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Abstract: Urban morphology has been empirically demonstrated to be self-organized and can be
quantified by fractal dimension. However, the spatial variation rule of fractal features at the sub-zone
scale has yet to be uncovered, as well as the relationship between fractal dimension values and
road network or land-use patterns. In this study, the urban area is partitioned into 158 grid units,
with subsequent calculations conducted to determine the fractal dimensions (using 2D box-counting
and 3D voxel-counting methods), road network characteristics, and land-use patterns within each
individual unit. The pattern of how architectures fill into the 2D or 3D embedding space at the
grid level is revealed. Moreover, the spatial relationship between the road network, land-use, and
their impacts on the local architectural layout is elucidated by employing MGWR, a model that
incorporates the principles of fitting localized spatial regression. The results are as follows: (1) urban
morphology follows fractal laws at a sub-zone scale, both in a 2D plane and 3D volume; (2) the
filling degree of architecture is high in the urban center but low in the periphery areas; (3) the
selected variables fit well with the regression models; (4) there is spatial heterogeneity regarding
the influence of each factor. The research findings provide valuable insights into the theoretical
relationship between urban morphology and the composite structure of road networks and land use.
This facilitates identifying crucial areas and priority directions for urban renewal construction, as
well as optimizing architectural design to improve efficiency and functionality.

Keywords: fractal dimensions; box-counting dimension; urban morphology; architecture layout;
road network

1. Introduction

Urban morphology exhibits a complicated space-filling process and self-organized
pattern. A thorough study of urban morphology starts with its description, followed by an
understanding of its organization and working. Conventional geometric measurements
of urban features include the perimeter, area, and volume, which are based on a specific
scale and defined as a “characteristic scale” [1]. However, urban morphology resembles
natural beings, such as coastlines or bacterial colonies, which have no characteristic scale
and cannot be precisely depicted by basic measures such as length, area, or volume [2].
Fortunately, fractal geometry provides a powerful method to solve the problem of “no
characteristic scale” and can effectively measure scale-free phenomena such as urban form.

Cites can be empirically treated as fractal systems, bearing self-similarity or self-affinity
properties [3]. Since Batty [4] developed the “fractal city” theory, the fractal approach—
used in understanding urban morphology features and the iterative rules of urban growth
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evolution—has become an increasingly important topic in urban science. For example,
Benguigui [5] determined the fractal dimension as a function of time using the Tel Aviv
metropolis as a case. Feng et al. [6] analyzed the evolutionary characteristic of urban
form and land-use structure in Hangzhou, China, and found that self-similarity exists in
both the built-up area and the municipal area. Yin et. al. constructed a dynamic fractal
framework and applied this theory to study the urbanization of Boston [7]. In these studies,
the relationships between fractal cities and self-organization rules are widely reported.

The calculation methods for fractal dimensions play a significant role in fractal studies.
There are several common algorithms, including the perimeter–area method, area–radius
method, and box-counting method, and each of them corresponds to a specific physical
prosperity. The perimeter–area method is derived from Mandelbrot’s concepts [8] and
is used to depict the fractal characteristic of island-type objects; it has been widely used
to represent the shape complexities and irregularities of urban boundaries [9,10]. The
area–radius dimension is designed to quantify the agglomeration degree of the built-up
area. This method is suited for indicating urban growth, as the key to the algorithm lies
in building the relationship between the radius (a scale) from the urban core and the
corresponding built-up area (a measurement) [11,12]. The box-counting method measures
the spatial filling degree of fractal objects, in other words, it reveals how the space is
occupied by complex patterns [13,14]. The conventional box-counting method is commonly
employed in a 2D plane to describe the urban spatial structure and texture; further, a 3D
voxel-counting method is developed to measure the building morphology embedded into
a 3-dimensional space [15].

There can be different types of objects measured to embody fractal urban morphology,
from built-up areas to road network structures [16–18]. When the objects are architectures,
there exists a spatial correlation between the distribution of architecture and urban mor-
phology [19]. On the one hand, the urban space is composed of various architectures and
can be divided into indoor and outdoor spaces, acting as a “figure and ground” complex
in urban texture (Figure 1a) [20]. On the other hand, architectures can be considered as
“filling clusters” within the framework of urban morphology, which falls into the scope
of the box-counting dimension application [21,22]. Further, the box-counting dimension
serves as a comprehensive measurement of the spatial unevenness and complexity of
the architectural layout [23], and a higher value indicates a more effective and compact
urban morphology.
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When it comes to the influencing factors of urban morphology, road networks and land-
use patterns are found to have deep and complicated effects on urban form. Theoretically,
it is well-known that road networks shape the urban framework and organize traffic flow,
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and the function of land use determines the building form [24,25]. Moreover, accessibility
improvement and increasing land-use mixing levels lead to the development of density-
built-up areas with high vitality [26,27]. In terms of methods and practices, space syntax
variables are frequently used to assess the different types of accessibility and traffic flow
in the road network [28]. The advantage of this method lies in the effective identification
of integrated roads and key hubs using the topological connections between different
roads as a whole network [29]. The area, density, and proportion distribution of land
for different purposes are other types of common indices that identify the intensity of
land functions and provide a foundation for urban functional zoning at a community
scale [30]. Further, the relationship between different variables can be built up through
various regression models, such as the spatial lag model or spatial error model [31,32].
Given that there exists spatial heterogeneity within urban spaces [33], geographically
weighted regression (GWR) is increasingly being applied in urban morphology studies [34].
The above provides a theoretical and methodological basis for the study of influencing
factors on urban morphology.

Still, there were several limitations in the previous studies:

(1) The 3D voxel-counting fractal dimension model for architectural object measurement
remains in the primary stage.

(2) A fine-scaled study on fractal features within urban sub-zones has not been conducted,
nor has its visualization.

(3) The relationship between 2D or 3D fractal dimensions as well as their influencing
factors, such as road network variables and land-use patterns, have not been explored.

The resolution of the aforementioned issues carries substantial theoretical and prac-
tical implications. Firstly, this study contributes to unveiling the functional mechanism
underlying the fractal dimension at a subzone level within traffic-land composite systems,
providing insights into determining optimal urban morphology. Secondly, it facilitates the
effective implementation of urban planning by addressing inherent qualitative limitations
associated with conventional approaches. This enables improved alignment between archi-
tectural layout and traffic-land systems to enhance efficiency and functionality in shaping
urban morphology.

This study uses architectures as fractal objects and conducts fractal measurement
within the subzone through 2D and 3D box (voxel)-counting methods, then the fractal fea-
tures are mapped to obtain a fine-scaled portrait of urban morphology. Finally, a multiscale
geographically weighted regression (MGWR) model is established to explore what effects
the road network and land-use patterns have on urban morphology (Figure 1b).

2. Study Area, Methodologies and Variables
2.1. Study Area

The city of Zhengzhou is chosen as the case study (Figure 2a). As the provincial capital
of Henan, Zhengzhou’s metropolis area has a dense and diverse architectural complex,
providing a sufficient sample size for supporting urban fractal research. (Fractal research
can still be conducted in cities lacking dense and diverse architectural complexes, but the
overall fractal dimension may be low, making it challenging to analyze the local spatial
variations of fractal dimensions at the subzone level [35]).

The study area is bounded by the outer ring roadways from 113.52 E to 113.82 E
and 34.66 N to 34.89 N (Figure 2b). It has a surface area of approximately 56,436 hm2.
The studied area has a polycentric structure with an integrated traffic network made up
of grid-like roads and ring roads, which are highly representative of Chinese megacities.
Understanding the spatial rules and influencing factors of the architectural morphology
of cities with similar structures is greatly facilitated by selecting the downtown area of
Zhengzhou as the case study. Based on field research and data preprocessing results, the
research area is divided into 158 grids (Figure 2c) as the basic analysis units, and fractal
research with fine-scale detail on the architectural form is conducted within these grids.
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2.2.1. 2D Fractal Dimension (2D_FD) and 3D Fractal Dimension (3D_FD)

The computational method for the 2D box-counting dimension (2D_FD) and 3D voxel-
counting dimension (3D_FD) is based on the same idea that space can be measured by units
with different scales. The fractal dimension can be calculated by the relationship between
the measurement outcomes and the measurement scale. As for 2D_FD, the architectures
are measured by a series of boxes with different sizes. When the size of the “box units” is
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set as r, the number of “box units” required to cover all the architectures is N(r). Then, the
relationship between r and N(r) should obey the law as follows:

N(r) ∝ r−FD (1)

In Equation (1), FD is the fractal dimension.
After the N(r) values are obtained, lgr and lgN(r) are plotted as the abscissa and

ordinate, respectively, and the regression line equation can be built as follows [36]:

lgN(r) = −FDlgr + lgk (2)

In Equation (2), k is a constant and lgk serves as the intercept of the regression line, FD
is the fractal dimension that represents the negative value of the slope of the regression line
and it depicts the complexity and regularity of the architecture morphology.

The measurement units in the 2D_FD case are 2D boxes, while in the 3D_FD case, they
are 3D voxels. Taking the 3-dimension, for example, assuming that the 3D urban space is
M, it can be completely enclosed by its bounding cuboid with dimensions featuring the
length, L, width, W, and height, H. This L × W × H cuboid serves as the ruler, with its
scale denoted as r1 = L. It is evident that the number of cuboids required to enclose all
architectures within space M (equivalent to the number of non-empty cuboids) should be
N(r1) = 1.

Subsequently, the cuboid is equally divided into eight voxels with dimensions of L/2
×W/2 × H/2 with its scale denoted as r2 = L/2. The number of voxels required to encase
all architectures within space M is then calculated as N(r2). Similarly, this process continues
for smaller voxel sizes, such as L/4 ×W/4 × H/4, with a corresponding scale of r3 = L/4.
The number of voxels required at each step follows this pattern.

Following this progression, the size of the voxel ruler gradually decreases proportion-
ally. At step n, where rn = L/2n−1, we record the number of non-empty voxels needed to
encase all architectures in space M as N(rn). If the architectural morphology in space M
exhibits fractal characteristics, the scale’s r value and its corresponding non-empty voxel
number N(r) should conform to Formula (1), enabling computation of the 3D_FD value
using Formula (2).

2.2.2. Space Syntax Modelling

Space syntax is used to estimate two types of traffic flow (namely, through-movement
and to-movement) based on the topology network theory. Choice and Integration are the
most common variables measuring the two aforementioned indexes [29].

The Choice index is used to calculate the number of times that a certain road segment
appears on the shortest path from any origin to any destination, representing the possibility
that the road is chosen. The higher the Choice index value is, the more through-movement
traffic on the correlating roads, which indicates more vehicles and people passing by. The
Choice can be calculated as follows:

Choice =

log


n
∑

i=1

n
∑

j=1
σ(i,x,j)

(n−1)(n−2) + 1


log
[

n
∑

i=1
d(x, i) + 3

] , i 6= j (3)

In Formula (3), n is the total number of road segments; d(x, i) is the shortest distance
from x to i, and σ(i, x, j) is the shortest distance from i to j through x. When the trajectory
from i to j passes through x, σ(i, x, j) = l(i)l(j); when I 6= x = j or I = x 6= j, σ(i, x, j) = l(i)l(j)/2;
when the trajectory from i to j does not pass through x, σ(i, x, j) = 0.

The Integration index is used to measure the connection and accessibility, reflecting the
attractiveness of socioeconomic activities. The higher the Integration index value, the more
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to-movement traffic on the correlating roads, indicating more vehicles and people arriving.
The Integration can be calculated as follows [37]:{

Integration = RA(ax)
Dn

Where : RA(ax) =
n(log((n+2)/3)−1)+1

(n−1)(n−2)/2 , Dn = 2(MD(ax)−1)
n−2

(4)

In Formula (4): n is the total number of road segments in the road network system,
and MD (ax) is the mean depth of road segment ax.

2.2.3. MGWR

MGWR is derived from GWR; both are typical local regression models that allow
the parameters to vary spatially and are different from the conventional global regression
models, which assume that the coefficients to be estimated are constant over space [38,39].

In the GWR model, the spatial locations of the sample data are considered parameters
in the coefficient estimation; the calculation formula is as follows:

yi = βi1(ui, vi) xi1 + βi2(ui, vi) xi2 . . . . . . βi7(ui, vi) xi7 + βi0 + εi (5)

In formula (5), (ui, vi) is the geographic coordinate of the center point in the ith grid
sample; yi is the dependent variable representing the 2D_FD or 3D_FD value of grid i;
(xi1, xi2. . .. . .xi7) denotes the vector of the independent variables in grid i, which will be
explained in Section 2.3. βi0 and εi are the intercept and random error in grid i. (βi1(ui, vi),
βi2(ui, vi). . .. . .βi7(ui, vi)) is the vector of regression coefficients to be estimated for grid i,
which can be estimated as follows:

(β̂i1(ui, vi) , β̂i2(ui, vi) . . . . . . β̂i7(ui, vi) )
T
= [XTW(ui, vi)X]−1XTW(ui, vi)Y (6)

W(ui, vi) is the spatial weight matrix, which is set up by the bi-square method [40].
As an improvement to the GWR model, the MGWR model allows relationships

between dependent and independent variables to vary at different scales. In the MGWR
model, the most suitable bandwidth is searched for and acquired to avoid the mismatch
between bandwidth and parameter estimation for particular samples. As a result, the scale
effects and spatial variation of the influence on urban morphology can be better understood.
The computation method is as follows:

yi =
k

∑
j=1

βbwi
(
ui, vi) xij + εi (7)

In Formula (7), bwi is the bandwidth of the ith grid, βbwi is the regression coefficient of
the jth independent variable in grid i when setting bwi as the bandwidth, the other variables
have the same meaning as in Formula (5).

The regression model can be conducted by the mgwr-2.2.1 software accessed from
“https://sgsup.asu.edu/sparc/multiscale-gwr” (accessed on 7 October 2023).

2.3. Variable Selection and Mapping

As well-known, the layout of architectural groups will be affected by urban streets and
land-use systems, so the 2D and 3D fractal dimensions of architectural groups are regarded
as dependent variables, and the road network and land use proportion are regarded as
independent variables. The computed values and spatial distributions of 2D and 3D fractal
dimensions will be displayed as results in Section 3.1 while the mappings of independent
variables will be shown as data preparations in this section.

In terms of the road network, the Choice index is selected as X1 to estimate the traffic
flow of “through-movement” (e.g., a higher Choice index value corresponds with more
through-movement trajectories in segment AB, Figure 4a). The Integration index is selected
as X2 to estimate the traffic flow of “to-movement” (e.g., a higher Integration index value

https://sgsup.asu.edu/sparc/multiscale-gwr


Fractal Fract. 2024, 8, 138 7 of 18

corresponds with more to-movement trajectories in segment AB, Figure 4b). According
to pertinent research, there is a significant correlation of 70% between the aforementioned
indicators and their corresponding actual traffic flow [41]; the distributions of “through-
movement” and “to-movement” are mapped in Figure 4c,d, respectively. Finally, the node
number of the road network is counted in each grid and defined as X7, which is mapped in
Figure 5e.
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is selected as X4 to estimate the development level of these facilities. The proportion of
business and commercial areas is selected as X5 to estimate the business vitality. The
proportion of manufacturing, industrial, and warehouse areas is selected as X6 to estimate
the industrial development level. Each land patch possesses distinct functional attributes
and well-defined spatial boundaries, devoid of any inaccuracies. The relative proportions
of different land areas within each grid can be determined by overlaying the vectorized
land-use map (Figure 2b) onto the 158 grids spatially (Figure 5a,d).

3. Results and Analysis
3.1. The Measurement Results of Fractal Dimensions
3.1.1. The Fractal Measurement of Typical Grids

Different spatial samples are featured with different architectural layouts, correspond-
ing to different fractal dimension values. The purpose of this section is to establish the
correspondence between fractal dimensions and their visualized presentations and to por-
tray urban morphology more vividly. Therefore, four typical grids representing different
development patterns are selected as samples (Figure 6), in which urban morphology is
compared through 2D_FD and 3D_FD values.
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From the grid A to grid D samples, the architectures become increasingly sparse and
unevenly distributed, with the 2D_FD and 3D_FD values decreasing. The specific analyses
are as follows:

The grid A sample represents the central cluster of the downtown area, characterized
by dense buildings, intensive development, and a few empty spaces. The 2D outline shape
of the architecture is regular, with a high filling degree, presenting spatial accordance with
the road network structure. The 3D morphology of the architecture appears elevated and
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features significant bulk characteristics. These morphological features result in high values
of 2D_FD and 3D_FD indices.

The grid B sample represents the built-up enclaves, which are separated from the
central cluster by a wide corridor of green space or transportation. These areas feature
relatively developed urban functions but lower construction intensity than the urban
center, with an inferior architecture filling degree compared to the type A sample. These
morphological features result in medium values of 2D_FD and 3D_FD indices.

The grid C sample represents the urban edge, characterized by a sparse density of ar-
chitectures and a mismatch between the architectural layout and road network framework.
In these places, both regular and irregular architectural groups coexist, with most buildings
being low-rise. These morphological features result in relatively low values of 2D_FD and
3D_FD indices.

The grid D sample represents the vacant place to be developed, where the road
network has just been formed but the new planned buildings have not yet been “filled”
into the urban framework. In these areas, the architectural groups are sparse and unevenly
distributed. High-rise buildings that have already been built stand within a few plots,
and some other low and shabby buildings are clustered within earlier settlements to be
demolished. These features result in the lowest values of 2D_FD and 3D_FD indices.

It can be deduced that the relationship between the physical architectural conditions
in Zhengzhou and the 2D_FD and 3D_FD values can be established. The higher the fractal
dimension, the denser and more balanced the distribution of buildings, and the more
effective the layout of architectural groups in space utilization.

3.1.2. Visualization and Zoning Statistics of Fractal Dimensions

The 2D_FD and 3D_FD values of the 158 grids are computed and mapped in Figure 7a
to obtain an overall grasp of urban form; the boxplot graphics of different partitions
are drawn in Figure 7b for morphological comparisons between different directions and
different layers of the city.

In general, urban morphology represents fractal self-similarity at the grid level both in
2D and 3D spaces and conforms to the basic laws of fractal geometry. The 2D_FD varies
within the range of 1 to 2, with the highest value being 1.977 and the lowest value being
1.147; the 3D_FD varies within the range of 2 to 3, with the highest value being 2.600 and
the lowest value being 2.000.

There are different fractal characteristics between the four directions. The medium
level of the 2D_FD distribution presents NE < NW < SE < SW; and the 3D_FD distribution
presents NW < NE < SE < SW. The distribution pattern of 2D_FD and 3D_FD values in
the SW direction is different from the other three directions. In the SW direction, most
samples have high values; other samples have low values and deviate significantly from
the median, showing a negatively skewed distribution and the highest medium value. This
numerical characteristic corresponds to an abrupt change in the architectural pattern near
the city border in this direction in the physical circumstance.

There are different fractal characteristics between the three layers. For example,
2D_FD and 3D_FD both present the outer layer < the middle layer < the inner layer. The
inner layer is the central core of the downtown where architecture is densely and evenly
distributed with an intensive filling pattern. The middle layer serves as a transitional
layer that reflects the spatial process of urban expansion, where the fractal dimensions
display radius diffusion from the urban center to the periphery. The outer layer is at the
forefront of urban expansion, where the built-up enclaves, the suburban areas, and the
areas under construction are distributed in a staggered manner, resulting in a heterogeneity
of urban morphology.
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3.2. The MGWR Results Revealing the Influencing Factors on Fractal Dimensions
3.2.1. General Effect of the MGWR Regression

The regression model is established by using the indexes described in Section 2.3 as
independent variables, and 2D_FD and 3D_FD as dependent variables, respectively. The
multicollinear test for all the independent variables has been passed before conducting the
MGWR model, as the VIFs (variance inflation factors) for all independent variables are
all below 5.0, meeting the basic conditions for regression. The model fitness results are
demonstrated in Table 1, while the statistics of the regression results are shown in Table 2.

From Table 1, the fitting effect of MGWR is much better than those of the conventional
OLS and GWR regression models. The MGWR regression obtains lower RSS, AIC, and
AICc values and higher R2 and Adjusted R2 values in both the 2D_FD and 3D_FD cases,
reflecting the advantages of a stronger explanation for the dependent variable in MGWR
compared to traditional regression models. Moreover, the 2D_FD case obtains lower RSS,
AIC, and AICc values and higher R2 and Adjusted R2 compared to the 3D_FD case. In
other words, the 2D architectural pattern can be more easily explained by the independent
variables compared to 3D morphology.
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Table 1. The regression results of different models.

Model
Parameter

Results of 2D_FD Model Results of 3D_FD Model

OLS
Regression

GWR
Regression

MGWR
Regression

OLS
Regression

GWR
Regression

MGWR
Regression

RSS 49.692 31.099 25.001 51.430 33.743 28.982
AIC 279.619 251.010 224.071 287.050 259.984 239.572
AICc 282.586 265.355 242.779 290.266 272.341 253.762

R2 0.685 0.803 0.842 0.674 0.786 0.817
Adjusted R2 0.673 0.759 0.800 0.659 0.743 0.776

Table 2. Descriptive statistics of the coefficients of the MGWR model.

Dependent Variable: 2D_FD Dependent Variable: 3D_FD

Variable Mean STD Min Median Max Variable Mean STD Min Median Max

Intercept 0.048 0.177 −0.377 0.04 0.366 Intercept −0.004 0.171 −0.39 0.020 0.349
X1 −0.08 0.145 −0.458 −0.076 0.29 X1 −0.146 0.123 −0.489 −0.120 0.086
X2 0.263 0.044 0.185 0.260 0.367 X2 0.295 0.069 0.142 0.300 0.420
X3 0.537 0.128 0.222 0.535 0.808 X3 0.507 0.008 0.495 0.505 0.521
X4 0.257 0.049 0.178 0.258 0.329 X4 0.153 0.083 0.032 0.137 0.295
X5 0.249 0.012 0.228 0.247 0.277 X5 0.125 0.028 0.080 0.121 0.183
X6 0.258 0.024 0.229 0.256 0.294 X6 0.160 0.042 0.103 0.162 0.220
X7 Not significant X7 0.196 0.012 0.178 0.195 0.219

From Table 2, the regression coefficients in both the 2D_FD and 3D_FD cases exhibit
similar variation characteristics. In exception for X1, which demonstrates a negative
correlation with the dependent variable, all other independent variables display a positive
correlation. The impact of each independent variable on the fractal dimensions can be
assessed by examining the average and median values of regression coefficients. In the
2D_FD case, the regression coefficients demonstrate a descending order, as follows: X1 <
X5 < X6 < X2 < X3. Moreover, the coefficient of X4 on 2D_FD closely approximates that of
X6, while the impact of X7 on 2D_FD is deemed statistically insignificant. In the 3D_FD
case, the regression coefficients exhibit a similar order as follows: X1 < X5 < X4 < X6 < X7 <
X2 < X3. Moreover, the impact of X3 on the dependent variable is much greater compared
to other independent variables, a finding that is consistent across both 2D and 3D cases.

3.2.2. The Spatial Distribution of Regression Coefficients

The regression coefficients corresponding to the space units that pass the test are
visually represented. Positive regression coefficients are depicted in red, while negative
ones are indicated in blue, as illustrated in Figures 8 and 9.

The regression coefficients of the six independent variables for 2D_FD exhibit spatial
heterogeneity, as depicted in Figure 8a. The X1 factor (through-movement flow) exerts a
negative influence in the northeastern direction within the outer and middle layers while
demonstrating a positive impact in a limited area along the northwestern edge. However,
its effect is not statistically significant in other regions.

The X2, X4, X5, and X6 variables consistently exhibit a positive impact across all
grid cells, and the coefficients display a smooth spatial distribution. The impact of X2
(to-movement flow) is slightly more pronounced in the central axis compared to other
districts, while X4 (administration and public services) exhibits a slightly stronger influence
in the southeast districts. Moreover, X5 (business and commercial services) demonstrates a
slighter dominance in the southwest, whereas X6 (manufacturing, industrial, and ware-
house) displays a relatively stronger effect in the northwest.
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The X3 variable (residential area) exerts a significant influence on 2D_FD across the
majority of grids, particularly in two specific districts: one being the arc belts that extend
from east to north along the middle ring roads, and the other being the western half of the
inner layers.

The comparison of the contributions of different independent variables to the 2D
morphology in specific directions or urban layers is depicted in Figure 8b,c, respectively.
Certain similarities can be observed among the city’s four directions and three circle layers.
Taking the NE direction as an example, X1 exhibits a weak contribution while X3 exerts a
strong impact, whereas there are only marginal disparities observed between X2, X4, X5,
and X6, with their influences being moderate. Similar characteristics can also be discerned
in other regions.

The impacts of the independent variables on 3D_FD at different spatial positions
exhibit variations in both magnitude and statistical significance, as indicated in Figure 9a.
The X1 variable (through-movement flow) exerts a negative impact on the northeastern
region beyond the inner ring roads and the western region outside the middle ring roads,
while its influence in other areas lacks statistical significance. The X2 variable (to-movement
flow) presents a robust positive impact in most areas of the city, particularly along the
central axis. However, its significance diminishes when moving toward the southeast
direction beyond the inner ring of the city. The boundary of the insignificant area in
the southeast aligns with the spatial distribution of a river, namely the Qili River. This
river serves as a dividing line for maintaining morphological consistency within the built
environment on both sides. Furthermore, the premature development of roads on the
southeastern bank has resulted in architectural incongruity and insignificance of the local
regression. The X3 variable (residential area) shows a consistently strong positive impact
throughout all locations, with greater intensity observed in southeastern sectors relative to
other districts. The effects of X4 (administration and public services) are only significant in
the half arc located in the southeast, with strong impacts observed at the periphery and
weaker influences near the center. The X5 variable (business and commercial services)
exhibits a modest yet statistically significant positive impact exclusively in the urban core
and the southwestern half, while its influence is not statistically significant in other regions.
The X6 variable (manufacturing, industrial, and warehouse) demonstrates a significant
positive impact in the majority of areas within the city, gradually diminishing in intensity
from the northwest to southeast direction until it becomes statistically insignificant. The
X7 variable (branching degree) displays a consistently positive impact across all grids,
demonstrating less spatial variability compared to other variables.

The contributions of each variable to the four directions and three layers can be observed
in Figure 9b,c. It is evident that X1 has the weakest contribution, while X3 exhibits the
strongest contribution. Additionally, X2 demonstrates the second strongest contribution to
most zones. The contribution rankings of X3 to X7 vary across different directions and layers
as detailed below. In the NE and SW directions, X7 exhibits a greater magnitude than X4,
which in turn surpasses X6 and X5. In the NW direction, X6 exceeds both X7 and X5 (with X4
being insignificant). In the SE direction, it is observed that X4 surpasses both X7 and X5 before
being surpassed by X6. Additionally, across all three layers, there is a consistent pattern: the
magnitudes follow the order of importance as follows: X7 > X6 > X4 > X5.

4. Discussion
4.1. Discussion of the Fractal Measurement at the Subzone Level

The fractal dimension, whether in natural systems [42–44] or man-made systems
like cities, is a complex object characterized by a specific spatial order generated through
recursive iteration rules [45,46]. It presents inherent self-similarity at both the macro and
micro levels. In the context of urban systems, the fractal dimension serves as a scientific tool
for measuring the features of urban morphology and its evolutionary patterns. Moreover, it
serves as a crucial indicator for evaluating whether a city is undergoing self-organizational
evolution or is in a state of ‘chaos’ [47]. The findings of previous research indicate that self-
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organized urban systems exhibit significant fractal characteristics, which can be quantified
through 2D or 3D fractal dimensions [48]. However, previous studies have only employed
these two fractal dimensions to examine the overall fractal characteristics of the entire city,
without conducting more refined fractal measurements for subzones in different directions
and urban layers.

One of the significant findings made in this study lies in the discovery of the existence
of a fractal structure at the subzone level in a city, serving as an analogy and supplement
to previous research findings on the overall fractal rules observed in other cities [2]. In
contrast to previous studies, this discovery provides support for the spatial heterogeneity
of distinct subzone structures through varying 2D_FD or 3D_FD values. The reason lies in
the divergent planning and development trajectories of different subzones, as well as the
disparities in spatial occupation and utilization method by the population, land, and archi-
tecture across urban blocks. As the box-counting dimension indicates the spatial occupancy
capacity, urban growth will lead to an increase in the box-counting dimension. That is, the
self-organizational goal of urban development is to optimize the spatial configuration and
facilitate coordinated growth within its internal areas, thus enhancing spatial occupying
efficiency and compactness while achieving a more balanced and efficient distribution of
urban space. The study enriches the theory of fractal cities by demonstrating a gradual
decline in the fractal dimension from the city’s core to its outskirts, indicating outward
expansion. Moreover, it reveals that mature subzones exhibit higher fractal dimensions
compared to those in the developmental stage or undergoing rapid development.

4.2. Discussion of the Pattern of Influencing Factors for Urban Morphology

Urban morphology can be visually manifested through the architectural layout, which
is undeniably interconnected with road network patterns and land-use patterns [49–51].
The former serves as the fundamental framework of urban infrastructure, while the latter
plays a pivotal role in determining building functions. Moreover, the spatial arrangement
of the architecture is inevitably constrained by the site if it is considered as occupancy
within the road network or land parcels [52]. However, earlier studies have not explicitly
explored the influence on urban fractal characteristics.

(1) The influencing pattern of the road network.
This empirical study enables the establishment of a theoretical correlation between

space syntax and fractal dimension within urban areas, which has never been explored
by previous research, and will offer valuable insights for urban spatial studies in the
future. In the spatial syntax framework, the characteristic index of the road network is
categorized into choice degree and integration degree, which correspond to two distinct
traffic modes: through-movement and to-movement. The role of through-movement
traffic in the completely built-up area of the city is not significant, possibly due to its
primary reflection on the road section’s “channel” function rather than adequately capturing
the attractiveness of socioeconomic activities, thus exerting a lesser influence on urban
morphology. The impact of to-movement traffic is relatively positive, potentially due
to its embodiment of the road section’s centrality. It can be deduced that the impact of
to-movement on urban fractal dimension is a gradual process that occurs in conjunction
with the progress of urban development. The influencing mechanism can be explained by
the fact that a higher value of to-movement in a particular area enhances its attractiveness
for socioeconomic activities, particularly where an important road extends but the land
remains undeveloped. Consequently, the given plot will experience an increased influx in
architecture filling, exhibiting a heightened level of self-organization aimed at optimizing
urban space utilization and further augmenting the fractal characteristics.

(2) The influencing pattern of land use.
The impact of the four types of land use on 2D_FD is more significant and demonstrates

greater spatial heterogeneity in comparison to 3D_FD, respectively. This can be interpreted
as follows: the 2D arrangement of architectures on a plot boundary is constrained and
coordinated with the land-use layout, while the 3D morphological characteristics of ar-
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chitectures exhibit a certain degree of freedom from these constraints, resulting in greater
variation in height.

The influencing mechanism of land use on fractal characteristics can be elucidated
through the lens of architectural functions. In particular, land use determines the building
function type within a given area, thereby exerting a profound influence on the 2D and 3D
architectural layouts. This paper examines four typical land-use types and selects a repre-
sentative plot for each type (Figure 10) to provide an illustrative example. 1© Residential
areas have the most significant impact on the fractal characteristics of urban morphology.
This is due to their extensive distribution and large spatial coverage within a city. Addition-
ally, residential buildings exhibit distinct voxel characteristics with predominantly square
shapes, displaying regular arrangements and well-organized clusters (Figure 10a). These
factors constitute the primary mechanism through which residential functions shape urban
morphology. 2© The influence of administration and public facilities, as well as manufactur-
ing land, on urban morphology is considered secondary, with minimal disparity between
them. Public facilities encompass structures such as stadiums, libraries, and museums
while manufacturing land includes buildings such as factories and logistics parks. These
buildings all exhibit characteristics of large sizes and intricate designs (Figure 10b,c) to
fulfill internal functional requirements, corresponding to the medium fractal dimension.
3© The impact of the business area on the fractal dimension is relatively limited, primarily

due to its open layout configuration. To enhance commercial vitality and promote pedes-
trian flow, it is imperative for commercial buildings to consider the connectivity between
the building site and the surrounding street area. Moreover, several buildings often enclose
vacant spaces in various forms to create commercial clusters (Figure 10d), resulting in a
correspondingly lower fractal dimension.
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The above supports the key findings and implications that there exists a strong cor-
relation between the influencing effects of land use, architecture functions, and fractal
dimension, contributing to the field of urban morphology regulation and control through a
combined view of “function and form”.

4.3. Limitations

This study possesses several limitations and can be enhanced in the subsequent
areas: (1) The spatial grid serves as the fundamental research sample in this paper, and
determining an appropriate unit size is of utmost importance. When the analyzing unit is
too small, it further disrupts the integrity of urban plots and building groups, making it
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challenging to establish a comprehensive architectural group system within a single grid.
The explanatory power of the independent variables will decrease by approximately 20% if
the grid size is halved based on the preliminary research. Conversely, when the unit size is
overly large, it fails to generate sufficient samples, as the presence of more than 140 grids
is crucial in order to meet the requirement that the number of spatial samples exceeds
20 times the independent variables. Thereby, the sensitivity analysis of the model’s accuracy,
influenced by variations in unit size, will contribute to a deeper understanding of urban
morphology in the future. (2) The present study solely focuses on the analysis of a specific
time period. Urban development is a dynamic process, and the fractal dimension as well as
its influencing factors may vary across different stages of urban development. The proposed
future research endeavor involves the collection of multiple sets of historical maps at 5-year
intervals to construct a multi-dimensional data structure with spatiotemporal attributes.
Then, we suggest incorporating time dimension attributes to enhance the GWR method,
known as GTWR (geographical and temporal weighted regression) [53], for a dynamic
urban development situation. (3) The research area serves as an exemplary illustration of
a metropolitan city characterized by a polycentric geographical structure and concentric
road networks. To validate our theoretical framework, further empirical investigations are
imperative to apply the model to other cities exhibiting analogous spatial configurations.

5. Conclusions

In this paper, fractal measurement of urban morphology and analysis of its influencing
factors are conducted at the subzone scale using quantitative urban research methods
such as fractal geometry, spatial syntax, and MGWR. Based on the obtained results and
subsequent discussions, the following conclusions can be drawn: (1) At the sub-area
level, both 2D and 3D configurations of urban morphology exhibit fractal characteristics,
demonstrating a self-organized spatial arrangement of architectural elements within the
urban environment. (2) The local fractal features of urban configurations present spatial
heterogeneity, with the efficiency of the architectural layout diminishing as one moves
from the city center toward the urban outskirts. (3) The fractal characteristics of urban
morphology in both 2D and 3D are significantly influenced by the road network and
land-use distribution. Furthermore, the influencing pattern on urban fractal features varies
spatially and is regulated by distinct architectural functions.

The research conclusions contribute to clarifying the theoretical relationship between
architectural layout and the complex structure of “road networks & land use”, thereby
enabling more effective application of architectural design practices tailored to diverse
urban functions such as residential, public service, commercial, and industrial sectors.
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