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Abstract: This article presents a new thermoelastic model that incorporates fractional‑order deriva‑
tives of two‑phase heat transfer as well as a two‑temperature concept. The objective of this model is
to improve comprehension and forecasting of heat transport processes in two‑phase‑lag systems by
employing fractional calculus. This model suggests a new generalized fractional derivative that can
make different kinds of singular and non‑singular fractional derivatives, depending on the kernels
that are used. The non‑singular kernels of the normalized sinc function and the Rabotnov fractional–
exponential function are used to create the two new fractional derivatives. The thermoelastic re‑
sponses of a solid cylinder with a restricted surface and exposed to a moving heat flux were exam‑
ined in order to assess the correctness of the suggested model. It was considered that the cylinder’s
thermal characteristics are dependent on the linear temperature change and that it is submerged in
a continuous magnetic field. To solve the set of equations controlling the suggested issue, Laplace
transforms were used. In addition to the reliance of thermal characteristics on temperature change,
the influence of derivatives and fractional order was also studied by providing numerical values for
the temperature, displacement, and stress components. This study found that the speed of the heat
source and variable properties significantly impact the behavior of the variables under investigation.
Meanwhile, the fractional parameter has a slight effect on non‑dimensional temperature changes but
plays a crucial role in altering the peak value of non‑dimensional displacement and pressure.

Keywords: fractional thermoelastic model; moving heat flow; non‑singular kernel; sinc function;
Rabotnov fractional exponential kernel

1. Introduction
Fractional calculus is a branch ofmathematical analysis that applies the concepts of in‑

tegration and differentiation to orders that are not integers. Fractional calculus, in contrast
to classical calculus, which deals with derivatives and integrals of integer order, involves
derivatives and integrals of orders that are not integers since they are fractional. This field,
which has found applications in a variety of scientific and engineering‑related fields, has
provided a more realistic framework for describing complicated processes that involve
memory effects and long‑range interactions [1].

The discipline of fractional calculus remains a vibrant area of study, with continuous
investigation into its various applications in domains such as physics, engineering, biology,
economics, signal processing, and others. Fractional calculus is employed to mathemati‑
cally represent and study intricate physical systems that encompass phenomena such as
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diffusion, heat conduction, wave propagation, viscoelasticity, electrochemistry, and con‑
trol systems [1]. It offers a more precise depiction of materials exhibiting memory effects,
non‑local behavior, and anomalous diffusion, characterized by non‑random particle prop‑
agation [2]. Biological systems, including medication administration, bioelectricity, en‑
zyme kinetics, and brain networks, may be effectively modeled using fractional calculus.
It aids in capturing the intricate dynamics and enduring memory exhibited in biological
systems [3]. Fractional calculus is employed in the development and examination of con‑
trol systems that exhibit fractional dynamics. It facilitates the regulation of systems with
memory and long‑range interactions, resulting in enhanced system efficiency and stabil‑
ity. Fractional differential and integration are used in the analysis of viscoelastic materials,
where the relationship between stress and strain is described by fractional differential equa‑
tions; they are also used to simulate heat transfer in materials that exhibit memory effects
and non‑local interactions [4].

The presence of singular kernels in certain locations and the absence of singular ker‑
nels in other locations have significantly contributed to the growing importance and on‑
going research in the field of fractional calculus [5,6]. The presence of these obstacles has
stimulated extensive research endeavors and ignited enthusiasm for the advancement of
novel methodologies and techniques in the realm of fractional calculus. The issue of local‑
ity occurs when employing singular kernels, such as the conventional Riemann–Liouville
or Caputo derivatives. These derivatives are local operators, implying that the derivative’s
value at a certain place is only determined by the function’s values at that point and its
immediate vicinity [7]. Nevertheless, in several practical scenarios, especially those per‑
taining to intricate systems or substances, non‑local behavior is evident, and the impact of
remote sites becomes substantial. The conventional fractional derivatives are insufficient
for accurately capturing this non‑local behavior [8,9].

Caputo and Fabrizio [10] were the first to attempt to develop the notion of fractional
calculus in this particular situation. They achieved this by presenting a non‑singular in‑
tegral (kernel) based on a smooth exponential function that decreases. Indeed, they did
not verify the presence of a single kernel in the fractional derivative operator based on
the obtained data. Conversely, they asserted that the utilization of the fractional deriva‑
tive factor is suitable for a multitude of physical phenomena. In order to enhance this
approach, Atanagana‑Baleanu introduced amethod in [11,12] that substitutes a smooth ex‑
ponential function with the extended Mittag–Leffler function, which is characterized by a
single parameter.

In the field of mathematical physics, general fractional‑order derivatives have been
utilized to investigate mathematical models. These derivatives involve the use of non‑
singular kernels, which include functions such as exponential, Mittag–Leffler–Gauss,
Kohlrausch–Williams–Watts, Miller–Ross, Lorenzo–Hartley, Gorenflo–Mainardi, Bessel,
Mittag–Leffler, Wiman, and Prabhakar that are not singular [13,14]. In the realm of frac‑
tional calculus, there is amathematical function that is considered the Rabotnov fractional–
exponential function [15]. This function is also known as the Rabotnov function. It was
presented in the context of viscoelasticity and creep deformation by Nikolai Rabotnov, a
Russian engineer and scientist. To describe the time‑dependent behavior of viscoelastic
materials, the Rabotnov function is frequently utilized. This is especially true when con‑
sidering creep deformation. Both viscous (time‑dependent) and elastic (time‑independent)
behaviors can be observed in viscoelastic materials [16]. Creep is a term that describes the
slow and time‑dependent deformation of a material that occurs when it is subjected to con‑
tinual tension. Several other fields have discovered uses for the Rabotnov function, such
asmaterial science, engineering, and biomechanics. With its help, we canmodel and study
howmaterials creep, as well as predict how theywill change shape over timewhen loaded
continuously and describe the viscoelastic properties of living tissues [17]. Engineers and
scientists may be able to better understand and predict how viscoelastic materials will be‑
have over time by adding the Rabotnov function to mathematical models. This, in turn,
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facilitates the enhancement of the design and investigation of structures, gadgets, and bio‑
logical systems [18].

There are two new fractional derivatives that were created by Yang et al. [19] and
Yang et al. [20]. They are based on the Rabotnov fractional exponential function and the
non‑singular kernel with normalized sinc function. These derivatives are addressed. Be‑
cause they are definedwith the assistance of the normalized sinc function and theRabotnov
exponential function, both of which do not have a singular kernel, these fractional opera‑
tors are quite fascinating. According to Cattani’s study [21], the applications of the new
FCs as well as some intriguing results may be found in the publication. In order to ac‑
count for the fractal structure of the constructed material, Shymanskyi et al. [22] provided
mathematical models for the issue of thermal conductivity in clay block construction. The
fractal structure of the material was taken into consideration using a fractional‑order inte‑
grative discriminator.

Classical thermoelasticity is a branch of continuummechanics that combines the ideas
of elasticity and heat conduction to explain how materials react to both mechanical and
thermal stresses. This paradigm facilitates the analysis of the relationship between tem‑
perature and mechanical deformation in solids. An essential premise of classical thermoe‑
lasticity is the notion that the velocity of thermal disturbances is infinitely fast. This as‑
sumption suggests that every instantaneous change in temperature at a specific spot has
an immediate impact on the entire material.

Hyperbolic thermoelasticity is a modified version of conventional thermoelasticity
that allows for a finite thermal propagation speed instead of assuming an infinite pace.
It considers the limited velocity at which thermal disruptions spread within the material.
This change enables more precise simulation of processes that involve fast heat transfer
or high‑frequency thermal waves. In the field of hyperbolic thermoelasticity, the conven‑
tional heat transfer equation is substituted with a hyperbolic partial differential equation,
commonly known as the wave equation. This equation adds a limited thermal wave speed,
referred to as the speed of heat or thermal wave velocity. The wave equation incorporates
the temporal lag in the spread of thermal disruptions and enables the examination of mo‑
mentary thermal impacts [23].

In the context of generalized hyperbolic thermoelasticity, several extended models
have been introduced in order to further improve the theory and address physical incon‑
sistencies. Both Lord and Shulman [24] (LS) and Green and Lindsay [25] (GL) are credited
with the development of the first and second generalized thermoelastic theories, respec‑
tively. Green and Naghdi [26,27] provided the most pertinent generalization of thermoe‑
lasticity, which was based on the law of entropy balance for thermal elasticity. Their idea
was broken up into three distinct sections, which they referred to as GN‑I, GN‑II, and GN‑
III. Additionally, the linearized form of the GN‑I theory is identical to the conventional
heat transfer theory. The GN‑II theory provides a fixed speed for heat propagation and
does not have any energy dissipation. On the other hand, the GN‑III theory allows ther‑
mal signals to propagate at both limited and unlimited velocities. Tzou [28,29] examined a
constitutive equation in order to describe the logging behavior of heat transfer inmaterials.
Tzou applied two‑phase delays to both the heat flux vector and the temperature gradient,
respectively. As the time of relaxation for the quick transient impacts is caused by thermal
inertia, the phase lag of the heat flux vector is used as an interpretation. A delay time that is
induced by the interactions between the microstructures is understood as the other phase
lag of the temperature gradient.

Chen and Gurtin [30] and Chen et al. [31,32] proposed a heat transfer framework for
deformable materials that incorporates two temperatures: conduction temperature and
thermodynamic temperature. The difference between these two temperatures is directly
related to the heat source in conditions that do not change over time. In the absence of any
heat supply, the two temperatures are equal. Quintanilla [33] investigated the resolution
potential, structural stability, and spatial patterns related to the concept of two tempera‑
tures (2TT). The concept of the thermoelasticity theory has been the focus of numerous
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research publications over the past 20 years, leading to the development of what is today
referred to as extended thermodynamics [34–37].

In recent years, there have been notable breakthroughs in the study of thermoelas‑
ticity, namely in the utilization of fractional calculus to model and evaluate heat transfer
processes. Conventional heat transfer models that rely on single kernel operators have
restrictions on accurately representing non‑local behavior and memory influences. Fur‑
thermore, fractional calculus is used to explain anomalous diffusion in materials, which
happens when temperature changes do not spread in a way that follows the rules of clas‑
sical diffusion. This is especially important to keep in mind when dealing with materials
that have inconsistencies or complicated structures.

This work introduces an innovative method in the realm of thermoelasticity by sug‑
gesting a comprehensive fractional heat conduction model with two temperatures. By us‑
ing the non‑singular kernel of the Rabotnov fraction and the Liouville–Caputo‑type ex‑
ponential function, we hope to make fractional operators more useful in the heat conduc‑
tion equation. The proposed model considers the intricate dynamics of heat transfer in
materials exhibiting memory effects, non‑local behavior, and anomalous diffusion. To ad‑
dress the limitations of single kernel‑based fractional heat conduction models, we employ
the non‑singular kernel of the sinc function and Rabotnov fractional–exponential func‑
tion. This enables us to simulate the long‑distance interactions and memory‑dependent
processes that occur in the actual world. Moreover, using the exponential function in the
Liouville–Caputo framework enables a more precise characterization of the time‑varying
thermal response.

Different models of generalized thermoelasticity theories with different fractional
derivative operators and constitutive equations have been used. In order to unify and
clarify the relationships between different theoretical models of thermoelasticity, it is nec‑
essary to generalize and compare these frameworks. For this reason, the current study
aimed to discover common characteristics, examine basic assumptions, and investigate
links between different theoretical perspectives. This technique enables a more in‑depth
understanding of the fundamental principles that regulate partial thermal coupling and
supports the establishment of reliable and comprehensive models.

This work examined the thermomagnetic reactions of a circular solid cylinder when
placed in a constant axial magnetic field as a way to apply the derivedmodel. The cylinder
border is traction‑free, whereas the surrounding space is subjected to a heat flow with a
constant velocity. The method of the Laplace transform was utilized to solve the linked
governing equations. This method makes it possible to solve the converted problem ana‑
lytically while also simplifying equations. To make the numerical results easier to under‑
stand, graphswere used to show howdifferent fields affected the simplemedium and how
it was different from the non‑simple medium and fractional operators.

Using a fractional exponential function, like the Rabotnov function, as a kernel func‑
tion for predicting thermal diffusion is very helpful, especially when it comes to figuring
out the inverse Laplace transform of the fractional derivative. Optimizing and calculat‑
ing fractional‑order operators and parameters simplifies the modeling of thermoelasticity.
Several studies have shown and explored the use of the fractional derivative with the ex‑
ponential Rabotnov kernel in real‑world situations [20,38]. Research has demonstrated
the utility of using this fractional component in simulating various physical and other pro‑
cesses. Additionally, the fractional derivativewith the exponential Rabotnov kernel abides
by the conventional rule for the derivative of a constant function, which is zero.

Following a logical sequence, this article begins with the derivation of themodel, then
moves on to investigate special instances, then presents the solution methodologies, and
finally concludes with a discussion of the findings after providing the numerical results.
Through the use of this structure, it is possible to obtain a full grasp of the suggestedmodel
and the applications it has in thermoelasticity.
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2. Derivation of the Fractional Thermoelasticity Model
This section will present a unique mathematical model of the fractional thermoelastic

theory, including two temperatures. This model utilizes two distinct forms of fractional
integrals to more precisely characterize the behavior of thermoelastic systems. Further‑
more, this discussion will cover two novel fractional derivatives: The Yang–Gao–Tenreiro
Machado–Baleanu (YGTB) derivative [19] and the Yang–Abdel–Aty–Cattani (YAC) deriva‑
tive [20]. The derivatives are calculated using non‑singular kernels, namely the normalized
sinc function (SF) and the Rabotnov fractional–exponential function (RFEF).

2.1. Definitions of Fractional Derivatives
With respect to the function Ψ(t) ∈ H1(0, b), the fractional derivative of order α ∈

(0, 1) can be expressed in the Caputo sense as follows [4,5]:

C
0 Dα

t Ψ f
t∫

0

1
(t − s)α

.
Ψ(s)ds, t > 0. (1)

One possible representation of the Rabotnov exponential function (REF) of order α ∈
R+ with parameter ξ ∈ R+ is the series shown below [39]:

Rα(ξzα) =
∞

∑
k=0

ξkz(k+1)(α+1)−1

Γ[(1 + α)(k + 1)]
, z ∈ C. (2)

Using the non‑singular kernel of the Rabotnov fractional–exponential function, the
following is the definition of the generic fractional‑order derivative of the Liouville–Caputo
type [20,40]:

RFE
a Dα

t Ψ(t) =
t∫

a

.
Ψ(s)Rα

(
−ξ(t − s)α)ds. (3)

Some authors have recently presented a fractional differential operator that is based
on the sinc function [19]. This is one of the many fascinating definitions of fractional opera‑
tors that have been given. In addition to the fact that it is a confined function with gradual
decay, this function is extremely well‑liked in the field of signal analysis. In addition to
this, it is the essential basic function that is used in the formulation of the Shannon wavelet
theory [21]. The sinc fractional derivative of YGTMB can be expressed as follows [19]:

SF
a Dα

t Ψ(t) =
αP(α)

1 − α

t∫
a

.
Ψ(s)sinc

(
α(t − s)

1 − α

)
ds. (4)

In this context, the normalized sinc function is known as [19]

sinc(t) =
sin(πt)

πt
. (5)

As a result of the wide range of desirable characteristics that this function possesses,
it has emerged as an indispensable instrument in the fields of applied science and signal
analysis. This was demonstrated, in particular, by the fact that [19]

lim
β→0

sinc
(

t
β

)
= δ(t), (6)

where δ(t) represents the Dirac delta function.
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2.2. Fractional Heat Conduction Equation
Conventional thermoelasticity relies on the Fourier law, which serves as the funda‑

mental principle for comprehending the connection betweenheat transfer and temperature
gradient. The equation expresses that the heat flow vector (F) is directly proportional to
the negative gradient of temperature (∇θ) and may be mathematically represented as fol‑
lows:

F = −K∇θ. (7)

The conventional theory of thermoelasticity, which relies on Fourier’s law, has con‑
straints when addressing specific phenomena, such as the unbounded velocity of heat
waves. In order to overcome these constraints, researchers have formulated comprehen‑
sive theories of thermoelasticity. These theories strive to offermore precise explanations of
thermal phenomena and incorporate non‑local andmemory‑dependent effects. To account
for the limited speed at which heat can spread and for effects that are not local, generalized
models of thermoelasticity add more constitutive equations. The dual‑phase‑lag theory,
the three‑phase‑lag theory, and the fractional‑order thermoelasticity theory are some of
the models that may be used to classify these phenomena. In particular, the DPL model
proposed by Tzou [28,29] provides a straightforward and user‑friendly macroscopic rep‑
resentation of heat transport at microscopic levels. This makes it possible for engineering
studies to provide acceptable precision. This is accomplished by introducing two thermal
delays. Therefore, according to this hypothesis, Fourier’s law is substituted with

F+ τq
∂F
∂t

= −K
(

1 + τθ
∂

∂t

)
∇θ. (8)

The two‑temperature theory, 2TT, was initially proposed in the late 1968s by Chen
and Gurtin [30], as well as by Chen et al. [31,32]. The conductive temperature (φ) and the
thermodynamic temperature (θ) are two different temperatures that both play a role in the
process of heat conduction in amaterial body, according to this theory. In their hypothesis,
they proposed that there is a connection between the two temperatures, which may be
expressed using the formula that follows:

φ − b∇2 φ = θ. (9)

The parameter b > 0 represents a temperature differential, also known as a tempera‑
ture disparity. If the condition b = 0 is satisfied, the two temperatures (2T) will be equal,
leading to a return to the previous scenario of thermoelasticity when only one temperature
is involved.

Since the 1970s, there has been a decline in interest in the 2TT; however, recent contri‑
butions have shown that this trend may be beginning to reverse itself. Quintanilla [33], for
example, has proposed a version of the 2TT that is based on substituting Equation (8) with

F+ τq
∂F
∂t

= −K
(

1 + τθ
∂

∂t

)
∇φ, (10)

where the only difference is that the conductive temperature φ is substituted for θ in Equa‑
tion (8).

Fractional‑order thermoelasticity expands upon the conventional theory byusing frac‑
tional derivatives to characterize heat conduction. Instead of assuming immediate and lo‑
calized conduction, fractional derivatives take into consideration non‑local and memory‑
dependent influences. This methodology enables a more precise representation of materi‑
als exhibiting atypical heat conduction characteristics and intricate microstructures. By in‑
cluding the Yang–Gao–Tenreiro Machado–Baleanu (YGTB) [19] and the Yang–Abdel–Aty–
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Cattani (YAC) [20] fractional derivatives into the modified Fourier’s law (10), it is possible
to construct new fractional thermoelastic models that take the following formula:(

1 + τα
q Dα

t

)
F = −K(1 + τα

θ Dα
t )∇φ. (11)

The notation Dα
t stands for one of the two fractional operators, YGTB and YAC. The

equation that describes the conservation of energy in materials that undergo heat transfer
can be written as follows:

ρCe
∂θ

∂t
+ T0γ

∂e
∂t

= −∇·F+ Q. (12)

It is possible to derive the modified version of the generalized two‑temperature heat
conduction theory with phase delays that incorporates fractional operators by combining
Equations (11) and (12) into the following formula:(

1 + τα
q Dα

t

)[
ρCE

∂θ

∂t
+ T0γ

∂e
∂t

− Q
]
= (1 + τα

θ Dα
t )(∇·(K ∇φ)). (13)

2.3. Additional Governing System Equations
To describe the relationship between thermal stress and strain in an isotropic and ho‑

mogeneous deformablematerial, additional basic control system equations of elasticity are
used, often referred to as linear thermoelastic equations. These equations can be expressed
as follows:

The constitutive equation, which is a mathematical expression that describes the lin‑
ear relationship that exists between stress, strain, and heat in a material, takes the follow‑
ing form:

S = µ
(
∇U+ (∇U)Tr

)
+ λ(∇·U)I− γθI (14)

The relationships between strain and displacement can be mathematically stated as
follows:

e =
(
∇U+ (∇U)Tr

)
/2. (15)

In solid mechanics, the relationship between applied forces, mass distribution, and
resulting motion of a deformable solid is characterized by the equation of motion. The
equation of motion can be expressed in general as follows:

(λ + µ)∇(∇·U) + µ∇2U+R− γ∇θ = ρ
∂2U
∂t2 . (16)

2.4. Electromagnetic Maxwell’s Equations
The electromagnetic equations developed by Maxwell are a collection of basic equa‑

tions that define the behavior of electric and magnetic fields, as well as the interactions
between these fields and charges and currents. These equations, which the Scottish scien‑
tist James Clerk Maxwell developed in the 19th century, serve as the cornerstone of classi‑
cal electromagnetism. The collection of equations that Maxwell developed often takes the
form of differential equations, and it consists of four fundamental equations. The formulas
for Maxwell’s equations are as follows [41,42]:

J = ∇× h,−µ0
∂h
∂t = ∇× E,E = −µ0

(
∂U
∂t × B

)
,

h = ∇× (U× B),∇·h = 0.
(17)

Electromagnetismmakes use of amathematical construct knownas theMaxwell stress
tensor, which is represented by the symbolM. This tensor is used to explain the forces that
are exerted on a material medium by electric and magnetic fields. As a result of electro‑
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magnetic fields, it is a representation of the stress or force that is exerted per unit area at a
particular place inside the medium. The definition of the Maxwell stress is as follows [43]:

M =
1

µ0

[
(∇·B)B+ (B·∇)B− 1

2
∇(B·B)

]
. (18)

One of the cornerstones of electromagnetism is the Lorentz force equation, which is
utilized to analyze the motion of charged particles encountered within electromagnetic
fields. It is fundamental for comprehending what happens when charged particles move
through electric and magnetic fields, how they act in particle accelerators, and how they
interact with electromagnetic waves. To determine the Lorentz force L, one can use the
following formula:

L = µ0(J× B). (19)

3. Applicable Problem Formulation
In the context of the proposed fractional thermoelasticitymodel, the problem of a long

isotropic solid cylinder with radius R will be considered. The presence of a homogeneous
axial magnetic field, denoted by

→
B = (0, 0, B0), which penetrates the cylindrical elastic

medium, is taken into account. An axial heat flux was applied to the periphery of the
solid cylinder. For the purpose of analysis and the nature of the problem, a cylindrical
coordinate system (r, ξ, z) was used (see Figure 1). The coordinate origin is fixed at the
center of the cylinder, and the z axis is aligned with the cylinder axis. Since the problem is
based on the assumption that the thermoelastic interactions are symmetric about the z axis,
the functions involved depend only on the radial coordinate r and the time variable t. A
consideration was given to the regularity requirement, which indicates that the solutions
of the fields are restricted when r tends to zero.
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pressed as

Ur = U(r, t), Uξ(r, t) = Uz(r, t) = 0, (20)

e =
∂U
∂r

+
U
r
=

1
r

∂(rU)

∂r
, (21)

Srr = 2µ
∂U
∂r

+
λ

r
∂(rU)

∂r
− γθ, (22)

Sξξ = 2µ
U
r
+

λ

r
∂(rU)

∂r
− γθ, (23)

Szz =
λ

r
∂(rU)

∂r
− γθ, (24)



Fractal Fract. 2024, 8, 182 9 of 24

∂Srr

∂r
+

1
r
(
Srr − Sξξ

)
+ Lr = ρ

∂2U
∂t2 . (25)

An inducedmagnetic field (
→
h ) is produced due to the interaction between thematerial

characteristics of the cylinder and the external magnetic field surrounding it. Since it is
assumed that the initial applied magnetic field

→
B is axial and acts parallel to the z axis, the

induced magnetic field
→
h takes the same direction. Hence, from Equation (17), the electric

current density
→
J and the induced electric field

→
E will each have a single component in

the direction of the ξ orientation. As a result, we have the following relationships:

→
h = −B0

(
0, 0,

1
r

∂(rU)

∂r

)
,
→
J = B0

(
0,

∂

∂r

(
1
r

∂(rU)

∂r

)
, 0
)

,
→
E = µ0B2

0

(
0,

∂U
∂t

, 0
)

. (26)

Substituting Equation (26) into Equations (18) and (19), the radial Lorentz force Lr and
the stress Maxwell Mrr components will have the following forms:

Lr = µ0

(→
J ×

→
B
)

r
= µ0B2

0
∂

∂r

(
1
r

∂(rU)

∂r

)
, Mrr = µ0B2

0

(
∂U
∂r

+
U
r

)
. (27)

Matters deformandbehavedifferently depending on their surface temperature, which
is also important for severalmechanical and thermal processes. The distribution of temper‑
atures within an object affects its thermal andmechanical characteristics, which are crucial
for thermoelastic material analysis and prediction.

This study assumes that the relationship between the change in temperature θ, the spe‑
cific heat capacity of thematerialCe, and the thermal conductivityK is a linear proportional
relationship. Based on the assumption of direct proportionality between the temperature
change θ, heat capacityCe, and thermal conductivityK, they either rise or fall linearlywhen
the temperature changes. Regardless of the fluctuation in density ρ and constant thermal
expansion, we will assume the following [44,45]:

K(θ) = k0(1 + K1θ),
Ce(θ) = Ce0(1 + K1θ).

(28)

In this case, the reference values for specific heat capacity and thermal conductivity
at a reference temperature are denoted by Ce0 and k0, respectively. The rate at which these
characteristics vary with temperature is determined by a constant called K1.

In general, the dependence of the coefficient of the specific heat capacity of the mate‑
rial Ce and thermal conductivity K on temperature is not always a linear function. It can
display a variety of behaviors depending on the material and the temperature range it is
exposed to. It is essential to keep in mind that the temperature dependence of K can vary
greatly from one material to another, and even within the same material, it might display
non‑linear, stepwise, or other complicated behaviors to a certain extent. It is for this rea‑
son that the assumption of a linear connection between K and temperature can result in
considerable inaccuracies in thermal prediction. Measurements taken in the laboratory or
models that are already well known for a particular material are often utilized in order
to precisely determine how the value of K varies with temperature and to incorporate its
non‑linear behavior into thermoelasticity models.

By utilizing Equations (9) and (28), it is possible to determine the thermal conductivity
and specific heat of materials as a function of the conductive temperature as follows:

K = k0
(
1 + K1

(
φ − b∇2 φ

))
= k0(1 + K1 φ)− k0K1b∇2 φ ≈ k0(1 + K1 φ),

Ce = Ce0
(
1 + K1

(
φ − b∇2 φ

))
= Ce0(1 + K1 φ)− k0K1b∇2 φ ≈ Ce0(1 + K1 φ).

(29)
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It is possible to apply the Kirchhoff transform, shown below, as a means of finding
solutions:

{Θ, Φ} =

{
1
k0

,
1
k0

} θ,φ∫
0

(1 + K1ζ)dζ. (30)

Upon applying the operator ∇ to both sides of Equation (30), we are able to derive
the following:

k0∇Φ = K∇φ, k0∇Θ = K∇θ. (31)

Again, by applying the div operator (∇·) to Equation (31), we can obtain the following:

k0∇2Φ = ∇·(K∇φ), k0∇2Θ = ∇·(K∇θ). (32)

On the basis of the differentiation of Equation (30) with regard to time t, we can derive

K0
∂Θ
∂t

= K
∂θ

∂t
. (33)

As a result of inserting Equations (31) and (32) into Equation (13), the modified linear
thermal conductivity equationwith fractional order and two temperatures can be obtained
as follows:

∇2Φ + τα
θ Dα

t

(
∇2Φ

)
=

1
k

(
1 + τα

q Dα
t

)∂Θ
∂t

+
γT0

K

(
1 + τα

q Dα
t

)∂e
∂t

. (34)

The parameter k = K(φ)
ρCe(φ)

= k0
ρCe0

signifies the diffusivity of the material. Material
composition, microstructure, and temperature variation are a few examples of the phys‑
ical parameters that affect the thermal diffusion coefficient k. Due to the requirement of
Equation (28), we will assume that the thermal diffusion coefficient k is constant for the
purposes of this study.

On the basis of the assumption of linearity and the substitution of Equations (31) and
(32) into Equation (27), as well as the execution of a number of mathematical operations,
we are able to approximate Equation (9) to obtain the following formula:

Θ =
(

1 − b∇2
)

Φ. (35)

After applying Equations (22) and (23), the equation of motion (25) may be expressed
as follows: (

λ + 2µ

ρ
+

µ0H2
0

ρ

)
∂e
∂r

− ∂2U
∂t2 =

γ

ρ

∂θ

∂r
. (36)

By incorporating Equation (31) into Equation (36), we can obtain the following:

(
c2

0 + a2
0

)∂e
∂r

− ∂2U
∂t2 =

γ

ρ(1 + K1θ)

∂Θ
∂r

(37)

where c2
1 = λ+2µ

ρ and a2
0 =

µ0 H2
0

ρ .
After neglecting the non‑linear elements in the preceding equation and making the

assumption that |θ/T0| ≪ 1, we are able to obtain the final result:

(
c2

1 + a2
0

)∂e
∂r

− ∂2U
∂t2 =

γ

ρ

∂Θ
∂r

. (38)

By introducing non‑dimensional field variables, we can simplify the governing equa‑
tions into non‑dimensional forms. To do this, the original variables are divided by their
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corresponding reference values. The following non‑dimensional variables can be defined
as follows:

{r′, U′} = c1
k {r, U},

{
t′, τ′

q, τ′
θ

}
=

c2
1
k
{

t, τq, τθ

}
, K′

1 = T0K1, b′ = c2
1

k2 b,{
θ′, φ′, Θ′, Φ′} = γ

ρc2
1
{θ, φ, Θ, Φ},

{
S′

ij, M′
ij

}
= 1

ρc2
1

{
Sij,Mrr

}
.

(39)

By inserting these definitions into the governing equations and correctly measuring
the other quantities involved, we may derive the non‑dimensional versions of the equa‑
tions as follows: (

1 + τα
q Dα

t

)(∂Θ
∂t

+ ε
∂e
∂t

)
(1 + τα

θ Dα
t )∇2Φ, (40)

∂e
∂r

− a2
∂2e
∂t2 = a1

∂Θ
∂r

, (41)

Θ =
(

1 − b∇2
)

Φ, (42)

Srr =
(

1 − 2β2
)U

r
+

∂U
∂r

− θ, (43)

Sξξ =
U
r
+
(

1 − 2β2
)∂U

∂r
− θ, (44)

Szz =
(

1 − 2β2
)1

r
∂(rU)

∂r
− θ, (45)

where

β2 =
c2

2
c2

1
, c2

2 =
µ

ρ
, ε =

T0γ2

ρ2c2
1Ce0

, a1 =
γT0

ρ
(
c2

1 + a2
0
) , a2 =

ρc2
1

c2
1 + a2

0
. (46)

In order to solve the aforementioned system of differential equations, it is possible to
incorporate a new function Ψ(r, t) related to the radial displacement component U(r, t),
commonly referred to as the potential function, in the following manner:

U(r, t) =
∂Ψ(r, t)

∂r
. (47)

Upon substituting the suggested functionΨ into Equations (40) and (42), the following
results are obtained: (

1 + τα
q Dα

t

)(∂Θ
∂t

+ ε∇2Ψ
)
= (1 + τα

θ Dα
t )∇2Φ, (48)

(
∇2 − a2

∂2

∂t2

)
Ψ= a1θ. (49)

The initial conditions are imposed as follows at time t = 0:

U(r, t) = 0 = ∂U(r,t)
∂r , θ(r, t) = 0 = ∂θ(r,t)

∂r ,
Θ(r, t) = 0 = ∂Θ(r,0)

∂r , Φ(r, t) = 0 = ∂Φ(r,t)
∂r .

(50)

Additionally, we will take into account that for regularity requirements, the studied
variables Sij, Mrr, U, θ, Θ, φ, and Φ are constrained when r → 0 . This condition of reg‑
ularity means that the different fields are finite when the radial distance approaches zero
and do not show singularity or divergence.

A common occurrence in many manufacturing processes is the moving heat flow, a
type of heat source utilized or created in machining. Thus, there are a variety of techni‑
cal techniques that may be used to solve heat conduction issues with a moving heat flow,
including metal cutting, welding, flame or laser hardening of metals, discharging a bullet
in a rifle barrel, and more [46]. Furthermore, the relative sliding of two bodies with heat



Fractal Fract. 2024, 8, 182 12 of 24

created at the contact zone is a common feature of tribological applications and industrial
processes. Moving heat flow analyzers have made it possible to characterize the tempera‑
tures produced during these operations in great detail [47].

It will be assumed that the surrounding plane of the cylinder, r = a, undergoes a
moving heat flux denoted by F. According to the following, the fractional‑order‑modified
Fourier law (11) will be taken into account, and we thus have the following:

(1 + τα
θ Dα

t )

(
K(φ)

∂φ

∂r

)
= −

(
F + τα

q Dα
t F
)

, at r = a. (51)

Using Equation (31) thereafter, we obtain(
1 + τθ D(α)

t

)(
k0

∂Φ
∂r

)
= −

(
F + τqD(α)

t F
)

,when t > 0, r = a. (52)

By taking into consideration the fact that the heat flow F flows at a constant speed ϑ
in the direction of the radial axis of the cylinder and decays exponentially with time, the
following formula will be taken into consideration:

F = Q0e−ωtδ(r − υt). (53)

Given that the coefficients ω and Q0 are considered to be constants, the Dirac delta is
denoted by the symbol δ(·). Through the utilization of the Dirac delta function δ(r − υt), it
is guaranteed that the heat flux is concentrated in a particular region r = υt. We obtain the
following result when wemake use of the dimensionless variables (39) and then substitute
them into (53):(

1 + τθ D(α)
t

)∂Φ(r, t)
∂r

= −q1

(
1 + τqD(α)

t

)
e−ωtδ(r − ϑt), q1 =

q0ρk0c1

γ
. (54)

In addition to the above, we will assume that mechanical constraints ensure the re‑
striction of surface displacement and can be expressedmathematically by the following for‑
mula:

U(r, t) = 0 at r = a. (55)

The condition sets a restriction on the mechanical response of the cylinder, ensuring
that there is no displacement or distortion at the outside border. The situation can be
understood as the outer surface of the cylinder being clamped or fixed, thus preventing
any displacement or movement. The term usually used to describe this condition is the
Dirichlet displacement boundary condition.

4. The Solution to the Problem
Due to its ability to streamline the mathematical formulation of differential equations

and expedite frequency‑domain solutionmethods, the Laplace transform is a valuable tool
for differential equation analysis and solving. Differentiation, integration, and convolution
may all be carried out more readily by turning the differential equations into algebraic
equations in the Laplace domain. The function g(r, t) is transformed using the Laplace
transform, resulting in the function g(r, s). The variable s is a complex number with a
positive real portion (s > 0). The Laplace transform is computed by utilizing the follow‑
ing integral:

g(r, s) =
∞∫

0

g(r, t)e−stdt, s > 0. (56)
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If we consider the initial conditions (50), then applying Laplace to the fundamental
equations yields the following equations:(

∇2 − α1

)
Φ = α2∇2Ψ, (57)(

∇2 − a2s2
)

Ψ = a1Θ, (58)

Θ =
(

1 − b∇2
)

Φ, (59)

Srr = 2β2 ∂U
∂r

+
(

1 − 2β2
)

e − θ, (60)

Sξξ = 2β2 U
r
+
(

1 − 2β2
)

e − θ, (61)

Szz =
(

1 − 2β2
)

e − θ, (62)

where

α1 =
α0

1 + α0b
, α2 =

α0ε

1 + α0b
, α0 =

s
(

1 + τα
q Ω(α)

)
(
1 + τα

θ Ω(α)
) , (63)

with

Ω(α) =


1

sα+1
s

1+ξs−α−1 for YAC fractional operator,
P(α)s2

π tan−1
(

πα
s(1−α)

)
for YGTB fractional operator.

(64)

When the function Θ is eliminated from Equations (57)–(59), we obtain(
∇4 − δ1∇2 + δ2

)
Φ = 0,(

∇4 − δ1∇2 + δ2
)
Ψ = 0,

(65)

where

δ1 =
α1 + s2a2 + α2a1

1 + α2a1b
, δ2 =

α1s2a2

1 + α2a1b
. (66)

When we introduce the parameters µi, where i = 1, 2, into Equation (65), we obtain
the following formulas: (

∇2 − µ2
1
)(
∇2 − µ2

2
)
Φ = 0,(

∇2 − µ2
1
)(
∇2 − µ2

2
)
Ψ = 0.

(67)

The coefficients µ2
1 and µ2

2 represent two solutions of the equation:

µ4 − δ1µ2 + δ2 = 0. (68)

The solutions for µ2
1 and µ2

2 can be derived by solving Equation (68) as follows:

µ2
1 =

δ1 +
√

δ2
1 − 4δ2

2
, µ2

2 =
δ1 −

√
δ2

1 − 4δ2

2
. (69)

The general answer to Equation (67) under the regularity condition can be expressed
as follows:

Φ = α2 A1µ2
1 I0(µ1r) + α2 A2µ2

2 I0(µ2r), (70)

Ψ =
(

µ2
1 − α1

)
A

1
I0(µ1r) +

(
µ2

2 − α1

)
A

2
I0(µ2r), (71)
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where Ai, (i = 1, 2, 3), represents the integral parameters and I0(·) represents the first
class of modified Bessel functions with zero order. The following may be deduced from
Equations (47) and (71):

U = A1µ1

(
µ2

1 − α1

)
I1(µ1r) + η2

(
µ2

2 − α1

)
A

2
I1(µ2r). (72)

The differentiation of Equation (72) yields the following result:

∂U
∂r = A1µ2

1
(
µ2

1 − α1
)[

I0(µ1r)− 1
rη1

I1(µ1r)
]

+A2µ2
2
(
µ2

2 − α1
)[

I0(µ2r)− 1
rη2

I1(µ2r)
]
.

(73)

When entering Equation (70) into Equation (59), the function Θ is obtained as follows:

Θ = α2µ2
1

(
1 − bµ2

1

)
A

i
I0(µ1r) + α2µ2

2

(
1 − bµ2

2

)
A

i
I0(µ2r). (74)

If Equation (28) is substituted into Equation (30) and then integration is performed,
the following conclusion may be obtained in the field of the Laplace transform:

Θ = θ +
1
2

K1θ
2
, Φ = φ +

1
2

K1 φ2. (75)

The solutions to the aforementioned equations allow us to determine φ and θ as

φ(r, s) =
1

K1

(
−1 +

√
1 + 2K1Φ

)
, (76)

θ(r, s) =
1

K1

(
−1 +

√
1 + 2K1Θ

)
. (77)

Consequently, the following expressions may be used to determine the thermal stresses:

Srr = A1µ2
1
(
µ2

1 − α1
)[

I0(µ1r)− 2β2

rµ1
I1(µ1r)

]
− −1+

√
1+2K1Θ

K1

+A2µ2
2
(
µ2

2 − α1
)[

I0(µ2r)− 2β2

rµ2
I1(µ2r)

]
,

(78)

Sξξ = A1µ2
1
(
µ2

1 − α1
)[(

1 − 2β2)I0(µ1r) + 2β2

rµ1
I1(µ1r)

]
− −1+

√
1+2K1Θ

K1

+A2µ2
2
(
µ2

2 − α1
)[(

1 − 2β2)I0(µ2r) + 2β2

rµ2
I1(µ2r)

]
,

(79)

Szz = A1µ2
1
(
µ2

1 − α1
)(

1 − 2β2)I0(µ1r)− −1+
√

1+2K1Θ
K1

+A2µ2
2
(
µ2

2 − α1
)(

1 − 2β2)I0(µ2r).
(80)

Moreover, Maxwell’s stress Mrr has a solution that is provided by

Mrr =
a2

0
(
1 − 2β2)
α2c2

0

(
A1µ2

1

(
µ2

1 − α1

)
I0(µ1r) + A2µ2

2

(
µ2

2 − α1

)
I0(µ2r)

)
. (81)

In the transformed domain, the boundary conditions (54) and (55) are expressed as
follows:

∂Φ(r, s)
∂r

= − q1α0Q0
υ

e−Λr, Λ =
ω + s

υ
, r = a, (82)

U(r, s) = 0, r = a. (83)
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Using Equations (70) and (72), and the boundary conditions (82) and (83), we are able
to achieve the following:

η1 A1 I1(µ1a) + η2 A2 I1(µ2a) +
α0q1Q0

υ
e−Λa = 0, (84)

η2

(
η2

1 − α1

)
A

1
I1(µ1a) + µ1

(
µ2

2 − α1

)
A

2
I1(µ2a) = 0. (85)

In order to obtain the parameters Ai, (i = 1, 2), it is necessary to solve the system of
Equations (84) and (85). As a result, the issue has been resolved successfully inside the
Laplace transform field.

5. Numerical Laplace Inversions
In order to obtain the displacement, stress, and temperature fields in the time domain,

it is necessary to perform inverse Laplace transforms on the corresponding solutions ob‑
tained in the Laplace domain. This is particularly important for studying the problem and
analyzing dynamic responses, transient phenomena, and position‑ and time‑dependent
processes. One reliable and accurate way to perform this transformation is the numerical
inversion method, which is founded on the Fourier series. By using a finite sum of ex‑
ponential functions, which can be efficiently computed with the help of the Fast Fourier
Transform (FFT), this method involves estimating the inverse Laplace transform based on
the exponential functions [48]. The accuracy of the approximation can be modified by ad‑
justing the number of terms included in the sumaswell as the time scale used in the Fourier
series. When working with complex functions and systems that may not have a closed so‑
lution in the time domain, this technique is very useful because of its versatility [49].

Any field H(r, s) in the Laplace space domain can be converted to the time and space
domain by utilizing the approach that is described below [50,51]:

H(r, t) =
eξt

τ1

(
H(ξ)

2
+ Re∑N0

k=1 eikπt/τ1 H(ξ + ikπ/τ1)

)
, 0 ≤ t ≤ 2τ1 (86)

The level of precision that is required for the inversion is a factor that should be con‑
sidered when choosing the number of terms called N0. The parameter τ1 is a constant that
is positive and serves the purpose of determining the temporal range that the Fourier se‑
ries has. The parameter N0 is the minimum number of words that need to be chosen to
fulfill the given formula:

eξtRe
(

eiN0πt/τ1 H(ξ + iN0π/τ1)
)
≤ ϵ (87)

The coefficient ξ is an independent positive factor that must be greater than or equal
to the real parts of all H(r, s) singularities. The parameter is configured to meet the specifi‑
cations outlined in [51]. Numerical code was generated using the Mathematica computer
programming language.

It is important to point out that in addition to the Bromwich integral approach, the
Stehfest algorithm, and the Durbin method, when it comes to inverse Laplace transforms,
other numerical methods can be utilized. While the choice of method is determined by the
particular situation at hand and the level of precision that is sought, eachmethod possesses
its own set of advantages and disadvantages. The Fast Fourier Transform (FFT) algorithm
is a numerical technique that is frequently utilized and capable of efficiently computing
the Fourier transform as well as its inverse. When compared to methods that involve di‑
rect summation, it significantly reduces the computational cost, which makes it feasible to
perform numerical calculations of the inverse Laplace transform.
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6. Results and Discussion
This section analyzes the behavior of an endlessly elastic copper cylinder submerged

in a magnetic field and subjected to a moving heat source, focusing on the numerical find‑
ings and discussion. The objective of this study is to validate the novel thermoelasticity
model for the heat transfer equation, which relies on fractional operators of fractional
order.

Copper is a highly adaptable metal with a diverse set of mechanical characteristics
that render it appropriate for a multitude of uses. Copper is a malleable metal, allowing it
to be readily molded and fashioned into many shapes and dimensions. Due to this charac‑
teristic, it is often favored for the production of wires, tubes, and sheets. Copper possesses
exceptional thermal conductivity, making it a very suitable substance for deployment in
heat exchangers, condensers, and several other heat transfer applications. For the purposes
of numerical calculations and comparisons, the physical properties of copper that can be
used are as follows [41]:

{λ, µ} = {7.76, 3.86} × 1010
(

N
m2

)
, H0 = 107

(
Am−1

)
,

k0 = 401
(

W
mK

)
, Ce = 386

(
Jkg
K

)
, T0 = 298 K, ρ = 8960

(
kg
m3

)
,

αt = 0.5 × 10−6
(

1
K

)
µ0 = 126 × 10−8

(
Hm−1

)
.

Some physical field variables were found numerically, including Maxwell stress Mrr,
radial and hoop thermal stresses (Srr and Sξξ), deformationU, dynamic temperature θ, and
conductive temperature φ. These variables were found by using mathematics on copper
material. Calculations were performed while varying the distance r within the range from
0 to 1, with a fixed time t = 0.12. In addition, the size of the heat source Q0 was set to
1, and the frequency ω remained constant (ω = 1). The numerical algorithm represented
in Equation (86) was used to obtain the values of field variables under the influence of a
number of different factors.

The main goal of this section is to assess the efficacy of modified fractional opera‑
tors, classic fractional operators, and conventional derivatives in representing a physical
phenomenon. The modified fractional operators under consideration are the Yang–Gao–
Tenreiro Machado–Baleanu (YGTB) operator [19] and the Yang–Abdel–Aty–Cattani (YAC)
operator [20]. Additionally, the conventional fractional operator being evaluated is the
Riemann–Liouville (RL) operator. A comparison of results was performed to ascertain
the advantages and disadvantages associated with each operator. The results of the pro‑
posedmodel will be consistent with the non‑fractional two‑temperature thermoelastic the‑
ory with phase delay and (2T‑DPL) when the fractional order α = 1.

A comparison of the fractional operators and the conventional derivative is being con‑
ductedwith the intention of determiningwhether the fractional derivative is most likely to
converge to the classical derivative as the order of differentiation becomes closer to 1. The
proposed model allows us to observe the natural behavior of various physical domains by
adjusting the fractional order α to appropriate values. The main difference between the
bounded non‑local fractional operators (YGTB and YAC) and the usual fractional model
(RL) is evident when the numerical results with different fractional parameter values are
considered. Figures 2–7 offer a quantitative depiction that highlights the disparities be‑
tween fractional and conventional thermoelastic models, facilitating comprehension and
comparison of their behavior. In this scenario, the values υ = 5, τq = 0.2, τθ = 0.1,
K1 = −0.5, and b = 0.05 are considered.

It is worth noting that based on the results and curves of different shapes, it is clear
that the results obtained with the fractional derivative operator included in the thermal
equation differ significantly from those obtained without it in terms of temperature, dis‑
placement, and thermal stress distributions. Thus, fractional differential operators can
greatly influence the pattern and distribution of thermophysical fields in elastic materi‑
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als. Fractional‑order values and the type of fractional operator can affect the stability and
steady state of thermal and mechanical waves. The reason for this is as follows:

• Fractional differential operators create non‑local and memory‑dependent effects, re‑
sulting in different behaviors from traditional integer‑order differential operators.

• Utilizing fractional derivative operators enables the representation of non‑singular
diffusion, non‑local transport processes, and memory effects in diverse physical sys‑
tems, such as thermal and mechanical waves in elastic materials.
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Increasing the fractional order can decrease the speed at which heat waves propagate
inside the medium by affecting heat flow, as demonstrated by several figures and consis‑
tent with experimental findings. The waves decay faster as they move deeper into the
elastic body when the fractional‑order value is decreased. The fractional order can influ‑
ence the speed of wave propagation and the decay rate. This phenomenon has numerous
significant applications in various domains such as thermoelasticity, viscoelasticity, and
control theory. Furthermore, the fractional heat transfer wave models are capable of accu‑
rately predicting the finite velocities of heat propagation owing to the hyperbolic nature
of their mathematical form.
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It is evident from Figures 2 and 3 that the type of differential operator (Dα
t ) and the

values of the fractional order (α) have a significant impact on the thermodynamic and con‑
ductivity temperatures (θ and φ). It is also clear that the surface of the cylinder (r = 1)
experiences the largest values of the two temperatures, which then gradually decrease as
they penetrate the body. The reason for this phenomenon is the constraint imposed by
the fractal order (α) and delay phase times (τq and τθ) on the finite speed of heat wave
propagation. On the contrary, the heat transfer equations in the case of conventional mod‑
els that do not use fractional differentiation may provide an impractical result for infinite
speeds of heat wave propagation. Researchers often ignore this. However, this may lead
to inaccurate or impractical predictions of thermal performance in actual systems.

The figures clearly indicate that the temperature values produced using the RL opera‑
tor are greater than those obtained using the fractional YGTB and YAC operators. The use
of fractional differential operators (YGTB and YAC) in heat transfer models can address
this limitation by providing a finite rate of heat wave propagation, which is dictated by
the fractional order α. Ultimately, this could lead to enhanced accuracy and authenticity
when predicting thermodynamics in complex systems, such as those in biological tissues
and other materials that exhibit memory properties, such as viscous materials [52].

As a result of their ability to circumvent the singularity issues that are typically as‑
sociated with conventional fractional derivative definitions, non‑singular kernels are an
essential component in the study of fractional calculus. Two examples of non‑singular ker‑
nels that have been utilized in the study of fractional differential equations are the sinc
function and the Rabotnov fractional–exponential function [53].

As shown in Figures 2–4, the existence of a heat source inhibits the zeroing of all
fields under consideration, except for displacement, as distance increases. When a heat
source is absent, all physical fields within a bounded region of space have non‑zero values.
However, beyond this region, the fields vanish indistinguishably, illustrating the finite
speed of the propagation phenomenon.

Figure 4 illustrates the impact of the fractional differential parameter α on the distri‑
bution of displacement U. As the distance between the two locations within the cylinder
grows, the numerical values ofU progressively drop until they hit zero. The figure demon‑
strates that increasing the values of α results in a corresponding rise in the displacement
values. This correlation may be attributed to the periodic variations in the heat source
throughout time. The displacement values U on the cylinder surface are always recorded
as zero where the boundary condition is met, which confirms the reliability and accuracy
of the numerical results and the computational technique used. Figure 2 demonstrates that
the fractional YAC thermoelastic model yields the smallest absolute displacement values,
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whereas the standard fractional RL thermoelastic model yields the largest absolute dis‑
placement values. These findings indicate that the fractional YAC thermoelastic model is
better suited for accurately representing the system’s behavior since it yields more realistic
and meaningful outcomes. Nevertheless, further examination and juxtaposition with em‑
pirical data are imperative to validate the superiority of the fractional YAC thermoelastic
model in relation to other fractional models.

The numerical values in Figures 5 and 6 show that the fractional differentiation pa‑
rameter α and different fractional operators (RL, YGTB, and YAC) have a significant in‑
fluence on how the radial stress Srr and hoop stress Sξξ propagate. The numerical values
in the figures show how differences in the values of the fractional‑order parameters affect
the magnitudes of the thermal stresses (Srr and Sξξ). Depending on the type of fractional
torch, pressures are likely to decrease in volume or grow in volume. The numerical results
also show that large pressure values occur near the cylinder surface in the turbulent region.
These pressures rapidly increase in magnitude away from the surface of the cylinder and
then gradually decrease again until they completely disappear inside the elastic body.

It is also observed that thermal stresses always behave in a compressive manner near
the cylinder surface in the turbulence region. In addition, it can be concluded that if frac‑
tional differentiation is included in the thermal conduction equation, the propagation of
mechanical waves is reduced, consistent with physical evidence. This may be because frac‑
tional differentiation allows for the introduction of memory and genetic influences, both
of which have an impact on the geographical and temporal distribution of thermal stresses.
As values of the order of the fractional differential α decrease, mechanical waves travel at
a slower rate and may have a shorter wavelength as a result, leading to a decrease in the
propagation of mechanical waves.

The effect of the parameter and fractional operators α on the fluctuation in Maxwell
stress Mrr is shown in Figure 7 with the change in position inside the cylinder. The fig‑
ure shows that the tension decreases rapidly as the distance between them increases and
shows that the action of the magnetic field is immediate and limited. Furthermore, the
figure provides evidence that the fractional parameter α affects the Maxwell stress in a
relatively small way. In addition, comparing the appearance and absence of fractional op‑
erators reveals the numerical values of Maxwell stresses that grow and decrease, as well
as the behavior of these values. This study shows that fractional factors (α) have a signifi‑
cant impact on how the Maxwell stress is distributed, especially near the cylinder surface,
where the variable heat source flows.

Since they can more precisely measure fractional exchanges such as thermoelasticity,
fluidity, etc., new fractional derivatives can be very useful for studying the large‑scale be‑
havior of many different types of elastic materials, both simple and non‑simple. This work
also makes a significant contribution to the study of the finite‑time propagation of ther‑
mal waves because it has implications for modern aerodynamic engineering, which uses
thermoplastic cylinders. Fractional derivations are a unique technique that can help bet‑
ter understand the behavior of heat waves in real‑world applications. The modified heat
conduction equation in the suggested model can accomplish this by incorporating phase
delays [54,55]. In the field of aerospace engineering, this can have major implications for
the design and optimization of thermo‑ and viscoelastic cylinders, as well as other ma‑
terials. In general, the results of this research work can provide a great addition to the
topic of fractional calculus and applications of this type in the fields of engineering design
and physics.

When studying fractional calculus, non‑singular kernels are very important because
they help avoid the problems that arise with singularities that happen with standard defi‑
nitions of fractional derivatives. Various diverse non‑singular kernels have been employed
to investigate fractional thermophysical models. Two instances include the sinc function
and the Rabotnov fractional–exponential function. We think that the YGTB‑ and YAC‑
modified fractional operators could be a good alternative to regular fractional operators
and derivatives when it comes to modeling complex physical problems. This is because
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they are able to simulate the behavior of the problem. These fractional operators are in‑
triguing as they are defined using the normalized sinc function and the Rabotnov expo‑
nential function, both of which do not have a singular kernel [56]. On the other hand, fur‑
ther study is required in order to gain a comprehensive understanding of the benefits and
drawbacks associated with these operators and to ascertain the most appropriate strategy
for certain applications.

7. Conclusions
In this work, a mathematical model is presented for the thermal conductivity of ho‑

mogeneous solids with specific heat and conductivity dependent on temperature change.
The fractional differential operators (Riemann–Liouville, the non‑singular kernel of the
sine function, and the fractional exponential Rabotnov function) are all taken into account
in this model. The dual‑phase lag and two‑temperature concepts are also considered. The
use of both the non‑singular sinc function and the fractional exponential Rabotnov func‑
tion represents a new approach in the field of thermal theory. The model incorporates the
dual‑phase delay and the idea of two temperatures, enabling it to accurately represent the
phase lag between thermal and mechanical reactions. The governing equations for the is‑
sue are resolved with the Laplace transform methodology. The numerical results of this
study show that in addition to thermal conductivity and temperature‑dependent specific
heat, changes depending on the type of fractional factor and the order of fractional differen‑
tiation have a significant impact on the field variables analyzed. Below are some important
notes regarding the current study:
• A large amount of impact can be exerted by fractional derivative operators on the pat‑

tern and distribution of thermophysical fields in elastic materials. Also, a significant
influence on the stability and steady‑state behavior of thermal and mechanical waves
can be exerted by the selection of fractional‑order values and the type of fractional
operator.

• Accurately characterizing and forecasting the behavior of thermophysical fields in
materials with memory‑dependent responses requires a thorough understanding of
the stability and steady‑state effects as well as the modeling of those effects.

• The fractional‑order parameter is a novel metric used to assess a flexible material’s
capacity to transfer and conduct heat, as well as other physical properties like ther‑
mal conductivity.

• By introducing non‑local fractional derivatives and non‑anomalous kernels, the ther‑
mal characteristics of a material can display non‑local and memory‑dependent im‑
pacts, leading to a more precise depiction of its features.

• The fractional derivative is able to depict heat transfer events in a manner that is con‑
sistent with experimental evidence, in contrast to the standard Fourier law of heat
conduction.

• The fractional derivative operators like theYang–Gao–TenreiroMachado–Baleanu and
Yang–Abdel–Aty–Cattani operators have proven to be effective in dealing with phys‑
ical models such as thermoelasticity and viscoelasticity. Fractional derivative oper‑
ators possess distinct mathematical characteristics and can represent many forms of
memory‑related behavior.

• This paper demonstrates how fractional calculus and operators may effectively tackle
complex physical problems, thus paving the way for further research in this area. Fur‑
ther study and analysis of the properties and applications of fractional derivatives and
operators could lead to new insights and advancements in several scientific and tech‑
nical disciplines.
In the future, fractional derivatives like Riemann–Liouville (RL), Yang–Gao–Tenreiro

Machado–Baleanu, and Yang–Abdel–Aty–Cattani can be further utilized to tackle emerg‑
ing physical challenges. This expansion could improve our understanding and the accu‑
racy of simulating complex physical phenomena. Choosing the right fractional derivatives
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and orders is crucial for developing new models and expanding old ones in various fields
such as mathematics, physics, biology, and medicine.
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Nomenclature

T0 Environmental temperature Tr Transpose
γ = (3λ + 2µ)αt Coupling coefficient λ, µ Lame’s elastic coefficients
U Displacement vector Q Heat source
S Stress tensor F Heat flux
α Fractional order τq Phase lag of heat flow

e Strain tensor τθ
Phase lag of the temperature
gradient

θ = T − T0 Temperature change φ Conductive temperature
ρ Density of the material h Induced magnetic field
T Absolute temperature E Induced electric field
K Thermal conductivity J Current density
Ce Specific heat B Magnetic field

αt
Thermal expansion
parameter µ0 Magnetic permeability

I Identity tensor R External body force

Γ(·) Gamma function RFEF Rabotnov fractional–exponential
function

YAC Yang–Abdel–Aty–Cattani YGTB Yang–Gao–Tenreiro
Machado–Baleanu

DPL Dual‑phase lag RL Riemann–Liouville
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