and maximum fluctuations of the
signal, respectively.

2.2.3. Singularity Parameters

The singularity ratio C is utilized, and it can be computed as the ratio of ∆fle f t(α)
and ∆fright(α), evaluated in relation to the maximum fractal dimension f max[α(q = 0)].
The singularity ratio index C can be interpreted as a direct measure of truncation, with
C > 1 denoting the left side of truncation and C < 1 denoting the right side. The formula
below can be used to calculate the strength in the singularities, which is represented by the
proportional ratio f (α) between the widths of the left and right sides.

C =
∆fL(α)

∆fR(α)
=

1 − f min
L (α)

1 − f max
R (α)

(15)

According to Ref. [105], the intensity of the multifractal spectrum and the singularity
strength α have an inverse relationship. Furthermore, higher values of h indicate smoother
variations because of the weakening of the singularity.

2.2.4. The Hurst Index (H)

According to Ref. [106], the generalized Hurst exponent h(q = 2) is used to determine
the Hurst index (H) at second-order. Furthermore, Ref. [107] described a method of
classifying different types of processes by identifying the characteristics of 1/ f β noises,
which have a Fourier power spectrum scaling element β. Nevertheless, the slope of a linear
trend is used to calculate β. In a similar vein, the trend can be either −1 < β < 1 for f Gn,
or 1 < β < 3. Furthermore, Ref. [104] claimed that the relationship β = 2 + τ(2) can be
used to estimate β. Long-range dependence (LRD) between the non-linear data series is
represented by the values of H, which vary from 0.5 to 1. The closer a value is to 1, the
higher the periodicity. On the other hand, H values close to zero denote white noise, while
H = 0.5 denotes uncorrelated data.

3. Empirical Results
3.1. Descriptive Statistics

Table 2 describes the summary statistics of the FSI and Commodity market indices.
The mean of the FSI is −0.0012, while for commodity indices LME shows the highest mean
value followed by BDI, CRBI and BROIL. BDI exhibits the highest range in all commodity
series followed by LME, CRBI, BROIL, and FSI. Range depicts the spread between minimum
and maximum returns from the sample time span under study. BDI showed more volatile
behavior (S.D = 0.54) followed by LME, CRBI, BROIL, and FSI exhibited the least volatile
behavior (S.D = 0.270). FSI is right skewed contrary to the BROIL which is left skewed.
CRBI is moderately skewed while the BDI and LME are approximately skewed. The
Kurtosis scores determined that aside from LME all the other series exhibit heavy tails
as their Kurtosis score is highly positive and more than three. The verification of high
kurtosis levels is a common result, meaning the presence of fat tails, a feature related to
the Fractal Market Hypothesis. The Jarque–Bera (JB) test of goodness of fit was applied to
diagnose the normality of the data series. The findings for all variables are significant at 1%
significance. The null hypothesis of the JB test “data is normally distributed”, in the light
of the above results, is rejected. The Augmented Dicky–Fuller (ADF) test was applied to
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assess the stationarity of the variables. The ADF test results for all variables are significant
at 1% significance. Therefore, the null hypothesis “time series has unit root” is rejected here.
It could be inferred that all variables are stationary at I (0) level.

Table 2. Summary Statistics of FSI and Commodity Market Indices.

FSI CRBI BDI LME BROIL

Mean −0.0012 0.0386 0.2649 0.8367 0.0145
Standard Deviation 0.2695 2.3279 54.1240 40.3048 1.6843

Range 5.5010 28.82 594.0 400.0 25.64
Kurtosis 33.5989 6.0868 5.8149 2.9636 11.4127

Skewness 2.8494 −0.7096 0.1125 −0.1907 −1.1543
Jarque-Bera test 1022 *** 1759 *** 370 *** 118 *** 2305 ***

ADF −11.74 *** −10.64 *** −10.31 *** 11.18 *** −10.641 ***
Note: *** represents 99% significance level.

Figure 3 plots the daily change of the FSI and the commodity indices selected for this
study. Daily change pathways show volatility clusters and high volatility. The FSI index
daily change shows variation spikes in different time periods. When we plotted temporal
changes of the FSI, stress spikes were observed during global stress events in the sample
period, i.e., US–China trade tension, COVID-19 pandemic, and the Russian invasion of
Ukraine. The highest stress spike observed during the COVID-19 pandemic from early 2020
to mid-2021 which is the steepest in the whole sample period. The Ukraine–Russia war
is represented in the graph as the second stressful event, but this event lasts longer than
the COVID-19 pandemic. FSI, CRBI, and BROIL exhibited similar patterns and likeness in
their volatile periods like trade tensions, COVID-19, and the Ukraine war. BDI and LME
exhibited more volatile patterns than the others. From February 2018 to February 2020, a
few factors may have contributed to the increased volatility of these indicators, i.e., trade
tensions during this period, as trade tension escalated between the US and China, as well
as between other major trading partners. This uncertainty and disruption to global trade
flows likely contributed to the BDI’s volatility. There were several instances of political
instability during this period, including Brexit, protests in Hong Kong, and the ongoing
conflict in the Middle East. These events may have contributed to the LME’s volatility, as
investors reacted to the potential impacts of these events on global economic activity. The
LME and BDI followed similar patterns in extreme events like COVID-19 from March 2020
and the Russia–Ukraine war from February 2022 onwards.

3.2. Multifractal Detrended Cross Correlation Analysis (MFDCCA)

To compute the cross-correlation between FSI and commodity indices’ daily changes,
we applied the existing multifractal detrended cross-correlation analysis. We determined
the variability function Fxyq (S) by increasing scaling order q from −5 to 5 step by step
length, in line with the number of observations. Figure 4. plots the log-log movement
of Fxyq (S) depends on the time span s (days) between FSI and commodity indices’ daily
changes of CRBI (Panel-A), BDI (Panel-B), LME (Panel-C), and BROIL(Panel-D). The lines
rising from lowest to the highest relate to subsequent scale orders Fxyq(S) for q = −5,
q = 0, and q = +5. It is clear that F(xyq(S)) is well-shaped and exhibits an increasing trend
with the gradual linear rise with the scale s orders, showing there is a power law correlation
between FSI and four time series of commodity indices.
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The result of the Hurst exponent between FSI and commodity market returns shows a
declining trend as the order of q increases. As the highest value of Hxy(q) for FSI–BROIL
reported in (column 5) Table 3, is 0.672 when q = −5, decreases to 0.540 at q = 0 and further
declines to 0.472 when q = 5. A similar pattern is observed in the FSI-BDI pair Hurst index,
i.e., 0.648, 0.581 and 0.455 at q = −5, q = 0 and q = 5, respectively. The same pattern is
followed by the FSI–CRBI pair, the highest Hurst index 0.633 when hq = −5, while 0.543
and 0.507 when hq = 0 and hq = 5, respectively. The lowest Hurst index score is found in
the FSI–LME pair, which is 0.612 with the order of q = −5, declining to 0.545 with the order
of q = 0 and reaching 0.496 with the order of q = 5. The declining structure is found in
the Hurst exponents of all FSI and commodity market index pairs. The declining trend is
evidence of multifractality in the time variations in the pairs of FSI and commodity market
indices’ daily change. The results show that the Hurst exponent scores between FSI and
selected commodities’ return series behave with a declining trend, as long as the time scale
rises. Further, they show that Hxy(q) values for q < 0 are all greater than the values of
q > 0, confirmation of the more persistent cross correlation pattern for minor variations
than for large variations. Moreover, large variations have week cross-correlation compared
to small variations, because Hxy(q) for smaller and large variations declines as the order of
scaling q rises.

Table 3 further reports the findings of Hxy(q = 2), which quantify the level of per-
sistence among the cross correlations of the FSI and commodity market indices’ returns.
Interestingly, the Hxy(q = 2) score for FSI and the commodities CRBI and BROIL is greater
than 0.5, which is evidence of the persistent behavior between the FSI and the selected
commodity market indices’ daily price change.
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Table 3. Hurst exponent for FSI and Commodity Market ranging over qε(−5, 5).

Order FSI-CRBI FSI-BDI FSI-LME FSI-BROIL

−5 0.6335 0.6482 0.6124 0.6717
−4 0.6113 0.6319 0.5952 0.6506
−3 0.5873 0.6128 0.5879 0.6256
−2 0.5639 0.6035 0.5772 0.5968
−1 0.5441 0.5910 0.5596 0.5665
0 0.5437 0.5810 0.5445 0.5397
1 0.5421 0.5694 0.5331 0.5311
2 0.5327 0.5491 0.5234 0.5213
3 0.5193 0.5132 0.5148 0.4919
4 0.5139 0.4775 0.5057 0.4815
5 0.5072 0.4551 0.4964 0.4716

Three different interpretations of these data are offered by the literature. A cross-
persistent series is represented by Hxy(2) > 0.5, and a positive (negative) value of ∆xtyt ,
denotes a significant probability of another positive (negative) value of ∆xt+1yt+1 as claimed
by [101]. Refs. [102,108] assert that long-term cross correlation implies that each series has a
long memory of both its own past values and the past values of the other series. According
to Ref. [109], power-law cross-correlations show that a change in one series will be followed
by a change in the other. Considering these ideas, we can claim that a large increment in
the FSI is likely to be followed by a large increment in commodity market prices, daily
change [109].

BDI High Multifractal Variation when q = 2 and q = 0 indicates diverse and vibrant
relationships with the FSI. Fluctuations in FSI impact shipping demand, and subsequently,
BDI in complex ways. Increasing stress can lead to diminished trade and demand for
shipping, affecting BDI inversely. However, if stress stems from geopolitical disruptions
or tensions in specific trade routes, BDI might benefit from increased demand for alter-
native routes. Anti-Persistence to March 2021 with FSI is consistent with the hypothesis
that higher levels of financial stress predictably affect economic activity negatively and
decrease demand for shipping. The Brent Oil shows higher levels at q > 0 meaning high
sensitivity and wildly reacts against the variations in FSI, implying that, when financial
stress increase, in the future it could result in economic slowdown and recession (like, for
example, the COVID-19 economic dumping caused a decrease in oil demand). LME and
CRBI have a diverse range of commodities and have a mild reactive behavior, compared
to the former index, meaning they are affected by multiple factors, just as agricultural
commodities in CRBI are affected by seasonal variations or environmental changes. While
LME includes industrial base metals, it is also affected by multiple factors beyond the FSI,
like technological advancements, industrial demand or geopolitical factors, which weakens
the covariations of LME with FSI, compared to the three other commodity indices.

Table 4 reports the summary of the multifractal indices. The Hurst-exponent-average
values lie between 0.5 and 0.6, indicating intensity or level of multifractality. However,
the values of ∆H are significantly higher than zero, establishing that the cross-correlations
between FSI and commodity indices show robust multifractal patterns. A few interesting
insights emerge, for instance, a degree of multifractal persistence that varies, with the maxi-
mum multifractality in the FSI-BROIL pair (∆H = 0.2001) followed by FSI-BDI (∆H = 0.193)
then FSI-CRBI (∆H = 0.126), while FSI-LME (∆H = 0.125) has the lowest multifractality of
the pairs under study. This shows that BROIL and BDI have the highest multifractality
cross-correlation, while the LME and CRBI show a similarly low level of multifractality in
the cross-correlations with FSI. These results can be confirmed by Figures 4–6, as well as
by the results of ∆α in column 4 of Table 4. Figure 4 represents the association between
log(s) and log (F_xyq (S)) for q = −5 (green), q = 0 (red) and q = 5 (black), stretched with
time length s for all the pairs of FSI with commodity market indices CRBI, BDI, LME and
BROIL. The log–log plots are mapped well and increasing linearly as the scale s increases,
meaning that power-law behavior and long-range cross-correlations occur between the FSI
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and commodity markets. The power-law cross-correlation infers that large variations in
commodity market prices move to be complemented by the considerable variations in FSI
and vice versa. The higher width here is evidence of more variations, indicating random
and heterogeneous distribution, which points to the more unpredictable descriptions of the
daily change in commodity market indices.

Table 4. Summary of Multifractality of FSI and Commodity Market Indices.

Pair Hurst Average ∆H ∆α AI C

FSI-CRBI 0.5545 0.1263 0.2419 3.9688 0.3018
FSI-BDI 0.5666 0.1931 0.3079 1.2845 0.7607
FSI-LME 0.5500 0.1253 0.2313 1.8599 0.5407

FSI-BROIL 0.5589 0.2001 0.3241 2.2047 0.4692
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The significant difference from zero spans of the cross-correlations’ multifractal pro-
gressions corroborates the obvious deviations from the random walk process. Lo’s [110]
adaptive market hypothesis (AMH) assumptions regarding the role of human psychology
and market efficiency is not static, considering time variance across different categories
of assets supported by evidence in favor of complex market structures and multifrac-
tality in the cross-correlation form [111], which has also been demonstrated in earlier
research [112–114].

The degree of asymmetry results is reflected in column 5 of Table 4. The FSI–CRBI pair
represented the highest AI value (3.968) followed by the FSI-BROIL pair (2.204) and FSI-BDI
showed the lowest asymmetry AI value (1.285). Interestingly, all commodity market indices
paired with FSI show right skewed cross-correlations. When the value of the AI > 1
cross-correlation between the pair is right skewed contrary to the AI < 1, is left skewed
cross correlations. Additionally, outcomes of the singularity ratio C, a truncation gauge,
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for almost all the pairs indicate more profound left side tails (C > 1) of the spectrum f (α),
suggesting more potent singularities, and the cross-correlation has a multifractal synthesis
that is impervious to small-scale local variations [115].
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The findings of singularity ratio C are reported on the right side of the last column
of Table 4, where FSI–BDI is (0.7607) followed by FSI–LME (0.541) then FSI–BROIL (0.469)
and the least value of FSI–CRBI (0.302). Interestingly, similar to the findings of (AI), all
commodity market indices showed (C > 1), indicating strong singularities and the cross-
correlations have a multifractal formation that reacts promptly to local fluctuations even
with small variations [115].

Past literature shows that long-range cross-correlations, fat-tails, and intermittency are
the main features of multifractality in the commodity markets. Cross-correlation indicates
that the indices’ oscillations over longer time scales rely heavily on their past behavior rather
than being independent of one another. The persistence or anti-persistence trends, loops,
or volatility in the indices can lead to long-range correlations. The Hurst exponent, which
runs between 0 and 1, can be used to calculate long-range correlations. An approximate
Hurst exponent of 0.5 signals an arbitrary process, while an approximate Hurst exponent of
0 or 1 indicates either high persistence or anti-persistence, respectively. Fat-tails indicate the
probable occurrence of extreme events (such as sharp price movements or crashes) is higher
than would be estimated from a normal distribution in cases of fat-tailed distributions. The
assortment of market participants, complicated feedback actions, the existence of outliers
or aberrations in the data, or all these factors, can lead to fat-tailed distributions. Kurtosis, a
measurement of how peaked or flat a distribution is in comparison to a normal distribution,
can be used to identify fat-tailed distributions. A normal distribution is indicated by a
Kurtosis that is near to 3, whereas a fat-tailed distribution is indicated by a Kurtosis that
is higher than 3. Intermittency describes how the indices’ variations fluctuate in intensity
throughout a range of time scales rather than being uniform. The multiscale structure of
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market activity, including the various trading frequencies, methods, and horizons of market
participants, can lead to intermittent activity. The scaling exponents, which express how the
fluctuations alter with the observation time scale, can be used to quantify intermittentness.
A multifractal process is indicated by a changing scaling exponent, whereas a self-similar
process is shown by a constant scaling exponent.

In their study of the realized volatility series of the Shanghai Stock Exchange Compos-
ite Index (SSEC) and the Shenzhen Stock Exchange Composite Index (SZSEC), Ref. [116]
discovered that both indices displayed multifractality. Additionally, they discovered that
fat-tailed distributions had some effects on multifractality and that long-range correlations
of minor and significant major variations were the primary drivers of multifractality. In
order to look into the nonlinear dependency and multifractality in the price-volume associ-
ations of China’s and the US’s agricultural commodities’ futures markets, Ref. [117] used
multifractal detrended cross-correlation analysis (MFDCCA). They reported that both mar-
kets’ price-volume interactions demonstrated multifractality, with the main contributors
being long-range cross-correlations and fat-tailed distributions.

Ref. [118] explored the multifractal features of financial markets, including commod-
ity markets, employing multifractal analysis techniques and multifractal models. They
scrutinized the accumulating proof of multifractality in financial time series across many
markets and time periods and argued about its origins. Additionally, they highlighted
how multifractal analysis might be used to assess market inefficiencies and improve risk
management, along with other applications.

3.3. Rolling Windows Analysis

We use the MFDCCA with the rolling window technique to capture the dynamic
changes in the cross-correlation between the FSI and the commodity market indices of CRBI,
BDI, LME and BROIL. In Figure 7, Panel-A shows the evolution of the Hurst exponent
(Q = 2) across a rolling window of 500 trading days, whereas Panel-B shows the daily
variations in multifractal strength. It is easily seen that the BDI exponent line remained
above the other three commodity pairs and above 0.5 until July 2022, demonstrating a
persistent cross-correlation between the daily changes of BDI and FSI. For the other three
commodity indices (CRBI, LME and BROIL), the respective Hurst exponents are lower
than 0.5 and anti-persistent with FSI before March 2021, known as the COVID-19 pandemic
period. Their Hurst exponent value increased intermittently and touched 0.5, remaining
there from September to November 2020, which indicates the weakness (or absence) of
cross-correlation between FSI commodities CRBI, LME, and BROIL. This implies the weak
knowledge of commodity prices about FSI during these months due to uncertainty and
on/off episodes of COVID-19 lockdowns after the first pandemic phase. Before and after,
the FSI was likely to be negatively followed by CRBI, LME, and BROIL. Interestingly, during
the COVID-19 recovery period, from March 2021 to April 2022, these three commodity
indices jumped above the threshold of 0.5, remaining above the parameter and showing
a strong level of persistence with FSI. This implies that the FSI is negatively followed by
commodity prices. After April 2022, all four commodity indices’ Hurst exponents dived
and crossed the 0.5 threshold, showing persistence with the FSI, meaning that an increase
in FSI was followed by the commodity market indices. This flip in the relationship between
FSI and commodity market indices happened because of the Russian invasion of Ukraine
from February 2022. The BROIL has the highest multifractality based on DH value, whereas
LME demonstrates the lowest multifractal cross-correlation with the FSI, which is consistent
with the overall results. In general, all commodity indices percentage changes in 2020
exhibit significant multifractality in contrast to slightly lower DH values in the months
following March 2022.
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4. Conclusions

The purpose of this study is to measure the multifractal cross-correlations between
the FSI and four commodity market indices, which represent the prices of wide range
of commodities: the CRBI, BDI, LME, and BROIL. We used the daily data from June 16,
2016, to June 9, 2023. We used multifractal detrended cross-correlation analysis (MFDCCA)
to investigate the dynamic relationships between the returns of the commodity market
indices and the financial stress index. This approach is helpful in revealing the long-term
memory, persistence, and mysterious behavior of the cross-correlations between financial
stress and commodity returns, as well as their complex geometry and multifractality. To
summarize, our findings corroborate the existence of cross-correlation by showing a connec-
tion between daily fluctuations in the FSI and commodity market indices. The power-law
cross-correlation relationship shows that large price fluctuations in the commodity markets
are more likely to follow significant fluctuations in the FSI. Additionally, different levels of
multifractality are seen; the FSI and BROIL show higher levels of multifractality, whilst the
FSI and LME have the lowest multifractal cross-correlation. Furthermore, the consistent
persistence in cross-correlation behavior between the FSI and all chosen commodity market
indices is confirmed by the Generalized Hurst Exponent. These results imply that financial
stress and commodity indices retain a long-term memory of their respective historical lag
values in addition to the historical values of the associated variable. One could contend
that changes in the FSI are also reflected in the changes in returns of commodity mar-
kets. Furthermore, the evidence of long-range cross-correlations implies that past changes
in FSI values can improve the predictability of commodity market prices. Additionally,
the findings demonstrate that all FSI-commodity pairs’ minor fluctuations exhibit more
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persistent cross-correlation characteristics than do large fluctuations. The pairs show a
longer right tail because of the existence of singularities, as multifractal structure in their
cross-correlation is sensitive to local fluctuations with small magnitudes and the change in
commodities is associated with fluctuations in FSI. Moreover, the quantification of small
and big fluctuations by the MFDCCA model reveals an imbalance in the fractal complexity
between the oscillations of the commodity market with varying amplitudes and the FSI.

Understanding of cross-correlations for fund managers and investors, in the long run
indicates that changes in FSI will have an effect on the returns and volatility of the commod-
ity markets indices in crucial times, in order to adjust portfolios for better diversification.
Moreover, recognizing these correlations can help to develop effective hedging strategies.
The integration of cross-correlations into risk management models can improve portfolio
risk estimation and forecasting accuracy, especially during global turbulence. This means
they should remain vigilant, using commodity markets as a safe haven in uncertain periods.
Policy-makers, like regulatory bodies and central banks, can benefit from incorporating
cross-correlations to calibrate interest rates and implement policy measures effectively,
preventing unnecessary propagation of crises and unintended consequences. FSI and com-
modity markets’ cross-correlation provides insight into the regulation and control of the
macroeconomy. As a result, to prevent any significant swings in the commodity markets,
regulators of these markets must continuously develop regulations that take into account
the broader impact on them. Governments can apply understanding of abstracted cross-
correlation to devise macroeconomic policy appropriately, to decide tariffs for commodities
by foreseeing how financial stress might influence commodity prices, eventually affecting,
economic growth, inflation, and trade.

Our research offers a framework for investigating the relationship between financial
stress and commodity market returns, as well as a basis for investigating similar content
in other global markets. This study is limited to daily data, so in future studies intraday
changes in FSI and commodity markets could provide interesting insights. Through intra-
day data analysis, we would have more pinpoints in the commodity market fluctuations
and fine-tuned information that would allow us to explain market dynamics in a more
interesting way.
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