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Abstract: This paper investigates the H∞ consensus problem of discrete-time Markov jump fractional-
order multiagent systems (DTMJFOMASs) under denial-of-service (DoS) attacks. By applying the
short-memory principle, we can obtain discrete-time Markov jump multiagent systems with partially
unknown probabilities. A novel quantized event-triggering mechanism (QETM), based on a mode-
dependent logarithmic quantizer, is proposed to enhance transmission efficiency among multiagents.
A distributed controller with quantized output is developed. Sufficient conditions are provided to
ensure the system achieves H∞ consensus through Lyapunov stability theory. Finally, two examples
are given to verify the effectiveness of the proposed model.

Keywords: quantized event-triggering mechanism; Markov jump fractional-order multiagent
systems; H∞ consensus; denial-of-service attacks

1. Introduction

Multiagent systems (MASs) have been extensively utilized in multi-robot formation
control [1], multiple single-link robotic arm systems (SLRASs) [2], and smart grids [3]. The
consensus or synchronization problem has always been a central issue in MASs, aiming to
achieve agreement among multiagents through communication. The issue of consensus
in MASs has been extensively explored, including H∞ consensus [4,5], event-triggered
consensus [6–8], distributed consensus [9], finite/fixed-time consensus [10,11], and so on.

It is worth mentioning that the research on MASs assumes that system parameters
and structures are deterministic. However, in practical systems, system parameters and
structures may change because of unexpected factors (external disturbances, hardware
failures, etc.) [12,13]. To resolve the above situation, the Markov jump process is introduced
into MASs, realizing uncertain jumps through stochastic transition probabilities. This has
been studied by many scholars in various ways [14–20]. The finite-time leader-following
consensus issue in MASs with Markov switching parameters has been studied in [14].
Additionally, the problem of leader-following consensus in semi-Markov jump multiagent
systems was examined in [15]. In [16,17], the authors addressed the event-triggered con-
sensus problem for Markov jump multiagent systems (MJMASs). Considering quantized
multi-channel transmission, Huo et al. [18] explored the output feedback consensus control
strategy to examine the H∞ consensus problem in MJMASs. The synchronization problem
of heterogeneous MJMASs was studied in [19] using a collaborative output quadratic
controller. In [19,20], the H∞ consensus issue of the MJMASs was discussed with incom-
plete transition probabilities. Given the analysis above, MJMASs with partially unknown
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transition probabilities have not been extensively studied. Thus, this drives the research in
this paper.

Furthermore, we explore fractional-order multiagent systems (FOMASs). FOMASs
are considered to be more reliable, flexible, and accurate in modeling the systems than
integer-order MASs. Fractional-order systems are widely used for dynamical systems with
memory or hereditary features [21–23]. The paper addresses the consensus challenges in
FOMASs (DTFOMASs). The containment control problem for DTFOMASs with time delays
was discussed in [24]. Ref. [23] focused on the H∞ consensus problem of DTFOMASs with
finite-dimensional memory states. According to review [25], we consider a class of systems
that combines MJMASs and FOMASs, referred to as DTMJFOMASs.

High-frequency communication among multiagents leads to severe congestion in lim-
ited channels. Signal quantization is a prevalent control strategy in digital communication
for optimizing network communication resources. In practical applications, the event-
triggering mechanisms (ETMs) [6–8,11,26–29] are instrumental in lowering communication
burdens among multiagents and conserving network resources. Building upon this, MAS
consensus has been studied by combining quantization strategies and ETMs. The applica-
tion of an event-triggered pinning control was discussed in [30] to solve the containment
consensus problem in MASs with quantized communication. Under the framework of
quantized event-triggered control, Zhang et al. [31] examined the secure consensus problem
for linear MASs. In [32], a data-driven event-triggered control algorithm was introduced
for nonlinear MASs utilizing uniform quantization in the encoding–decoding scheme.
By integrating ETM and a quantized control technique, Ref. [33] addressed the distributed
adaptive optimization problem of nonstrict feedback FOMASs with uncertainty. However,
the general quantizers [30–35] are typically determined by fixed threshold parameters. This
contributes to the decline in system performance. Hence, resembling Markov modes, a
quantization strategy with dynamic switching is investigated in this study.

The consensus issue in open MASs poses a threat that cannot be ignored. Denial-
of-service (DoS) attacks manifest as network assaults that deplete bandwidth, overload
servers, or deplete system resources [36]. Thus, how to enhance the robustness of system
control is a challenging issue. Ref. [27] investigated DoS attacks governed by a Markov
process and explored a model predictive control approach to enhance system robustness.
To address network systems with DoS attacks, an event-triggered cognitive controller was
introduced in [37]. In [38], a mode-dependent H∞ consensus approach was developed to
tackle the leader-following consensus problem affected by DoS attacks. In general, there are
two types of stochastic processes for random DoS attacks: the Markov jump process [27,37]
and the Bernoulli distribution process [38]. Until now, the impact of DoS attacks with a
Bernoulli distribution process on DTMJMASs has not been adequately investigated. This
motivates us to undertake further research.

Building upon the aforementioned discussions, this paper investigates the H∞ con-
sensus problem of DTMJFOMASs with distributed controllers. A mode-dependent QETM
is introduced to mitigate communication overhead. The contributions of this paper are
articulated as follows:

1. Compared to MJMASs and FOMASs, we address the more generalized H∞ consensus
problem for DTMJFOMASs, which takes into account incomplete probabilistic Markov
processes and external disturbances.

2. A mode-dependent distributed controller with quantized inputs is developed, and DoS
attacks obeying a Bernoulli distribution are addressed to enhance the robustness of
the system.

3. Considering the high-frequency communication between MASs, a mode-dependent
approach to quantization is introduced. Compared with the traditional triggering
strategy, the QETM has both a lower triggering frequency and meets the system
performance requirements.

The remaining structure of the paper is outlined as follows: In Section 2, some founda-
tional knowledge is provided. Section 3 introduces DTMJFOMASs and designs QETM. H∞
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performance is analyzed in Section 4. Section 5 validates the effectiveness of the proposed
model. Lastly, Section 6 summarizes this paper.

Notations: Some symbols in this article are as follows: Z+ represents a positive real
number. I is an identity matrix. Rn denotes an n-dimensional vector. Pr and acot represent
the Prob and arccot function, respectively. ∥ · ∥ and ⊗ represent the two norm and the
multiplication cross, respectively. Finally, 1n is an n-dimensional vector with all ones in it,
i.e., [1, . . . , 1]T ∈ Rn.

2. Preliminaries

Definition 1 ([39]). The Grünwald–Letnikov fractional derivative of f (t) is outlined in

G
a Dα

t f (t) = lim
h→0

h−α
[ t−a

h ]

∑
ϖ=0

(−1)ϖ

[
α
ϖ

]
f (t − ϖh), (1)

where α ∈ Z+, h is the sampling interval.[
α
ϖ

]
=

{
1 ϖ = 0,
α(α−1)···(α−ϖ+1)

ϖ! ϖ = 1, 2, 3, · · · .

Let cϖ(α) = (−1)ϖ

[
α
ϖ

]
. Obviously, |cϖ(α)| ≤ αj

ϖ! , cϖ(α) is the absolutely summable

sequence.
Based on the works in [23], the discrete-time bounded form of (1) can be expressed as

Dα
t f (t) ≈ ∆α

h f (kh) = h−α
k

∑
ϖ=0

cϖ(α) f ((k − ϖ)h). (2)

Lemma 1 ([40]). Given appropriately dimensioned matrices S11, S12, and S22, the following matrix
inequality is satisfied: [

S11 S12
ST

12 S22

]
< 0

if and only if
S11 < 0, S22 − ST

12S−1
11 S12 < 0,

S22 < 0, S11 − S12S−1
22 ST

12 < 0.

Lemma 2 ([41]). Assuming appropriately dimensioned matrices X, Y, and diagonal matrix M
exist with MM ≤ I, the following condition holds for any ε > 0:

XMY + (XMY)T ≤ εXXT + ε−1YTY.

Lemma 3 ([16]). If there be real matrices A, B, M, and N such that the following conditions hold
for any ϵ > 0: [

M A + ϵBT

∗ −ϵ(N + NT)

]
< 0,

then we have
M + AN−1B + BTX−T AT < 0.

3. Materials and Methods
3.1. Problem Formulation

Consider a class of DTMJFOMASs with n identical agents:



Fractal Fract. 2024, 8, 147 4 of 19


∆αxi(k + 1) = Aϕ(k)xi(k) + Bϕ(k)ui(k) + Dϕ(k)ωi(k)
yi(k) = Cϕ(k)xi(k)

zi(k) = Eϕ(k)(xi(k)− 1
n

n
∑

j=1
xj(k))

, (3)

where xi(k) ∈ Rnx is the state of the ith agent; yi(k) ∈ Rny and zi(k) ∈ Rnz are the measured
output and controlled output, respectively, of the ith agent; ωi(k) ∈ Rnω is the disturbance
input of the ith agent; and ui(k) ∈ Rnu is the control input of the ith agent. The matrices A,
Bϕ(k), Cϕ(k), Dϕ(k), Eϕ(k) are the known real matrices. ϕ ∈ M = {1, · · · , m} is a Markov
chain with the transition probability matrix (TPM) Π = {πςp}:

πςp = Pr{ϕ(k + 1) = p|ϕ(k) = ς},

where ∑m
p=1 πςp = 1 and πςp ∈ [0, 1]. Within the TPM, there exist unspecified elements,

illustrated by the 3rd-order matrix Π:

Π =

π11 ∗ ∗
∗ π22 ∗
∗ ∗ π33

,

where “∗” indicates an unknown element.
According to (2), the state variable can be articulated as

∆αi
k+1xi(k + 1) = h−α

k+1

∑
ϖ=0

cϖ(αi)xi(k + 1 − ϖ) (4)

Hence, xi(k + 1) can be reformulated as

xi(k + 1) = (hα A + αIn)xi(k) + hαBϕ(k)ui(k) + hαDϕ(k)ωi(k) +
L

∑
v=1

cv(α)x(k − v). (5)

Let ϕ(k) = ς and xi(k) =
[
xT

i (k), xT
i (k − 1), · · · , xT

i (k − L)
]T , then Equation (3) can

be extended to 
xi(k + 1) = Aςxi(k) + Bςui(k) +Dςωi(k)
yi(k) = Cςxi(k)

zi(k) = Eς(xi(k)− 1
n

n
∑

j=1
xj(k))

, (6)

where

Aς =


hα Aς + αIn c1 In · · · cL In

In 0 · · · 0
0 In · · · 0
...

...
. . .

...
0 0 · · · 0

,Bς =


hαBς

0
...
0

,

CT
ς =


Cς

0
...
0

,Dς =


hαDς

0
...
0

, ET
ς =


Eς

0
...
0

.

Assumption 1. The pair (A, B) is stabilizable.

Assumption 2. The pair (A, C) is observable.
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Remark 1. According to Theorem 8.19 in [42], it is evident that if hα Aς + α ≤ 1, then DTMJ-
FOMASs (6) is stabilizable. That is, Assumption 1 is equivalent to the condition hα Aς + α ≤ 1.
As per [43], it is known that (A, C) being observable in (3) is equivalent to Assumption 2.

3.2. Quantized Event-Triggered Mechanism

A mode-dependent logarithmic quantizer can be outlined in

qi
ψ(k)(v

i) =


ν

ij
ψ(k),

ν
ij
ψ(k)

1+δi
ψ(k)

≤ vi ≤
ν

ij
ψ(k)

1−δi
ψ(k)

0, vi = 0
−qi

ψ(k)(−vi), vi < 0

, (7)

where δψ(k) = [(1− ρψ(k))/(1+ ρψ(k))], 0 < δψ(k) < 1, 0 < ρψ(k) < 1. ψ ∈ N = {1, · · · , N}
is a Markov chain with the TPM Θ = {θϱq}:

θϱq = Pr{ψ(k + 1) = q|ψ(k) = ϱ},

where ∑n
q=1 θϱq = 1 and θϱq ∈ [0, 1].

Let ψ(k) = ϱ. Q(v) = [q1
ϱ(v1), · · · , qs

ϱ(vs)]T be defined as the set of logarithmic
quantization levels. As per [44], qi

ϱ(vi) is a sector with bounds; then there is

Qϱ(y(k)) = (1 +Hϱ(k))y(k),

where Hϱ = [H1
ϱ(k), · · · , Hi

ϱ(k)]T and |Hi
ϱ(k)| ≤ δi

ϱ < 1.
To mitigate communication overhead, this study examines the logarithmic quantizer

into the ETM, called QETM. For each agent, the trigger instant by the following condition:

ki
d+1 = min

k∈N
{k > ki

d | σ(k)ηT
i (k)Ω1ηi(k)− eT

i (k)Ω2ei(k) ≤ 0}, (8)

where σ(k) = ϱ1 + (ϱ2 − ϱ1)
2
π acot(ε0∥y(k)∥2) (0 < ϱ1 < ϱ2 < 1, ε0 > 0) is a threshold

parameter, ki
d denotes the last trigger instant of agent i, Ω1 and Ω2 represent the weighting

matrices. η(k) = Q(y(k)), and the measurement error is determined as follows

e(k) = η(k)− η(ki
d)

Remark 2. A mode-dependent QETM is introduced in this paper, demonstrating enhanced gener-
alization compared to traditional triggering mechanisms.

1. A quantizer with dynamic switching features is more able to emphasize the robustness of the
system, while traditional quantizers [30–34] lack the capability to achieve system stability
through dynamic adjustments.

2. If the quantizer qi
ψ(k)(v

i) = vi, then the QETM can degenerate into the dynamic event-
triggered mechanism [7,11,26].

3. If the quantizer qi
ψ(k)(v

i) = vi and σ(k) is a constant, then the QETM can transform into the
static event-triggered mechanism [6,27,28].

Remark 3. In the QETM (8), the adaptive parameter σ(k) is taken into consideration. It is apparent
that the dynamic parameter σ(k) changes in real time based on the quantized error η(k).
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3.3. Mode-Dependent Distributed Control Protocol

DoS attacks lead to network communication disruptions, which result in packet
loss and affect system stability. Under DoS attacks, the distributed control protocol with
quantization is considered as follows:

ui(k) =

{
cβ(k)Kϕ(k) ∑N

j=1 gij(ηj(k)− ηi(k)), i ̸= j

0, i = j
, (9)

where c > 0 is a scalar, Kϕ(k) is a gain matrix, and β(k) ∈ [0, 1] conforms to a Bernoulli
distribution, representing stochastic packet loss. If it equals 1, it signifies successful data
transmission to the agents; otherwise, it indicates data loss.{

Pr{β(k) = 1} = E{β(k)} = β̄
Pr{β(k) = 0} = 1 −E{β(k)} = 1 − β̄.

Remark 4. The considered network framework primarily illustrates the control process of the
ith agent, while the other agents operate similarly to the ith agent, as depicted in Figure 1. The
framework mainly consists of the ith agent, a sensor, an event trigger, a controller, a zero-order
holder (ZOH), and an actuator. Utilizing a topological structure, the ith agent interacts with other
agents, forming a communication network. Given the impact of a DoS attack, the consensus problem
of DTMJFOMASs is addressed.

Figure 1. The framework of the DTMJFOMASs with QETM.

3.4. Model Transformation

Upon substituting control protocol (9) into DTMJFOMASs (6), one obtains
x(k + 1) = (In ⊗Aς)x(k) + cβ̄(L⊗ BςKς(In +Hϱ)Cς)x(k)

−c(β(k)− β̄)(L⊗ BςKς)e(k) + (In ⊗Dς)ω(k)
z(k) = (ℶ⊗ Eς)x(k)

, (10)

where x(k) = col(xT
i (k)), y(k) = col(yT

i (k)), z(k) = col(zT
i (k)), ω(k) = col(ωT

i (k)),
ℶ = In − 1

n 1n1T
n .

Let x̃(k) = (ℶ⊗ In)x(k). Based on ℶℶ = ℶ and ℶL = Lℶ, the system (10) can be
reformulated as

x̃(k + 1) = (In ⊗Aς)x̃(k) + cβ̄(L⊗ BςKς(In +Hϱ)Cς)x̃(k)
−c(β(k)− β̄)(L⊗ BςKς)e(k) + (In ⊗Dς)ω(k)

z̃(k) = (ℶ⊗ Eς)x̃(k)

(11)
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For a given orthogonal matrix Q = [Q1, Q2] with Q2 = 1/
√

n1n, such that
QTℶQ = diag{In−1, 0} and QTLQ = diag{γ1, · · · , γn−1, 0}. Then, one has{

xι(k + 1) = (In−1 ⊗Aς + cβ̄Γ1)xι(k)− c(β(k)− β̄)Γ2eι(k) + (In−1 ⊗Dς)ωι(k)
zι(k) = (In−1 ⊗ Eς)xι(k)

(12)

and {
xn(k + 1) = Aςxn(k) +Dςωn(k)
zn(k) = 0

, (13)

where
x(k) = [xT

ι (k), xT
n (k)]T , z(k) = [zT

ι (k), zT
n (k)]T ,

e(k) = [eT
ι (k), eT

n (k)]T , ω(k) = [ωT
ι (k), ωT

n (k)]T ,
xι(k) = [xT

1 (k), · · · , xT
n−1(k)]

T , eι(k) = [eT
1 (k), · · · , eT

n−1(k)]
T ,

ωι(k) = [ωT
1 (k), · · · , ωT

n−1(k)]
T , zι(k) = [zT

1 (k), · · · , zT
n−1(k)]

T ,
Γ1 = diag{γ1, . . . , γn−1} ⊗ BςKς(In−1 +Hϱ)Cς,
Γ2 = diag{γ1, . . . , γn−1} ⊗ BςKς.

It is evident that with zι(k) being equivalent to zi(k), the stability of DTMJFOMASs (3)
implies the consensus attainment of subsystem (14).

x̂κ(k + 1) = (Aς + cβ̄γκBςKς(I +Hϱ)Cς)x̂κ(k)
−γκBςKς êκ(k) +Dςω̂κ(k)

ẑκ(k) = Eς x̂κ(k)

, (14)

where κ ∈ {1, · · · , n − 1}.

Definition 2 ([45]). The DTMJFOMASs (14) with ω̂κ(k) = 0, ∀κ ∈ {1, · · · , n − 1} are said
to be mean-square asymptotic stability if it satisfies:

lim
k→∞

E{∥ei(k)− ej(k)∥}2 = 0, ∀i, j ∈ {1, . . . , n − 1}. (15)

Definition 3 ([46]). Considering DTMJFOMASs (14) under DoS attacks and the H∞ consensus
performance metrics µ > 0 based on distributed control protocols, stochastic stability can be attained
if the following conditions are met:

1. If ω̂(k) ≡ 0, the system consensus is mean-square asymptotic stability, i.e., Definition (2)
is met.

2. Under zero initial conditions, the following inequality holds for any non-zero ω̂(k) ∈
L2[0, ∞):

∞

∑
k=0

E{ẑT
κ(k)ẑκ(k)} < µ2

∞

∑
k=0

E{ω̂T
κ(k)ω̂κ(k)}. (16)

4. Main Results

In this section, firstly, the stochastic stability conditions for all agents are analyzed.
Subsequently, the mean-square asymptotic stability and H∞ performance conditions for the
system (14) are established. Lastly, the design procedure for the distributed controller (9)
with mode-dependent is showcased.

Theorem 1. Under Assumptions 1 and 2, the DTMJFOMASs (14) with ω̂κ(k) = 0 exhibits
stochastic consensus stability. Then, for any scalar 0 ≤ κ ≤ n − 1, the following condition holds:

Λςϱ
κ =

 Λ11 0 Λ13
∗ −I Λ23
∗ ∗ Λ33

 < 0,
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where
Pςϱ = ∑p=M ∑q=N πςpθϱqPpq,
Λ11 = CT

ς Cς − Pςϱ, Λ13 = (Aς + γκBςKς(I +Hϱ)Cς)T ,
Λ23 = (γκBςKς)T , Λ33 = P−1

ςϱ .

Proof. To analyze the stochastic consensus stability for the DTMJFOMASs (14) with
ω̂κ(k) = 0, one considers the following Lyapunov function as

Vκ(k, ϕ(k), ψ(k)) = x̂T
κ(k)Pϕ(k),ψ(k) x̂κ(k),

and its expectation manifests as

E{△Vκ(k, ϕ(k), ψ(k))} = E{Vκ(k + 1, ϕ(k + 1), ψ(k + 1))− Vκ(k, ϕ(k), ψ(k))}. (17)

According to TPMs Π and Θ, we can obtain

Pr{ϕ(k + 1) = p, ψ(k + 1) = q|ϕ(k) = ς, ψ(k) = ϱ}
=Pr{ϕ(k + 1) = p|ϕ(k) = ς, ψ(k) = ϱ} × Pr{ψ(k + 1) = q|ϕ(k) = ς, ψ(k) = ϱ}
=πςpθϱq.

Thus, Equation (17) can be reduced to

E{△Vκ(k, ς, ϱ)}
≤E{x̂T

κ(k + 1)Pςϱ x̂κ(k)− x̂T
κ(k)Pς,ϱ x̂κ(k) + x̂T

κ(k)CT
ς Cς x̂κ(k)− êT

κ(k)êκ(k)}
=ξT

κ(k)Λ
ςϱ
κ ξκ(k),

(18)

where ξT
κ(k) = [x̂T

κ(k), êT
κ(k)]T .

Remark 5. During the solution of Equation (18), a strategic use of an additional term
(g(x) = x̂T

κ(k)CT
ς Cς x̂κ(k)− êT

κ(k)êκ(k)) was incorporated to simplify the solving process. Clearly,
g(x) ≥ 0, and the equation is valid.

Using Lemma 1, it is easy to obtain Λςϱ
κ < 0. One can obtain

E{△Vκ(k, ς, ϱ)} ≤ −h̄E{∥ξκ(k)∥2}, (19)

where h̄ = minς=M, ϱ=N {λ(Λςϱ
κ )} (h̄ > 0). Furthermore, we have

E{Vκ(n + 1, ς, ϱ)− Vκ(0, ς, ϱ)} ≤ −h̄
n

∑
k=0

E{∥ξκ(k)∥2}. (20)

When n → ∞, obviously, there is

n

∑
k=0

E{∥ξκ(k)∥2} ≤1
h̄
(E{Vκ(n + 1, ς, ϱ)} −E{Vκ(0, ς, ϱ)})

≤1
h̄

Vκ(0, ς, ϱ)} < ∞.

(21)

This indicates that all agents maintain stochastic consensus, with the proof being
completed.
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Theorem 2. If there exists a matrix Pςϱ > 0 (ς ∈ M, ϱ ∈ N ) that ensures the DTMJFOMASs
(14) is stochastic consensus stability with the H∞ performance level µ, then for any scalar 0 ≤ κ ≤
n − 1, the following condition holds:

Σςϱ
κ =


Σ11 0 0 Λ13
∗ −µ2 I 0 Dς

∗ ∗ −I Λ23
∗ ∗ ∗ −P−1

ςϱ

 < 0, (22)

where Σ11 = ET
ς Eς + Λ11.

Proof. To consider the H∞ performance of the system (14), we define

J (k) =E{△Vκ(k, ς, ϱ) + ẑT
κ(k)ẑκ(k)− µ2ω̂T

κ(k)ω̂κ(k)}
=x̂T

κ(k)[Aς + γκBςKς(I +Hϱ)Cς]
TPςϱ[Aς + γκBςKς(I +Hϱ)Cς]x̂κ(k)

+ êT
κ(k)[γκBςKς(I +Hϱ)]

TPςϱ[γκBςKς(I +Hϱ)]êκ(k) + ω̂T
κ(k)DT

ς PςϱDςω̂κ(k)

+ x̂T
κ(k)ET

ς Eς x̂κ(k) + x̂T
κ(k)CT

ς Cς x̂κ(k)− êT
κ(k)êκ(k)− x̂T

κ(k)Pςϱ x̂κ(k)− µ2ω̂T
κ(k)ω̂κ(k)

=ξ̂T
κ(k)Σ

ςϱ
κ ξ̂κ(k),

(23)

where ξ̂T
κ(k) = [x̂T

κ(k), êT
κ(k), ω̂T

κ(k)]T .
According to (22), one obtains J (k) < 0. Likewise, we can conclude that

∞

∑
k=0

E{ẑT
κ(k)ẑκ(k)} < E{Vκ(∞, ς, ϱ)} −E{Vκ(0, ς, ϱ)}+ µ2

∞

∑
k=0

E{ω̂T
κ(k)ω̂κ(k)}. (24)

According to (24), E{ẑT
κ(k)ẑκ(k)− µ2ω̂T

κ(k)ω̂κ(k)} < 0. This indicates that the DTMJ-
FOMASs (14) maintain stochastic H∞ consistent stability. This completes the proof.

Theorem 3. If there exist matrices Pςϱ > 0 (ς ∈ M, ϱ ∈ N ) and Zς that ensure that the
DTMJFOMASs (14) have stochastic consensus stability with the H∞ performance level µ, then for
any scalars κ, ε, ε1, and ε2, the following condition holds:

Ξςϱ
κ =



Ξ11 0 0 Ξ14 Ξ15 0
∗ −µ2 I 0 Ξ24 0 0
∗ ∗ −I Ξ34 0 0
∗ ∗ ∗ Ξ44 0 Ξ46
∗ ∗ ∗ ∗ Ξ55 Ξ56
∗ ∗ ∗ ∗ ∗ Ξ66

 < 0, (25)

where
Ξ11 = ET

ς Eς − Pςϱ − (ε1 + ε2)CT
ς Cς,

Ξ14 = (ZςAς + γκBςYςCς)T ,
Ξ15 = ε(YςCς)T − γκ(ZςBς −BςXϱ),
Ξ24 = (ZςDς)T ,
Ξ34 = (γκZςBςYς)T −ZT

ς ,
Ξ44 = P−1

ςϱ −Zς −ZT
ς ,

Ξ46 = [−γκBςYς 0],
Ξ55 = −ε(Xς +X T

ς ),
Ξ56 = [0 εYς],
Ξ66 = diag{−ε1 I, ε2 I}.

The controller gain matrix can be obtained according to the following equation:

Kς = YT
ς Z−T

ς . (26)
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Proof. Given the inequality (Pςϱ −Zς)P−1
ςϱ (Pςϱ −Zς)T ≥ 0, one can deduce that

−ZςP−1
ςϱ ZT

ς ≤ Pςϱ −Zς −ZT
ς , (27)

Leveraging Lemmas 1 and 2, one can derive from Equation (25) that
Ξ̃11 0 0 Ξ̃14 Ξ̃15
∗ −µ2 I 0 Ξ24 0
∗ ∗ −I Ξ34 0
∗ ∗ ∗ Ξ̃44 0
∗ ∗ ∗ ∗ Ξ55

 < 0, (28)

where
Ξ̃11 = ET

ς Eς − Pςϱ,
Ξ̃14 = Ξ14 − (γκBςYςCς)T ,
Ξ̃15 = ε(Yς(I +Hϱ)Cς)T − γκ(ZςBς −BςXϱ),
Ξ̃44 = −ZςP−1

ςϱ ZT
ς .

Through the application of Lemma 3, it is possible to infer from (28) that

Ξςϱ
κ =


Ξ̃11 0 0 Ξ14
∗ −µ2 I 0 Ξ23
∗ ∗ −I Ξ34
∗ ∗ ∗ Ξ̃44

 < 0, (29)

where
Ξ14 = Ξ̃14 − γκ((ZςBς −BςXϱ)X−1

ς Yς(I +Hϱ)Cς)T .
Following this, pre-multiplying and post-multiplying (29) with diag{I, I, I, Z−1

ς }
and its transpose lead to the straightforward observation that Equation (22) holds. This
indicates that the system (14) achieves consensus at the H∞ performance level µ. The proof
is finalized.

5. Simulation Examples

In this section, the feasibility and practicality of the proposed method are illustrated
through a numerical example and a single-link robotic arm demonstration.

5.1. A Numerical Example

Consider the DTMJFOMASs composed of four agents, as depicted in Figure 2. The cor-
responding Laplacian matrix L is as follows:

L =


1 −1 0 0
0 1 −1 0
−1 0 2 0
0 −1 0 1

.

The TPMs Π and Θ with incomplete transition probabilities in Markov jump modes
are as follows:

Π =

0.3 0.1 0.6
0.6 ∗ ∗
0.2 ∗ ∗

, Θ =

0.2 0.6 0.2
0.5 ∗ ∗
∗ ∗ 0.8

.
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Figure 2. The topological structure of four agents.

The matrix parameters are shown in Table 1. The initial state of four agents are set
as x1(0) = [1, −1]T , x2(0) = [−5, 8]T , x3(0) = [3, −2]T , x4(0) = [2, 5]T , and c = 1.
The disturbance input is designated as ω(k) = 0.05e−0.05k sin(k). The stochastic packet loss
probability is given by β̄ = 20%. The initial values of QETM are established as δϱ = 0.55,
vmin = 0.01, ϱ1 = 0.1, ϱ2 = 0.99, and ε0 = 0.45.

Table 1. The matrix parameters for three modes.

A B C D E

Mode 1
[

0.95 0.01
0.15 0.95

] [
0.51 −0.1
0.05 0.15

] [
0.2 0.1

] [
0.02
0.1

] [
0.1 0.1

]
Mode 2

[
0.96 0.02
0.15 0.8

] [
0.01 −0.1
0.05 0.1

] [
0.21 0.08

] [
0.01
0.1

] [
0.14 −0.1

]
Mode 3

[
0.95 0.02
0.1 0.98

] [
0.49 −0.1
0.05 0.01

] [
0.2 0.11

] [
0.05
0.1

] [
−0.1 0.14

]

By solving LMIs in Theorem 3, we obtain that optimal H∞ performance index µ = 1.2595
and controller gains

K1 = [1.5250, 1.1883]T , K2 = [1.5195, 0.5143]T , K3 = [0.4502, 0.1514]T .

The state trajectory diagrams for four agents are depicted without control input and
with control input in Figure 3a,b, respectively. Obviously, the agents without control input
fail to converge, whereas the agents under the influence of the distributed controller (9) can
realize consensus. This indicates that the distributed control algorithm introduced in the
study is genuinely effective.

As depicted in Figure 4, the control output is displayed under the scenario of DoS
attacks. Notably, system (14) maintains strong robustness even when confronted with DoS
attacks. The evolution of modes ψ and ϕ are presented in Figure 5. By examining the error
curve in Figure 6, it is clear that the agents achieve consensus by 43 s. Figure 7 demonstrates
the triggering time interval for all agents. The average triggering frequency of multiagents
is 7.25%. The comparison between the measurement output y(k) and the quantized output
η(k) is illustrated in Figure 8. The results indicate that the QETM proposed not only saves
communication channels but also ensures consensus among multiagents.
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Figure 3. The 3D state trajectory of four agents. (a) Without control input. (b) With control input.

Figure 4. The control input of four agents with DoS attacks.
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Figure 5. The evolution of modes ψ and ϕ. (a) Mode ψ. (b) Mode ϕ.

Figure 6. The error curve of four agents.
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Figure 7. The triggering time interval of four agents. The trigger frequencies for agent 1–4 are 5%,
9%, 6%, and 9%, respectively.
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Figure 8. The measurement output y(k) and the quantized output η(k) of four agents.

5.2. The Single-Link Robotic Arm Systems

We validate the model’s practicability through the SLRASs with six nodes [2,47–50],
with its dynamic equation being formulated as

Jθ̈(t) = −glMsin(θ(t))− Rθ̇(t) + u(t)

where θ(t), J, and M stand for the angle position of the arm, the mass of payload, and the
moment of inertia, respectively. The gravity acceleration g, the arm length L, and the
payload mass M take the value 9.81 m/s2, 0.5 m, and 2 N · m/s, respectively. The dynamic
mode of the SLRASs can be expressed as{

xκ(k + 1) = Aςxκ(k) + Bςuκ(k) +Dςωκ(k)
yκ(k) = Cςxκ(k)
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where Aς =

 1 T

−TgLM
J

1 − TR
J

, Bς =

0 T

0 −TR
J

, Dς

[
0
T

]
.

There are three different modes for the parameters J and M: J1 = 1 N · m, M1 = 1 kg;
J2 = 2.5 N · m, M2 = 2 kg; J3 = 5 N · m, M3 = 4 kg. The sampling period is T = 0.1 s, f =
0.01/π. The TPMs Π and Θ are as follows:

Π =

0.3 0.2 0.5
∗ ∗ 0.5

0.4 ∗ ∗

, Θ =

0.1 ∗ ∗
0.4 ∗ ∗
∗ 0.2 ∗

.

The directed topology structure of the SLRASs is depicted in Figure 9. The correspond-
ing Laplacian matrix is as follows:

L =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 −1 −1 3 −1 0
0 0 0 −1 2 −1
0 0 −1 0 0 1

.

Figure 9. The directed topology structure of the SLRASs.

The matrix parameters are defined in Table 2. The initial state of the SLRASs are
configured as x1(0) = [10, −10]T , x2(0) = [−5, 8]T , x3(0) = [33, −28]T , x4(0) = [14, 35]T ,
x5(0) = [−35, 22]T , x6(0) = [21, 16]T , and c = 10.05. We set the disturbance input as
ω(k) = e−0.05k sin(0.1πk).

Table 2. The matrix parameters of the SLRASs.

A B C D E

Mode 1
[

1 0.1
−4.9505 −1

] [
0 0.1
0 −0.2

] [
0 0.1

] [
0

0.1

] [
0.1 0.1

]
Mode 2

[
1 0.1

−3.9240 0.2

] [
0 0.1
0 −0.8

] [
0 0.04

] [
0

0.1

] [
0.14 −0.1

]
Mode 3

[
1 0.1

−2.4525 0.8

] [
0 0.1
0 −0.02

] [
0 0.01

] [
0

0.1

] [
−0.1 0.14

]

Utilizing Theorem 3, we ascertain optimal H∞ performance index µ = 1.9523 and
controller gains

K1 = [0.0525, 0.0218]T , K2 = [−0.5200, −0.4143]T , K3 = [0.0515, 0.0555]T .

Figure 10 shows the mode ψ and ϕ evolution in the SLRASs. Figures 11–14 illus-
trate the SLRASs consensus simulation under DoS attacks, and it is evident that the state
converges to zero after 22 s. In Figures 11 and 12, the control input and output for the
SLRASs are presented. The error curve for the SLRASs is displayed in Figure 13. The 3D
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state trajectory for the SLRASs is depicted in Figure 14. Table 3 illustrates the triggering
frequencies and their averages for each robotic arm under QETM, Method 1, and Method 2.
Method 1 and Method 2 construct new triggering mechanisms by integrating the loga-
rithmic quantizer in [35] and the uniform quantizer in [31,32] with Equation (8). Overall,
the controller presented in this paper maintains consensus under DoS attack and minimizes
communication loads efficiently.

0 20 40 60 80 100

1

2

3

(a)

0 20 40 60 80 100

1

2

3

(b)
Figure 10. The evolution of modes ψ and ϕ. (a) Mode ψ. (b) Mode ϕ.

Figure 11. The control input of the SLRASs with DoS attacks.

Table 3. The trigger frequency of all robotic arms.

Trigger Frequency Robotic
Arm 1

Robotic
Arm 2

Robotic
Arm 3

Robotic
Arm 4

Robotic
Arm 5

Robotic
Arm 6 Average

QETM 18% 23% 21% 19% 24% 23% 21.33%
Method 1 * 23% 24% 24% 26% 21% 26% 24.00%
Method 2 * 38% 35% 40% 33% 30% 33% 34.83%

* Method 1 and Method 2 construct new triggering mechanisms by integrating the logarithmic quantizer in [35]
and the uniform quantizer in [31,32] with Equation (8).
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Figure 12. The controlled output of the SLRASs.

Figure 13. The error curve of the SLRASs.

Figure 14. The 3D state trajectory of the SLRASs with controller.



Fractal Fract. 2024, 8, 147 17 of 19

6. Conclusions

This paper examines the H∞ consensus control of DTMJFOMASs with DoS attacks and
external disturbances, extending the short-memory principle proposed in reference [23] to
MJMASs. To conserve bandwidth and minimize triggering frequency, the mode-dependent
QETM is employed. According to the designed distributed controller, sufficient conditions
are proposed to ensure the system consensus under the given H∞ performance criterion.
In the end, the validity and applicability of the proposed model are elucidated through a
numeric example and the SLRASs.

It is worth noting that this paper only considers linear time-invariant DTMJFOMASs.
Future research will concentrate on addressing the problem of leader–follower consensus
in nonlinear DTMJFOMASs. Additionally, our objectives include designing a triggering
mechanism that can more effectively conserve communication resources, thereby further
optimizing system performance.
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