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Abstract: This paper is devoted to the research of the isomorphic multidimensional cyclic structure
and multidimensional phase structure of the cyclic random process (CRP) and to its formation
method, which enables a rigorous formalization of intuitive ideas concerning cyclic stochastic motion.
The fundamental properties of the cyclic random process and analytical dependencies between the
multidimensional cyclic structure, multidimensional phase structure and rhythm structure of the
CRP have been established. This work shows that the CRP is able to take into account the cyclicity
of multidimensional distribution functions of cyclic signals as well as the variability in the rhythm
of the investigated signals. A subclass of the CRP is the periodic random process, which allows for
the use of classical processing methods of cyclic signals with a regular rhythm. Based on a series
of experiments, significant advantages of the CRP as a mathematical model of electrocardiographic
signals (ECG) compared to the periodic random process are shown.

Keywords: cyclic random process; isomorphism; multidimensional cyclic structure; multidimensional
phase structure; irregular rhythm; fractal cyclic random process

1. Introduction

Humanity has been engaged in the study of cyclical phenomena and processes since
ancient times. The current stage of cyclic phenomena and signal research is characterized
by the intensive use of highly efficient automated information systems and technologies, in
particular, signal processing, data mining and machine learning. Both in ancient times and
in the modern period of research on cyclic phenomena with the help of information systems
and technologies, the central concept is the mathematical model of a cyclic phenomenon
(process or signal), since the mathematical model of cyclic signals significantly determines
the accuracy and reliability of the methods of their processing and determines the level of
informativity of the diagnostic features in such information systems.

Historically, the first mathematical models that were used to describe cyclic pro-
cesses were deterministic functions: harmonic, periodic, poly-periodic and almost-periodic
functions. Based on these deterministic functions, spectral analysis methods are used,
in particular, Fourier series and Fourier transforms [1,2]. Differential (ordinary and par-
tial derivative, linear and nonlinear) and difference equations have been actively used to
describe dynamic systems with cyclic patterns of functioning [3–6]. The deterministic func-
tions mentioned above are the solutions of such equations. The next important stage in the
creation of mathematical models of oscillating phenomena and signals is the application of
probability theory, the theory of random processes and mathematical statistics. During the
formation of the theory of random processes, cyclic phenomena and signals were studied
as stationary random processes [7–9], applying methods of signal processing in both the
time and spectral domains. However, such a stochastic model does not have the means to
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take into account the cyclical probabilistic characteristics of the signals, which led to the
development of non-stationary probabilistic models. The simplest non-stationary prob-
abilistic models of cyclic signals are additive, multiplicative and additive–multiplicative
models, which somehow combine a stationary random process and periodic deterministic
functions. Much more complex probabilistic models of cyclic signals are non-stationary
random processes, such as cyclostationary (periodic) and almost-cyclostationary (almost
periodic) random processes [10–21], periodic Markov random processes and chains [22–27],
stochastic difference and differential equations with periodic solutions [28–30], and linear
periodic random processes [31,32].

Cyclostationary and almost-cyclostationary random processes have received the great-
est amount of theoretical development and have had the most applications in solving
problems of probabilistic modeling and cyclic signal processing in mechanical, telecom-
munication, energy, astrophysical and biological systems [33–44]. Various generalizations
of cyclostationary and almost-cyclostationary random processes are made in the works
of [45,46]. Despite the significant progress in the use of these probabilistic mathematical
models of cyclic signals, these models are inadequate (or weakly adequate) for cyclic signals
whose rhythm is irregular (variable). More precisely, random processes with periodic prob-
abilistic characteristics do not have the formal means to display (consider) the variability
in the rhythm of the studied cyclic signals; these models are adequate and effective for
describing cyclic signals with a regular rhythm (or when the irregularity of the rhythm can
be ignored).

Another group of nonstationary models with non-periodic probabilistic characteris-
tics, namely, the poly-periodic cyclostationary stochastic process, almost-cyclostationary
stochastic process, generalized almost-cyclostationary process, spectrally correlated pro-
cess, oscillatory almost-cyclostationary process and oscillatory spectrally correlated process,
are generalizations of random processes with periodic probabilistic characteristics, which
are based on the possibility of representing these processes through superpositions (us-
ing analogues of the Fourier series or Fourier integrals) of complex exponents (complex
harmonic functions) with constant or time-varying amplitudes and phases; however, such
generalization strategies for periodic random processes (the class-forming properties of
these non-periodic random processes) are not oriented and do not ensure the preservation
of the cyclic structure that is typical for random processes with periodic probabilistic char-
acteristics. Thus, the probabilistic characteristics of these non-periodic random processes
are, in general, not cyclic (only the spectral components of the corresponding analogues
of the Fourier series or Fourier integrals have a cyclic structure), which indicates a certain
inadequacy (excessive generality) for modeling cyclic stochastic signals, for which the
cyclicity of the structure of probabilistic characteristics is an attributive property.

In the dissertation of [47], a new approach to mathematical modeling, computer sim-
ulation and the processing of cyclic signals was created. This approach has been widely
used for modeling cyclic signals of various natures [48–52]. As part of this approach,
a conditional cyclic random process was developed, which enabled a consistent mathe-
matical description of cyclic signals with double stochasticity, namely, with simultaneous
stochasticity of their cyclic and rhythmic structures [53]. The developed models, methods
and software tools for processing cyclic signals are organized in the form of a computer
ontology, which is built on the basis of an axiomatic deductive strategy for the systemati-
zation of knowledge in modern intellectualized information systems [54,55]. Somewhat
similar approaches to modeling cyclic signals with irregular cyclicity are carried out in the
works of [56–60].

The CRP has a cyclic structure of probabilistic characteristics and adequately describes
cyclic signals with both regular and irregular rhythms, which gives it a significant advan-
tage over other known probabilistic models of cyclic stochastic signals. However, there are
no research studies devoted to the method of formation such processes and procedures
for constructing multidimensional cyclic and phase structures. In contrast to the cyclic
random process in the strict sense, the construction procedure and fundamental properties
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of a cyclically correlated random process in a broad sense were presented in the work
of [61]. The purpose of this work is to construct isomorphic time-invariant structures of
a CRP in an explicit, meaningful, interpretable and mathematical form, to describe its
multidimensional cyclic and phase structures and to form the basis for a procedure for the
construction and definition of CRPs. Also, an important task of this work is to establish
fundamental properties and analytical dependencies between the multidimensional cyclic
structure, multidimensional phase structure and rhythmic structure of the CRP, which
will be the basis of the theory of mathematical modeling and rhythm-adaptive processing
methods (statistical estimation, sampling, spectral analysis and computer modeling) of
cyclic signals with both regular and irregular rhythms. Also, this work aims to identify the
advantages of the CRP in comparison with a classical periodic random process in the tasks
of the modeling and statistical processing of biomedical signals, in which the rhythm is
variable.

The paper is organized as follows: The Section 2 is devoted to the procedure of the
CRP construction. The Sections 3 and 4 are devoted to the multidimensional cyclic and
phase structures of the CRP. The Section 5 deals with representations of the CRP and its
distribution functions through their cyclic structures. The Section 6 is devoted to repre-
sentations of the CRP and its distribution functions through their phase structures. In the
Section 7, analytical dependencies are considered between cyclic and phase multidimen-
sional structures of the CRP. The Section 8 is devoted to the main subclasses of the CRP, in
particular, to fractal cyclic random processes. The Section 9 is devoted to statistical analyses
of the ECG results, which are based on the mathematical models of the ECG in the form of
the CRP and a periodic random process.

2. The Multidimensional Structures in the Procedure of CRP Construction

In order to build a mathematical construction based on a strict definition of the CRP, we
formalize intuitive (informal) fundamental concepts such as the multidimensional cycle and
phase structures of a cyclic process within the framework of the theory of random processes.
The first stage of the procedure for the CRP’s construction coincides with the first stage
of constructing a cyclically correlated random process, which is described in detail in the
work of [61]. Therefore, in order to ensure the integrity of the content of the article, here we
present only the main elements of this stage of construction. As shown in the work of [61], in
general, a cyclic signal is random process ξ(ω, t), ω ∈ Ω, t ∈ R ( ξ : R → L2(Ω, P) ) which
is given as a set of pairs (argument t, value ξ(ω, t)) ξ = {(t, ξ(ω, t)) : t ∈ R} with the
same probability space (Ω, F, P). A necessary prerequisite for building a one-dimensional
and multidimensional cyclic structure of a CRP is the ordered (ordered by m) countable
partition Dc

R = {Wcm , m ∈ Z} of domain R, then, for the elements of Dc
R, the following can

be determined [61]:⋃
m∈Z

Wcm = R, Wcm ̸= Ø, Wcm1

⋂
Wcm2

= Ø, m1 ̸= m2, m, m1, m2 ∈ Z, (1)

where Wcm =
[∼

t m,
∼
t m+1

)
, m ∈ Z

(
0 <

∼
t m+1 −

∼
t m < ∞

)
. Set Dc =

{∼
t m, m ∈ Z

}
is a

subset of R whose elements correspond to the moments at the beginning of the cycles of
a cyclic signal. In the work of [61], the elements Wcm of partition Dc

R are interpreted as
carriers of relational systems ⟨Wcm ,≤⟩ with the linear order ≤ and are ordered by the m
countable family RSc

R = {⟨Wcm ,≤⟩, m ∈ Z} of the subrelational systems of a relational
system ⟨R,≤⟩, between which there is an isomorphism with respect to the linear order ≤
(see Figure 1).

In work [61] it is shown that by bijection R ⇐⇒ ξ from partition Dc
R = {Wcm , m ∈ Z}

of domain R can be built countable family RSc
ξ = {⟨ξcm ,≤2⟩, m ∈ Z} of the isomorphic

with respect to binary relation of linear order ≤2 subrelational systems ⟨ξcm ,≤2⟩ of rela-
tional system ⟨ξ,≤2⟩. Linear order ≤2 here is generated in ξ = {(t, ξ(ω, t)): t ∈ R} by
linear order ≤ in R ( ⟨R,≤⟩ ⇐⇒ ⟨ξ,≤2⟩ ).
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Figure 1. Illustration of isomorphism between 𝑾௖೘భ  and 𝑾௖೘మ  with respect to linear order ≤. 
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and Wcm2

with respect to linear order ≤.

The countable family RSc
ξ = {⟨ξcm ,≤2⟩, m ∈ Z} represents the one-dimensional iso-

morphic structures of a random process ξ. To display the multidimensional (k-dimensional)
isomorphic structures of a random process ξ, let us consider the Cartesian degree
ξk = {((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))): t1, . . . , tk ∈ R} of the k-th order (k ≥ 2) of the ran-
dom process ξ and the bijection Rk ⇐⇒ ξk , which can always be constructed because
any k-dimensional vector (t1, . . . , tk) ∈ Rk corresponds to one and only one k-dimensional
vector ((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) ∈ ξk and vice versa. Furthermore, for the two dif-
ferent k-dimensional vectors (t1, . . . , tk) ∈ Rk and

(
t′1, . . . , t′k

)
∈ Rk, the corresponding

two k-dimensional vectors ((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) ∈ ξk and (
(
t′1, ξ

(
ω, t′1

))
, . . . ,(

t′n, ξ
(
ω, t′k

))
) ∈ ξk are also different, and vice versa. The Cartesian degree ξk can be

considered as a carrier of the relational system
〈

ξk,≤2k

〉
with a binary relation of the

linear order ≤2k. The ordinal type of ξk coincides with the ordinal type of the set Rk.
Namely, for any two k-dimensional vectors ((t1, ξ(ω, t1)), . . . , (tn, ξ(ω, tk))) ∈ ξk and((

t′1, ξ
(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
∈ ξk, the following relationships can be seen: ((t1, ξ(ω, t1)),

. . . ,(tk, ξ(ω, tk))) ≤2k
((

t′1, ξ
(
ω, t′1

))
, . . . ,

(
t′n, ξ

(
ω, t′k

)))
if t1 ≤ t′1 or (

(
t′1, ξ

(
ω, t′1

))
, . . . ,(

t′k, ξ
(
ω, t′k

))
) ≤2k ((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) if t′1 ≤ t1. In the case when t1 = t′1,

we will have the following order: ((t1, ξ(ω, t1)), . . . , (tn, ξ(ω, tk))) ≤2k (
(
t′1, ξ

(
ω, t′1

))
, . . . ,(

t′k, ξ
(
ω, t′k

))
) if t2 ≤ t′2 or

((
t′1, ξ

(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
≤2k ((t1, ξ(ω, t1)), . . . ,

(tk, ξ(ω, tk))) if t′2 ≤ t2. In general, in the case when ti = t′i (i = 2, k − 1), we will have
the following order: ((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) ≤2k

((
t′1, ξ

(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
if ti+1 ≤ t′i+1 or

((
t′1, ξ

(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
≤2k ((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) if

t′i+1 ≤ ti+1.

Let us form the countable partition Dc
Rk =

{
Wcm × Rk−1, m ∈ Z

}
of Rk based on the

countable partition Dc
R = {Wcm , m ∈ Z} of R. Due to ≤2k−1 in Rk, the elements Wcm ×Rk−1

of Dc
Rk are linearly ordered sets. Let us consider the elements Wcm × Rk−1 of Dc

Rk as carriers

of relational systems
〈

Wcm × Rk−1,≤2k−1

〉
with a binary relation of the linear order ≤2k−1.

The partition Dc
Rk generates the isomorphic (with respect to the linear order ≤2k−1) family

RSc
Rk =

{〈
Wcm × Rk−1,≤2k−1

〉
, m ∈ Z

}
of the subrelational systems of a relational system〈

Rk,≤2k−1

〉
(see Figure 2).

Due to the bijective mapping of Rk ⇐⇒ ξk , the partition Dc
Rk =

{
Wcm × Rk−1, m ∈ Z

}
of Rk generates an ordered countable partition Dc

ξk =
{

ξcm × ξk−1 ⊂ ξk, m ∈ Z
}

with

a Cartesian degree ξk of the k-th order, in which every ξcm × ξk−1 is the truncation of
the ξk to the set Wcm × Rk−1. That is, every ξcm × ξk−1 is the set of those ordered k-
dimensional vectors

{
((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))): (t1, . . . , tk) ∈ Wcm × Rk−1

}
of the

ξk. The argument t1 belongs to Wcm , and the arguments t2 . . . belong to tk ∈ R.
Since the Cartesian product ξk is the carrier of the relational system

〈
ξk,≤2k

〉
, then

with its partition Dc
ξk , it is always possible to connect the countable family

RSc
ξk =

{〈
ξcm × ξk−1,≤2k

〉
, m ∈ Z

}
of the subrelational systems of a system

〈
ξk,≤2k

〉
.

From the isomorphism between
{〈

Wcm × Rk−1,≤2k−1

〉
, m ∈ Z

}
with respect to the binary
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relation of the linear order ≤2k−1 due to the isomorphism
〈

Rk,≤2k−1

〉
⇐⇒

〈
ξk,≤2k

〉
, we

can determine the isomorphism between
{〈

ξcm × ξk−1,≤2k

〉
, m ∈ Z

}
with respect to the

binary relation of the linear order ≤2k.

Fractal Fract. 2024, 8, 203 5 of 35 
 

 

 
Figure 2. Illustration of isomorphism between 𝑾௖೘భ × 𝑹௞ିଵ and 𝑾௖೘మ × 𝑹௞ିଵ with respect to 
linear order ≤ଶ௞ିଵ (𝑘 = 2). 

Due to the bijective mapping of 𝑹௞ ⟺ 𝝃௞, the partition 𝑫𝑹ೖ௖ = ൛𝑾௖೘ × 𝑹௞ିଵ, 𝑚 ∈ 𝒁ൟ 
of 𝑹௞  generates an ordered countable partition 𝑫𝝃ೖ௖ = ൛𝝃௖೘ × 𝝃௞ିଵ ⊂ 𝝃௞, 𝑚 ∈ 𝒁ൟ  with a 
Cartesian degree 𝝃௞ of the 𝑘-th order, in which every 𝝃௖೘ × 𝝃௞ିଵ is the truncation of the 𝝃௞ to the set 𝑾௖೘ × 𝑹௞ିଵ. That is, every 𝝃௖೘ × 𝝃௞ିଵ is the set of those ordered 𝑘-dimen-
sional vectors ቄቀ൫𝑡ଵ, 𝜉(𝜔, 𝑡ଵ)൯, … , ൫𝑡௞, 𝜉(𝜔, 𝑡௞)൯ቁ: (𝑡ଵ, … , 𝑡௞) ∈ 𝑾௖೘ × 𝑹௞ିଵቅ  of the 𝝃௞ . The 
argument 𝑡ଵ belongs to 𝑾௖೘, and the arguments 𝑡ଶ … belong to 𝑡௞ ∈ 𝑹. 

Since the Cartesian product 𝝃௞ is the carrier of the relational system 〈𝝃௞, ≤ଶ௞〉, then 
with its partition 𝑫𝝃ೖ௖  , it is always possible to connect the countable family 𝑹𝑺𝝃ೖ௖ =൛〈𝝃௖೘ × 𝝃௞ିଵ, ≤ଶ௞〉, 𝑚 ∈ 𝒁ൟ of the subrelational systems of a system 〈𝝃௞, ≤ଶ௞〉. From the iso-
morphism between ൛〈𝑾௖೘ × 𝑹௞ିଵ, ≤ଶ௞ିଵ〉, 𝑚 ∈ 𝒁ൟ  with respect to the binary relation of 
the linear order ≤ଶ௞ିଵ  due to the isomorphism 〈𝑹௞, ≤ଶ௞ିଵ〉 ⟺ 〈𝝃௞, ≤ଶ௞〉,  we can deter-
mine the isomorphism between ൛〈𝝃௖೘ × 𝝃௞ିଵ, ≤ଶ௞〉, 𝑚 ∈ 𝒁ൟ with respect to the binary re-
lation of the linear order ≤ଶ௞.  

So, the following can be noted: 1) the isomorphism with respect to ≤ଶ௞ିଵ and ≤ଶ௞ 
between 〈𝑹௡, ≤ଶ௞ିଵ〉  and 〈𝝃௡, ≤ଶ௞〉 ; 2) the isomorphism with respect to ≤ଶ௞ିଵ  between 
the subrelational systems 𝑹𝑺𝑹ೖ௖ = ൛〈𝑾௖೘ × 𝑹௞ିଵ, ≤ଶ௞ିଵ〉, 𝑚 ∈ 𝒁ൟ  of the relational system 〈𝑹௞, ≤ଶ௞ିଵ〉 ; 3) the isomorphism with respect to ≤ଶ௞  between the elements of family 𝑹𝑺𝝃ೖ௖ = ൛〈𝝃௖೘ × 𝝃௞ିଵ, ≤ଶ௞〉, 𝑚 ∈ 𝒁ൟ  of the subrelational systems of the relational system 〈𝝃௞, ≤ଶ௞〉 ; 4) the isomorphism with respect to ≤ଶ௞ିଵ  and  ≤ଶ௞  between arbitrary pair 𝑾௖೘మ × 𝑹௞ିଵ and 𝝃௖೘భ × 𝝃௞ିଵ, 𝑚ଵ, 𝑚ଶ ∈ 𝒁, taken from 𝑫𝑹ೖ௖ = ൛𝑾௖೘ × 𝑹௞ିଵ, 𝑚 ∈ 𝒁ൟ of set 𝑹௞ and from the partition 𝑫𝝃ೖ௖ = ൛𝝃௖೘ × 𝝃௞ିଵ ⊂ 𝝃௞, 𝑚 ∈ 𝒁ൟ of the Cartesian product 𝝃௞. 

Since for the construction of a random process 𝝃, in the strict sense, a countable fam-
ily of its distribution functions is required, then in the mathematical model of the cyclic 
signals, it is necessary to take into account the sequence of its multidimensional cyclic 
structures. For this, we will introduce a variable 𝑘 ∈ 𝑵, the value of which will be inter-
preted as the dimension of the cyclic structure of the random process 𝝃. Let us consider a 
sequence of relational systems {〈𝝃௞, ≤ଶ௞〉, 𝑘 ∈ 𝑵}, the carriers of which are the elements 𝝃௞  of the sequence {𝝃௞, 𝑘 ∈ 𝑵}  of the Cartesian products 𝝃௞  of the random process 𝝃 , 
and the relations of these relational systems are elements ≤ଶ௞ of a sequence {≤ଶ௞, 𝑘 ∈ 𝑵} 
of the relations of a linear order on these carriers. The first relational system at 𝑘 = 1 is 
the relational system discussed above 〈𝝃, ≤ଶ〉 , and all subsequent relational systems at 𝑘 > 1 are relational systems, which will be used to model a sequence of multidimensional 
cyclic structures of a random process 𝝃. Let us integrate the sequence of relational systems 

Figure 2. Illustration of isomorphism between Wcm1
× Rk−1 and Wcm2

× Rk−1 with respect to linear
order ≤2k−1 ( k = 2).

So, the following can be noted: (1) the isomorphism with respect to ≤2k−1 and ≤2k
between ⟨Rn,≤2k−1⟩ and ⟨ξn,≤2k⟩; (2) the isomorphism with respect to ≤2k−1 between
the subrelational systems RSc

Rk =
{〈

Wcm × Rk−1,≤2k−1

〉
, m ∈ Z

}
of the relational system〈

Rk,≤2k−1

〉
; (3) the isomorphism with respect to ≤2k between the elements of family

RSc
ξk =

{〈
ξcm × ξk−1,≤2k

〉
, m ∈ Z

}
of the subrelational systems of the relational system〈

ξk,≤2k

〉
; (4) the isomorphism with respect to ≤2k−1 and ≤2k between arbitrary pair

Wcm2
× Rk−1 and ξcm1

× ξk−1, m1, m2 ∈ Z, taken from Dc
Rk =

{
Wcm × Rk−1, m ∈ Z

}
of set

Rk and from the partition Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
of the Cartesian product ξk.

Since for the construction of a random process ξ, in the strict sense, a countable family
of its distribution functions is required, then in the mathematical model of the cyclic signals,
it is necessary to take into account the sequence of its multidimensional cyclic structures.
For this, we will introduce a variable k ∈ N, the value of which will be interpreted as the
dimension of the cyclic structure of the random process ξ. Let us consider a sequence of rela-
tional systems

{〈
ξk,≤2k

〉
, k ∈ N

}
, the carriers of which are the elements ξk of the sequence{

ξk, k ∈ N
}

of the Cartesian products ξk of the random process ξ, and the relations of these
relational systems are elements ≤2k of a sequence {≤2k, k ∈ N} of the relations of a linear
order on these carriers. The first relational system at k = 1 is the relational system discussed
above ⟨ξ,≤2⟩, and all subsequent relational systems at k > 1 are relational systems, which
will be used to model a sequence of multidimensional cyclic structures of a random process
ξ. Let us integrate the sequence of relational systems

{〈
ξk,≤2k

〉
, k ∈ N

}
into one relational

system
〈

ξk, k ∈ N, {≤2k, k ∈ N}
〉
=

〈
ξ, ξ2, . . . , ξk, . . . , {≤2,≤4, . . . ,≤2n, . . .}

〉
.

In the next step for the construction of an adequate mathematical model of the cyclic
signals as random processes, it is necessary to take into account the similarities of mul-
tidimensional cyclic structures of a cyclic signal not only regarding their type of phase
ordering, but also regarding the families of their distribution functions:{

Fkξ
(x1, ..., xk, t1, ..., tk), x1, ..., xk, t1, ..., tk ∈ R, k ∈ N

}
. (2)
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For this purpose, let us supplement the relational system ⟨ξ, ξ2, . . . , ξk, . . . , {≤2,≤4,
. . . ,≤2k, . . .}⟩ with a new sequence of carriers {Ak, k ∈ N} and new sequence of functional
relations

{
pk : ξk → Ak, k ∈ N

}
. The result is a new relational system as follows:

⟨ξ, ξ2, . . . , ξk, . . . , A1, A2, . . . , Ak, . . . , {≤2,≤4, . . . ,≤2k, . . . , p1 : ξ → A1, p2 : ξ2 →
A2, . . . , pk : ξk → Ak, . . .}⟩, (3)

where {Ak, k ∈ N} is a sequence of distribution function spaces Ak, namely, Ak—the func-
tional space of distribution functions Fkξ

(x1, ..., xk), x1, ..., xk ∈ R of a k-dimensional random

vector (vector of k random variables) and
{

pk : ξk → Ak, k ∈ N
}

—the sequence of func-
tional relations, which represent the distribution functions Fkξ

(x1, ..., xk, t1, ..., tk) of random
process ξ as follows:

pk((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk)) ) = pk(ξ(ω, t1), . . . , ξ(ω, tk)) =
= Fkξ

(x1, ..., xk, t1, ..., tk) ∈ Ak, x1, ..., xk, t1, ..., tk ∈ R, ω ∈ Ω, k ∈ N (4)

In order to exclude non-cyclic processes, in the future, we will consider only functional
relations pk((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk)) ) from

{
pk : ξk → Ak, k ∈ N

}
, for which there

exists number T ∈ R, so that the following inequalities can be achieved:

pk((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk)) ) ̸=
̸= pk((t1 + T, ξ(ω, t1 + T)), . . . , (tk + T, ξ(ω, tk + T)) )t1, ..., tk ∈ R, k ∈ N.

(5)

Let us introduce a relational system (3) in a more compact form, as shown below:〈{
ξk, k ∈ N

}
, {Ak, k ∈ N},

{
{≤2k, k ∈ N},

{
pk : ξk → Ak, k ∈ N

}}〉
, (6)

where
{

ξk, k ∈ N
}

and {Ak, k ∈ N} are sequences of carriers and {≤2k, k ∈ N},{
pk : ξk → Ak, k ∈ N

}
are sequences of the relations of a relational system (6).

The partition Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
of the Cartesian product ξk of the

random process ξ generates the family of subrelational systems as follows:

RSc
ξ,...,ξk ,...

=
{〈{

ξcm × ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk : ξk → Ak, k ∈ N

}}〉
, m ∈ Z

} (7)

for relational system (6), where
{

ξcm × ξk−1, k ∈ N
}

, {Ak, k ∈ N} are carriers of the subrela-

tional system
〈{

ξcm × ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
.

In the case when k = 1, as shown in Formula (5), we can assume that ξcm × ξ0 = ξcm .
Let us amplify the isomorphism between the relational systems of the family RSc

ξ,...,ξk ,...
by adding requirements for the equality of values of distribution functions
Fkξ

(x1, ..., xk, t1, ..., tk) of the random process ξ for bijectively connected vectors ((t1, ξ(ω, t1)),
. . . ,(tk, ξ(ω, tk))) ∈ ξcm1

× ξk−1 and
((

t′1, ξ
(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
∈ ξcm2

× ξk−1 from
two different arbitrary Cartesian products ξcm1

× ξk−1 and ξcm2
× ξk−1. Namely, the iso-

morphism with respect to relations {≤2k, k ∈ N} for two arbitrary relational systems〈{
ξcm1

× ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
and〈{

ξcm2
× ξk−1, k ∈ N

}
, {Ak, k ∈ N},

{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
must be sup-

plemented by an isomorphism with respect to their functional relations
{

pk: ξk → Ak, k ∈ N
}

.
Let us give a definition a certain type of isomorphism between the relational systems〈{

ξcm1
× ξk−1, k ∈ N

}
, {Ak, k ∈ N},

{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
and
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〈{
ξcm2

× ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
for any

m1, m2 ∈ Z.

Definition 1. The sequences of bijective mappings
{

ξcm1
× ξk−1 ⇐⇒ ξcm2

× ξk−1, k ∈ N
}

be-

tween appropriate Cartesian products
{

ξcm1
× ξk−1, k ∈ N

}
and

{
ξcm2

× ξk−1, k ∈ N
}

, which

are carriers of relational systems
〈{

ξcm1
× ξk−1, k ∈ N

}
, {Ak, k ∈ N}, {{≤2k, k ∈ N} ,{

pk: ξk → Ak, k ∈ N
}
}
〉

and
〈{

ξcm2
× ξk−1, k ∈ N

}
, {Ak, k ∈ N}, {{≤2k, k ∈ N} ,{

pk: ξk → Ak, k ∈ N
}
}
〉

, will be called the isomorphism with respect to the relations {≤2k, k ∈ N}
and with respect to the distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk), k ∈ N from family (1),
which are the values of the functional relations pk: ξk → Ak, k ∈ N in the arguments t1, . . . , tk, be-
tween the relational systems

〈{
ξcm1

× ξk−1, k ∈ N
}

, {Ak, k ∈ N}, {{≤2k, k ∈ N} ,{
pk: ξk → Ak, k ∈ N

}
}
〉

and
〈{

ξcm2
× ξk−1, k ∈ N

}
, {Ak, k ∈ N}, {{≤2k, k ∈ N} ,{

pk: ξk → Ak, k ∈ N
}
}
〉

, if:

1. There are isomorphisms between relational systems
〈

ξcm1
× ξk−1, Ak,

{
≤2k, pk: ξk → Ak

}〉
and

〈
ξcm2

× ξk−1, Ak,
{
≤2k, pk: ξk → Ak

}〉
with respect to the linear order ≤2k, namely,

the types of ordering of the Cartesian products ξcm1
× ξk−1 and ξcm2

× ξk−1, which are
identical for any k ∈ N.

2. There are isomorphisms between
〈

ξcm1
× ξk−1, Ak,

{
≤2k, pk: ξk → Ak

}〉
and

〈
ξcm2

× ξk−1 ,

Ak,
{
≤2k, pk: ξk → Ak

}〉
with respect to the distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk)

of a random process ξ. Namely, for all the bijectively connected vectors ((t1, ξ(ω, t1)), . . . ,
(tk, ξ(ω, tk))) ∈ ξcm1

× ξk−1 and
((

t′1, ξ
(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
∈ ξcm2

× ξk−1 for
any k ∈ N, there are equal values of distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk) from
family (2), as shown below:

pk((t1, ξ(ω, t1)), . . . , (tk, ξ(ω, tk))) = pk
((

t′1, ξ
(
ω, t′1

))
, . . . ,

(
t′k, ξ

(
ω, t′k

)))
=

= Fkξ
(x1, . . . , xk, t1, . . . , tk) = Fkξ

(
x1, ..., xk, t′1, ..., t′k

)
, x1, . . . , xk ∈ R, t1 ∈ Wcm1

,
t′1 ∈ Wcm2

, t2, . . . , tk, t′2, . . . , t′k ∈ R, t′1 ↔ t1, . . . , t′k ↔ tk, m1, m2 ∈ Z, k ∈ N .
(8)

Definition 2. The Cartesian products ξcm1
× ξk−1 and ξcm2

× ξk−1, which are carriers of the rela-

tional systems
〈{

ξcm1
× ξk−1, k ∈ N

}
, {Ak, k ∈ N},

{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
and

〈{
ξcm2

× ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
, will be

called the isomorphic Cartesian products with respect to the linear order ≤2k and with respect
to the distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk), k ∈ N from family (2), which are the values
of the functional relations pk: ξk → Ak, k ∈ N in the arguments t1, . . . , tk, or more simply—the
isomorphic Cartesian products.

Note that Definition 2 generalizes and significantly supplements the definition the
isomorphic random processes with respect to ≤2 and the mathematical expectation (k = 1)
as well as the definition the isomorphic Cartesian products with respect to ≤4 and the
correlation function (k = 2), which are introduced in the work of [61].

The family RSc
ξ,...,ξk ,...

of the isomorphic subrelational systems, the carriers of which are

the elements of the ordered countable partitions Dc
ξk from the sequences

{
Dc

ξk =
{

ξcm × ξk−1

⊂ ξk, m ∈ Z
}

, k ∈ N
}

constructed above, makes it possible to obtain the definition of the
CRP.
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Definition 3. A random process ξ(ω, t), ω ∈ Ω, t ∈ R ( ξ: R → L2(Ω, P) ) given in the prob-
ability space (Ω, F, P) and on a set R of real numbers will be called a cyclic random process (or
cyclically distributed random process) if the ordered countable partition Dc

ξk exists for each of the

sequences
{

Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
, k ∈ N

}
, whose elements are carriers of systems

RSc
ξ,...,ξk,...

=
{〈{

ξcm × ξk−1, k ∈ N
}

, {Ak, k ∈ N},
{
{≤2k, k ∈ N},

{
pk: ξk → Ak, k ∈ N

}}〉
,

m ∈ Z} with respect to the relations of the linear order {≤2k, k ∈ N} and with respect to the distri-
bution functions Fkξ

(x1, . . . , xk, t1, . . . , tk), k ∈ N from family (1), which are values of functional
relations pk: ξk → Ak, k ∈ N in the arguments t1, . . . , tk .

3. The Multidimensional Cycle Structures of CRP

The next step is the formalization of the cycle and the set of cycles of the cyclic signal.
For this purpose, let’s consider the concept of minimal ordered countable partition into
isomorphic random processes of CRP ξ = {(t, ξ(ω, t)): t ∈ R}. Under minimal ordered
countable partition into isomorphic random processes with respect to the relation of linear
order ≤2 and to the functional relation p1: ξ → A1 , which is distribution function F1ξ

(x, t)
from family (2) of CRP ξ = {(t, ξ(ω, t)): t ∈ R}, we will understand such partition Dc

ξ =

{ξcm ⊂ ξ, m ∈ Z}, when the arbitrary partitioning of its elements ξcm will form a new one
smaller partition {ξm ⊂ ξcm , n ∈ Z}, between all the elements ξn of which simultaneously
there are no isomorphisms with respect to ≤2 and with respect to the distribution function
F1ξ

(x, t) from family (2), which is value of functional relation p1: ξ → A1 , in the argument t.

Definition 4. The minimal ordered countable partition Dc
ξ = {ξcm ⊂ ξ, m ∈ Z} of the CRP

ξ = {(t, ξ(ω, t)): t ∈ R} into isomorphic random processes with respect to the relation of the linear
order ≤2 and with respect to the distribution function F1ξ

(x, t) from family (1), which is value of
functional relation p1: ξ → A1 in the argument t will be called the partition into cycles of the CRP
ξ, and the random process ξcm is the m-th cycle of the CRP ξ.

The following definition can then be obtained.

Definition 5. The set Wcm will be called the definition domain of m-th cycle ξcm of the CRP ξ.

Given the fact that the CRP ξ, in addition to its one-dimensional probability structure
determined by its distribution functions F1ξ

(x, t), has a k-dimensional (multidimensional)
probability structure given by its distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk) from family
(2), then, in addition to the partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} into one-dimensional cycles

ξcm , it is possible to obtain a definition of the partition Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
of

the Cartesian product of the k-th order (k ≥ 2) into k-dimensional cycles ξcm × ξk−1 of the
CRP ξ.

Under the minimal ordered countable partition of the Cartesian product ξk of the CRP
ξ = {(t, ξ(ω, t)): t ∈ R} into isomorphic Cartesian products ξcm × ξk−1 with respect to
≤2k and with respect to the distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk) from family (2),
which is value of the functional relation pk: ξk → Ak in t1, . . . , tk, we obtain the partition as
Dc

ξk =
{

ξcm × ξk−1 ⊂ ξk, m ∈ Z
}

, when the arbitrary partitioning of its elements ξcm × ξk−1

forms a new, smaller partition
{

ξn × ξk−1 ⊂ ξk, n ∈ Z
}

between all the elements ξn × ξk−1

of which simultaneously there are no isomorphisms with respect to ≤2k and with respect
to the distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk) from family (2), which is the value of
the functional relation pk: ξk → Ak in t1, . . . , tk.
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Definition 6. The minimal ordered countable partition Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
of the

Cartesian product ξk of the CRP ξ = {(t, ξ(ω, t)): t ∈ R} into isomorphic Cartesian products
ξcm × ξk−1 with respect to ≤2k and with respect to the distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk)

from family (2), which is value of the functional relation pk: ξk → Ak in t1, . . . , tk, will be called
the partition into k-dimensional cycles of the CRP ξ, and Cartesian product ξcm × ξk−1 will be
called the m-th k-dimensional cycle of the CRP ξ.

The following definition can then be obtained.

Definition 7. The set Wcm × Rk−1 will be called the definition domain of k-dimensional m-th cycle
ξcm × ξk−1 of the CRP ξ.

Thus, the cyclic structure of CRP ξ is given by the sequence {Dc
ξk = {ξcm × ξk−1 ⊂ ξk,

m ∈ Z}, k ∈ N}, whose elements are partitions Dc
ξk into the k-dimensional cycles ξcm × ξk−1

of the CRP ξ.
Let us consider another ordered countable partition Dc1

ξk =
{

ξm1,...,mk ⊂ ξk, m1, . . . .mk ∈ Z
}

of the Cartesian product ξk of the CRP ξ = {(t, ξ(ω, t)): t ∈ R}, as shown below:

ξm1,...,mk = ξcm1
× . . . × ξcmk

, m1, . . . , mk ∈ Z. (9)

Note that there are not isomorphisms between all the elements of partition Dc1
ξk with

respect to the relations of the linear order ≤2k and with respect to the distribution func-
tion Fkξ

(x1, . . . , xk, t1, . . . , tk) from family (2), which is the value of the functional relation
pk: ξk → Ak in t1, . . . , tk. This type of isomorphism exists between elements of only certain
subsets of the partition Dc1

ξk , namely, between all the elements of only these subsets as
follows: {

ξm1+l,...,mk+l , l ∈ Z
}

, m1, . . . , mk ∈ Z, (10)

where ξm1+l,...,mk+l = ξcm1+l × . . . × ξcmk+l is a Cartesian product of the one-dimensional

cycles of the CRP ξ that form diagonal stripes
⋃

l∈Z ξm1+l,...,mk+l in ξk. If (m1, . . . , mk) ̸=
(n1, . . . , nk), then between the arbitrary elements ξm1+l,...,mk+l and ξn1+l,...,nk+l of the sub-
sets

{
ξm1+l,...,mk+l , l ∈ Z

}
and

{
ξn1+l,...,nk+l , l ∈ Z

}
, (n1, . . . , nk ∈ Z) does not have iso-

morphisms with respect to ≤2k and to the functional relation pk: ξk → Ak , which is the
distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk) from family (1). That is, between the ele-
ments ξm1+l,...,mk+l and ξn1+l,...,nk+l from different diagonal stripes

⋃
l∈Z ξm1+l,...,mk+l and⋃

l∈Z ξn1+l,...,nk+l in ξk, there are not any isomorphisms. In general, this type of isomor-
phism between the elements of a set

{
ξm1+l1,...,mk+lk , l1, . . . , lk ∈ Z

}
takes place only if

l1 = l2 = . . . = lk (see Figure 3).
Any m1-th k-dimensional cycle ξcm1

× ξk−1 of a CRP ξ can be represented by the
elements of the ordered countable partition Dc1

ξk :

ξcm1
× ξk−1 =

⋃
m2,...,mk∈Z

ξm1,...,mk =
⋃

m2,...,mk∈Z
ξcm1

× ξcm2
× . . . × ξcmk

. (11)

The Cartesian product ξk of the CRP ξ can be represented by the elements of the
ordered countable partition Dc1

ξk :

ξk =
⋃

m1∈Z
ξcm1

× ξk−1 =
⋃

m1,...,mk∈Z
ξm1,...,mk =

⋃
m1,...,mk∈Z

ξcm × ξcm2
× . . . × ξcmk

. (12)
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{

ξm1+l1,m2+lk
, l1, l2 ∈ Z

}
takes place

only if l1 = l2 ( k = 2).

The Cartesian product ξk of the CRP ξ can be represented by a set of all diagonal
stripes

⋃
l∈Z ξm1+l,...,mk+l :

ξk =
⋃

m2,...,mk∈Z

⋃
l∈Z

ξ l,m2+l,...,mk+l =
⋃

m2,...,mk∈Z

⋃
l∈Z

ξcl × ξcm2+l × . . . × ξcmk+l . (13)

4. The Multidimensional Phase Structure of CRPs

The one-dimensional phase structure of a cyclically correlated random process was
investigated in the work of [61]. In this section, we will introduce and establish the main
properties of the multidimensional phase structure of a CRP, which summarizes and extends
the results of the article of [61]. Similarly to the definition of the k-dimensional cycles of a
CRP, it is possible to define the concept of its k-dimensional phase. Let us have the definition
domain Wc0 × Rk−1 of the k-dimensional 0-th cycle ξc0 × ξk−1 of the CRP ξ. Due to isomor-

phism between relational systems
〈

Wc0 × Rk−1,≤2k−1

〉
and

〈
Wcm × Rk−1,≤2k−1

〉
(m ∈

Z), for any
(

tψ1
0 , . . . , tψk

0

)
∈ Wc0 × Rk−1 in the definition domain Wcm × Rk−1 of arbitrary

k-dimensional m-th cycle ξcm × ξk−1, there is only one element
(

tψ1
m , . . . , tψk

m

)
∈ Wcm ×Rk−1,

which is bijectively connected with
(

tψ1
0 , . . . , tψk

0

)((
tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

))
. Since

for a CRP ξ, we have a countable set Dc
ξk of k-dimensional cycles, then for every k-

dimensional vector
(

tψ1
0 , . . . , tψk

0

)
∈ Wc0 × Rk−1, we will have a countable set Wψ1,...,ψk

of k-dimensional vectors
(

tψ1
m , . . . , tψk

m

)
, which are bijectively connected to it. Set Wψ1,...,ψk

of all bijectively connected vectors with a vector
(

tψ1
0 , . . . , tψk

0

)
is defined as follows:

Wψ1,...,ψk =
{ (

tψ1
m , . . . , tψk

m

)
:
(

tψ1
m , . . . , tψk

m

)
∈ Wcm × Rk−1,

(
tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
, m ∈ Z

}
,(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1.

(14)

For each fixed
(

tψ1
0 , . . . , tψk

0

)
∈ Wc0 × Rk−1 we will have specific set Wψ1,...,ψk . If(

tψ1
0 , . . . , tψk

0

)
runs the all ordered set Wc0 × Rk−1 then we get the ordered in the indexes

ψ1, . . . , ψk uncountable partition Dph
Rk =

{
Wψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
of the defi-

nition domain Rk of Cartesian product ξk of CRP ξ.
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Let’s create an ordered in the indexes ψ1, . . . , ψk uncountable partition
Dph

ξk =
{

ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1
}

of Cartesian product ξk of CRP ξ by bijec-

tive mapping of elements Wψ1,...,ψk from partition Dph
Rk into subsets ξψ1,...,ψk of Cartesian

product ξk (Wψ1,...,ψk ⇐⇒ ξψ1,...,ψk ), that is, everyone Wψ1,...,ψk is matched by the subset

ξψ1,...,ψk =
{((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
:
(

tψ1
m , . . . , tψk

m

)
∈ Wψ1,...,ψk

}
⊂ ξk of

those k-dimensional vectors
((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
of Cartesian prod-

uct ξk, the first elements
(

tψ1
m , . . . , tψk

m

)
of which belong to Wψ1,...,ψk

((
tψ1
m , . . . , tψk

m

)
↔((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
,
(

tψ1
m , . . . , tψk

m

)
∈ Wψ1,...,ψk

)
. Since Wψ1,...,ψk is a

countable set, then and ξψ1,...,ψk is also a countable set, defined as:

ξψ1,...,ψk =
{((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
:
(

tψ1
m , . . . , tψk

m

)
∈ Wcm × Rk−1,

(
tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
, m ∈ Z

}
,(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1.

(15)

According to (15), ξψ1,...,ψk =
{((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
, m ∈ Z

}
is a

countable set, ordered by m.
Since the set Wc0 × Rk−1 is isomorphic with respect to ≤2k−1 for any set Wcm × Rk−1,

then between the partition Dph
ξk =

{
ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
and the arbitrary

sets Wcm × Rk−1, there is an isomorphism with respect to the linear order. Let us note that
ξψ1,...,ψk is a countable set of the k-dimensional vectors of the Cartesian product ξk, among
which there are no two vectors belonging to the same k-dimensional cycle; that is, among
the elements of ξψ1,...,ψk there are no two vectors

((
tψ1
m1 , ξ

(
ω, tψ1

m1

))
, . . . ,

(
tψk
m1 , ξ

(
ω, tψk

m1

)))
where

(
tψ1
m1 , . . . , tψk

m1

)
∈ Wcm1

× Rk−1 and
((

tψ1
m2 , ξ

(
ω, tψ1

m2

))
, . . . ,

(
tψk
m2 , ξ

(
ω, tψk

m2

)))
where(

tψ1
m2 , . . . , tψk

m2

)
∈ Wcm2

× Rk−1 for which Wcm1
= Wcm2

.

For different elements
((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
and

((
tψ1
g , ξ

(
ω, tψ1

g

))
,

. . . ,
(

tψk
g , ξ

(
ω, tψk

g

)))
from ξψ1,...,ψk , according to Equation (11), there is equality between

distribution functions, as shown below:

pk

(((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

))))
=

= pk

(((
tψ1
g , ξ

(
ω, tψ1

g

))
, . . . ,

(
tψk
g , ξ

(
ω, tψk

g

))))
=

= Fkξ

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
= Fkξ

(
x1, . . . , xk, tψ1

g , . . . , tψk
g

)
,(

tψ1
m , . . . , tψk

m

)
∈ Wcm × Rk−1,

(
tψ1
g , . . . , tψk

g

)
∈ Wcg × Rk−1,

tψ1
m ↔ tψ1

g , . . . , tψk
m ↔ tψk

g , m, g ∈ Z, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1 .

(16)

Let us obtain the mathematical definition of the k-dimensional phase of the CRP ξ.

Definition 8. Ordered by the indexes ψ1, . . . , ψk the uncountable partition Dph
ξk =

{
ξψ1,...,ψk ,

(ψ1, . . . , ψk) ∈ Wc0 × Rk−1
}

of the Cartesian product ξk of the CRP ξ, whose elements are count-
able sets formed according to (15) and for which the equalities in Equation (16) exist, is called
the partition into k-dimensional phases, and the set ξψ1,...,ψk is called the k-dimensional phase
(k-dimensional (ψ1, . . . , ψk) phase) of the CRP ξ.

Definition 9. The m-th element
((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
of the set ξψ1,...,ψk ={((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
, m ∈ Z

}
is called the actualization of the k-dimensional
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phase ξψ1,...,ψk (k-dimensional (ψ1, . . . , ψk) phase) in the k-dimensional m-th cycle ξcm × ξk−1 of
the CRP ξ.

Definition 10. The set Wψ1,...,ψk which is determined according to Expression (14) is called the
definition domain of the k-dimensional phase ξψ1,...,ψk (k-dimensional (ψ1, . . . , ψk) phase) of the
CRP ξ.

Definition 11. The set Aψ1,...,ψk is determined according to following expression:

Aψ1,...,ψk =
{(

ξ
(

ω, tψ1
m

)
, . . . , ξ

(
ω, tψk

m

))
:
(

tψ1
m , . . . , tψk

m

)
∈ Wcm × Rk−1,

(
tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
, m ∈ Z

}
,(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

(17)

and is called the (ψ1, . . . , ψk) set ((ψ1, . . . , ψk) series) of single-phase values of the k-dimensional
(ψ1, . . . , ψk) phase of the CRP ξ.

The set
{

Aψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1
}

of all the sets of k-dimensional single-
phase values is ordered by the vector of the parameters (ψ1, . . . , ψk). Each Aψ1,...,ψk is a
k-dimensional vector of stationary and stationary connected random sequences with respect
to its k-dimensional distribution function FkAψ1,...,ψk

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
,
(

tψ1
m , . . . , tψk

m

)
∈

Wcm × Rk−1,
(

tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
, m ∈ Z .

Definition 12. The m-th element
(

ξ
(

ω, tψ1
m

)
, . . . , ξ

(
ω, tψk

m

))
of the set Aψ1,...,ψk =

{(
ξ
(

ω, tψ1
m

)
,

. . . , ξ
(

ω, tψk
m

))
, m ∈ Z

}
is called the actualization of the (ψ1, . . . , ψk) set ((ψ1, . . . , ψk) series)

single-phase values of the k-dimensional (ψ1, . . . , ψk) phase in the k-dimensional m-th cycle
ξcm × ξk−1 of the CRP ξ.

The k-dimensional (ψ1, . . . , ψk) phase unites a countable set of bijectively connected
vectors with one from each of k-dimensional m-th cycles ξcm × ξk−1 of ξ taken; that is, the
concept of the k-dimensional (ψ1, . . . , ψk) phase is based on the concept of the minimal
ordered countable partition Dc

ξk =
{

ξcm × ξk−1 ⊂ ξk, m ∈ Z
}

of the Cartesian product ξk

of process ξ = {(t, ξ(ω, t)): t ∈ R} into isomorphic Cartesian products ξcm × ξk−1.
Let us consider the k-dimensional phase structure, based on the ordered countable

partition Dc1
ξk =

{
ξm1,...,mk= ξcm1

× . . . × ξcmk
, m1, . . . .mk ∈ Z

}
of the Cartesian product ξk

of the CRP ξ. Since there are not isomorphisms between all elements of partition Dc1
ξk

with respect to ≤2k and to the functional relation pk: ξk → Ak , which is a distribution
function Fkξ

(x1, . . . , xk, t1, . . . , tk) from family (2), and isomorphisms exist only between all
the elements of sets

{
ξm1+l,...,mk+l , l ∈ Z

}
(m1, . . . , mk ∈ Z ), which form diagonal stripes⋃

l∈Z ξm1+l,...,mk+l in ξk, then the k-dimensional phases cover only the vectors that belong
to these diagonal stripes. Let us define the domain Wm1,...,mk = Wcm1

× . . . × Wcmk
of the

k-dimensional isomorphic elements ξm1,...,mk of subset
{

ξm1+l,...,mk+l , l ∈ Z
}

, which form
diagonal stripes

⋃
l∈Z ξm1+l,...,mk+l in ξk. Let us accept that Wcm1

= Wc0 (m1 = 0). Due to
isomorphisms between relational systems

〈
W0,m2,...,mk ,≤2k−1

〉
and

〈
Wl,m2+l,...,mk+l ,≤2k−1

〉
(l ∈ Z), for any

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
∈ W0,m2,...,mk in the definition domain Wl,m2+l,...,mk+l

of the k-dimensional element ξ l,m2+l,...,mk+l of subset
{

ξ l,m2+l,...,mk+l , l ∈ Z
}

, there is only

one element
(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wl,m2+l,...,mk+l that is bijectively connected with(

tφ1
0 , tφ2

m2 , . . . , tφk
mk

)((
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
↔

(
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

))
. Since the set{

Wl,m2+l,...,mk+l , l ∈ Z
}

is a countable set, for every k-dimensional vector
(

tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
∈
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W0,m2,...,mk , we will have a countable set Wm2,...,mk
φ1,...,φk of k-dimensional vectors(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
, which are bijectively connected to it. Set Wm1,...,mk

φ1,...,φk of all bijectively

connected vectors with
(

tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
is defined as follows:

Wm2,...,mk
φ1,...,φk =

{ (
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
:
(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wl,m2+l,...,mk+l ,

(
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, l ∈ Z

}
,

m2, . . . , mk ∈ Z, φ1, . . . , φk ∈ Wc0 .

(18)

For each fixed
(

tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
∈ W0,m2,...,mk we will have specific set Wm2,...,mk

φ1,...,φk . If(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
runs the all ordered sets W0,m2,...,mk then we get the ordered in the indexes

φ1, . . . , φk uncountable partition Dph⋃
l∈Z Wl,m2+l,...,mk+l

=
{

Wm2,...,mk
φ1,...,φk , φ1, . . . , φk ∈ Wc0

}
of the

definition domain
⋃

l∈Z Wl,m2+l,...,mk+l of diagonal stripe
⋃

l∈Z ξ l,m2+l,...,mk+l in ξk.

Let us create ordered indexes φ1, . . . , φk for the uncountable partition Dph⋃
l∈Z ξ l,m2+l,...,mk+l

=
{

ξ
m2,...,mk
φ1,...,φk , φ1, . . . , φk ∈ Wc0

}
of the diagonal stripe

⋃
l∈Z ξ l,m2+l,...,mk+l in ξk by the bijec-

tive mapping of elements Wm2,...,mk
φ1,...,φk from partition Dph⋃

l∈Z Wl,m2+l,...,mk+l
into subsets ξ

m2,...,mk
φ1,...,φk of⋃

l∈Z ξ l,m2+l,...,mk+l (Wm2,...,mk
φ1,...,φk ⇐⇒ ξ

m2,...,mk
φ1,...,φk ); that is, all elements Wm2,...,mk

φ1,...,φk are matched by

the subset ξ
m2,...,mk
φ1,...,φk =

{((
tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l, ξ

(
ω, tφ2

m2+l

))
, . . . ,

(
tφk
mk+l, ξ

(
ω, tφk

mk+l

)))
:(

tφ1
l , tφ2

m2+l, . . . , tφk
mk+l

)
∈ Wm2,...,mk

φ1,...,φk

}
of the k-dimensional vectors

((
tφ1
l , ξ

(
ω, tφ1

l

))
,(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
, . . . ,

(
tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
of

⋃
l∈Z ξ l,m2+l,...,mk+l , the first elements(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
of which belong to Wm2,...,mk

φ1,...,φk

((
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
↔((

tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
, . . . ,

(
tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
,
(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wm2,...,mk

φ1,...,φk . Since Wm2,...,mk
φ1,...,φk is a countable set, then ξ

m2,...,mk
φ1,...,φk is also a countable set, defined

as follows:

ξ
m2,...,mk
φ1,...,φk =

{((
tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
, . . . ,

(
tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
:
(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wl,m2+l,...,mk+l ,

(
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, l ∈ Z

}
, m2, . . . , mk ∈ Z, φ1, . . . , φk ∈ Wc0 .

(19)

According to (19), any set ξ
m2,...,mk
φ1,...,φk =

{((
tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
, . . . ,(

tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
, l ∈ Z

}
can be ordered by the l countable set.

Since set W0,m2,...,mk is isomorphic with respect to ≤2k−1 for any set Wl,m2+l,...,mk+l , then

between the partition Dph⋃
l∈Z ξ l,m2+l,...,mk+l

=
{

ξ
m2,...,mk
φ1,...,φk , φ1, . . . , φk ∈ Wc0

}
and the arbitrary

sets Wl,m2+l,...,mk+l , there is an isomorphism with respect to the linear order, or rather, there

is an isomorphism between the relational system
〈

Dph⋃
l∈Z ξ l,m2+l,...,mk+l

,≤ph
2k−1

〉
and arbitrary

relational system
〈
Wl,m2+l,...,mk+l ,≤2k−1

〉
with respect to the binary relations of the linear

order ≤ph
2k−1 and ≤2k−1 (

〈
Dph⋃

l∈Z ξ l,m2+l,...,mk+l
,≤ph

2k−1

〉
⇐⇒

〈
Wl,m2+l,...,mk+l ,≤2k−1

〉
). And

the ordering type of partition Dph⋃
l∈Z ξ l,m2+l,...,mk+l

is determined by the type of ordering of any

set Wl,m2+l,...,mk+l and in particular, by the type of ordering of set W0,m2,...,mk .
For different elements of ξ

m2,...,mk
φ1,...,φk , according to Equation (6), there are equalities

between distribution functions, namely:
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pk

((
tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
. . . ,

(
tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
=

= pk

((
tφ1
g , ξ

(
ω, tφ1

g

))
,
(

tφ2
m2+g, ξ

(
ω, tφ2

m2+g

))
. . . ,

(
tφk
mk+g, ξ

(
ω, tφk

mk+g

)))
=

= Fkξ

(
x1, . . . , xk, tφ1

l , tφ2
m2+l , . . . , tφk

mk+l

)
= Fkξ

(
x1, . . . , xk, tφ1

g , tφ2
m2+g, . . . , tφk

mk+g

)
,(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wl,m2+l,...,mk+l ,

(
tφ1
g , tφ2

m2+g, . . . , tφk
mk+g

)
∈ Wg,m2+g,...,mk+g,

tφ1
l ↔ tφ1

g , tφ2
m2+l ↔ tφ2

m2+g, . . . , tφk
mk+l ↔ tφk

mk+g, m2, . . . , mk, l, g ∈ Z, φ1, . . . , φk ∈ Wc0 .

(20)

Since the Cartesian product ξk of a CRP ξ can be represented through the set of all
diagonal stripes

⋃
l∈Z ξm1+l,...,mk+l according to Formula (13), and each diagonal stripe⋃

l∈Z ξm1+l,...,mk+l in ξk can be represented through the elements of Dph⋃
l∈Z ξ l,m2+l,...,mk+l

, then

the Cartesian product ξk can be represented through the set
{

Dph⋃
l∈Z ξl,m2+l,...,mk+l

, m2, . . . , mk ∈ Z
}

,

namely:

ξk =
⋃

m2,...,mk∈Z

⋃
l∈Z

ξ l,m2+l,...,mk+l =
⋃

m2,...,mk∈Z

⋃
φ1,...,φk∈Wc0

ξ
m2,...,mk
φ1,...,φk . (21)

Let us unite all elements of the set
{

ξ
m2,...,mk
φ1,...,φk , m2, . . . , mk ∈ Z

}
as follows:

ξφ1,...,φk =
⋃

m2,...,mk∈Z
ξ

m2,...,mk
φ1,...,φk . (22)

Then the set ξ φ1,...,φk consists of the following elements:

ξ φ1,...,φk =
{((

tφ1
l , ξ

(
ω, tφ1

l

))
,
(

tφ2
m2+l , ξ

(
ω, tφ2

m2+l

))
, . . . ,

(
tφk
mk+l , ξ

(
ω, tφk

mk+l

)))
:
(

tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
∈ Wl,m2+l,...,mk+l ,

(
tφ1
l , tφ2

m2+l , . . . , tφk
mk+l

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, l, m2, . . . , mk ∈ Z, φ1, . . . , φk ∈ Wc0 .

(23)

Note that ξ φ1,...,φk can be represented as a Cartesian product of k corresponding the
one-dimensional phases ξφ1 , . . .,ξ φk :

ξ φ1,...,φk = ξ φ1 × ξφ2 × ξ φ3 × ... × ξφk =
k

∏
i=1

ξφi . (24)

The definition domain Wφ1,...,φk of ξ φ1,...,φk can be represented as a Cartesian product
of the k definition domains Wφ1 , . . .,Wφk of the corresponding one-dimensional phases ξ φ1 ,
. . .,ξφk :

Wφ1,...,φk = Wφ1 × Wφ2 × Wφ3 × ... × Wφk =
k

∏
i=1

Wφi . (25)

Each element ξm1,...,mk of partition Dc1
ξk =

{
ξm1,...,mk ⊂ ξk, m1, . . . .mk ∈ Z

}
can be rep-

resented as follows:

Wm2,...,mk
φ1,...,φk =

{((
tφ1
m1 , ξ

(
ω, tφ1

m1

))
, . . . ,

(
tφk
mk , ξ

(
ω, tφk

mk

)))
:
(

tφ1
m1 , . . . , tφk

mk

)
∈ Wm1,...,mk ,

(
tφ1
m1 , . . . , tφk

mk

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, φ1, . . . , φk ∈ Wc0

}
,

m1, . . . , mk ∈ Z.

(26)

Substituting Formula (26) into Formula (11), the m-th k-dimensional cycle ξcm × ξk−1

of the CRP ξ can be presented as follows:
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ξcm1
× ξk−1 =

⋃
m2,...,mk∈Z

{((
tφ1
m1 , ξ

(
ω, tφ1

m1

))
, . . . ,

(
tφk
mk , ξ

(
ω, tφk

mk

)))
:
(

tφ1
m1 , . . . , tφk

mk

)
∈ Wm1,...,mk ,

(
tφ1
m1 , . . . , tφk

mk

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, φ1, . . . , φk ∈ Wc0

}
=

=
{((

tφ1
m1 , ξ

(
ω, tφ1

m1

))
, . . . ,

(
tφk
mk , ξ

(
ω, tφk

mk

)))
:
(

tφ1
m1 , . . . , tφk

mk

)
∈ Wm1,...,mk ,

(
tφ1
m1 , . . . , tφk

mk

)
↔(

tφ1
m1 , . . . , tφk

mk

)
↔

(
tφ1
0 , tφ2

m2 , . . . , tφk
mk

)
, m2, . . . , mk ∈ Z, φ1, . . . , φk ∈ Wc0

}
, m1 ∈ Z.

(27)

The partition Dph
ξk =

{
ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
into k-dimensional phases

of Cartesian product ξk of CRP ξ can be presented as a union of partitions Dph⋃
l∈Z ξ l,m2+l,...,mk+l

into k-dimensional phases of all diagonal stripes
⋃

l∈Z ξm1+l,...,mk+l in ξk, namely:

Dph
ξk =

{
ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
=

⋃
m2,...,mk∈Z Dph⋃

l∈Z
ξ l,m2+l,...,mk+l

=⋃
m2,...,mk∈Z

{
ξ

m2,...,mk
φ1,...,φk , φ1, . . . , φk ∈ Wc0

}
=

{
ξ

m2,...,mk
φ1,...,φk , φ1, . . . , φk ∈ Wc0 , m2, . . . , mk ∈ Z

}
.

(28)

As can be seen from Formula (28), each countable set ξ
m2,...,mk
φ1,...,φk is a k-dimensional phase

of the CRP ξ, which is equal to the appropriate k-dimensional phase ξψ1,...,ψk as follows:

ξ
m2,...,mk
φ1,...,φk = ξψ1,...,ψk , ψ1 = φ1 = tφ1

0 ∈ Wc0 ,
ψ2 = tψ2

0 = tφ2
m2 ∈ Wcm2

⊂ R, . . . , ψk = tψk
0 = tφk

mk ∈ Wcmk
⊂ R,

tφ2
m2 ↔ tφ2

0 , . . . , tφk
mk ↔ tφk

0 , φ1, . . . , φk ∈ Wc0 , m2, . . . , mk ∈ Z .
(29)

5. Representations of CRP and Its Distribution Functions through Their
Cyclic Structures

Given that the sequence
{

Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
, k ∈ N

}
always exists and

its elements are the partitions Dc
ξk of the CRP ξ into k-dimensional cycles ξcm × ξk−1, a

random process ξ and its Cartesian product ξk can be represented as follows:

ξ =
⋃

m∈Z
ξcm , (30)

ξk =
⋃

m∈Z
ξcm × ξk−1, k ∈ N. (31)

If we consider a vector
{∼

ξ m(ω, t), ω ∈ Ω, t ∈ R, m ∈ Z
}

of random processes, which

in the areas Wcm coincide with the random processes ξcm , but in the areas R\Wcm , the

random processes
∼
ξ m(ω, t) are all equal to zero

(∼
ξ m(ω, t) = 0, t ∈ R\Wcm

)
, it is possible

to represent the CRP ξ: R → L2(Ω, P) in another way as follows:

ξ(ω, t) = ∑m∈Z

∼
ξ m(ω, t), ω ∈ Ω, t ∈ R. (32)

Similarly to the representations of the random process ξ and its Cartesian product
ξk according to Formulas (30) and (31), we can obtain representations of k-dimensional
distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk) (in another designation Fkξ
= {((t1, . . . , tk),

Fkξ
(x1, . . . , xk, t1, . . . , tk)): (t1, . . . , tk) ∈ Rk}) of the CRP ξ as follows:

Fkξ
=

⋃
m∈Z Fkξcm

, Fkξcm
̸= Ø, Fkξcm1

⋂
Fkξcm2

= Ø, m1 ̸= m2,

m, m1, m2 ∈ Z, k ∈ N,
(33)

where Fkξcm
=

{(
(t1, . . . , tk), Fkξ

(x1, . . . , xk, t1, . . . , tk)
)

: (t1, . . . , tk) ∈ Wcm × Rk−1
}

is a k-
dimensional distribution function Fkξ

(x1, . . . , xk, t1, . . . , tk) of m-th k-dimensional cycle
ξcm × ξk−1 of the CRP ξ.
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It is possible to represent the k-dimensional distribution functions Fkξ
(x1, . . . , xk, t1, . . . , tk)

of the CRP ξ in another way if we consider a countable dimensional vector{∼
Fkξcm

(x1, . . . , xk, t1, . . . , tk), (t1, . . . , tk) ∈ Rk, m ∈ Z
}

, whose components
∼
Fkξcm

(x1, . . . , xk,

t1, . . . , tk) in the areas Wcm × Rk−1 coincide with the Fkξcm
, but whose components in the

areas Rk\
(

Wcm × Rk−1
)

are all equal to zero (
∼
Fkξcm

(x1, . . . , xk, t1, . . . , tk) = 0, (t1, . . . , tk)

∈ Rk\
(

Wcm × Rk−1
)
):

Fkξ
(x1, . . . , xk, t1, . . . , tk) = ∑m∈Z

∼
Fkξcm

(x1, . . . , xk, t1, . . . , tk)

x1, . . . , xk, t1, . . . , tk ∈ R, k ∈ N.
(34)

Note that the components
∼
Fkξcm

(x1, . . . , xk, t1, . . . , tk) of a countable dimensional vector{∼
Fkξcm

(x1, . . . , xk, t1, . . . , tk), (t1, . . . , tk) ∈ Rk, m ∈ Z
}

are not distribution functions in the

areas
{

Rk\
(

Wcm × Rk−1
)

, m ∈ Z
}

.
In practice, the CRP should be considered for the subset V ⊂ R:

V =
⋃M

m=0
Wcm or V =

⋃∞

m=0
Wcm , (35)

where M is the integer number. In this case, the k-dimensional distribution functions
Fkξ

(x1, . . . , xk, t1, . . . , tk) will also be considered in the set Vk ⊂ Rk.

Apart from the sequence
{

Dc
ξk =

{
ξcm × ξk−1 ⊂ ξk, m ∈ Z

}
, k ∈ N

}
, there is the se-

quence
{

Dc1
ξk =

{
ξm1,...,mk ⊂ ξk, m1, . . . .mk ∈ Z

}
, k ∈ N

}
, whose elements are partitions

Dc1
ξk of the Cartesian product ξk of the CRP ξ, and this Cartesian product ξk can be rep-

resented according to (9) through the elements of partitions Dc1
ξk . Thus, the following

representations of the k-dimensional distribution functions Fkξ
of the CRP ξ can be ob-

tained:

Fkξ
=

⋃
m1,...,mk∈Z Fkξm1,...,mk

, Fkξm1,...,mk
̸= Ø, Fkξm1,...,mk

⋂
Fkξg1,...,gk

= Ø,

(m1, . . . , mk) ̸= (g1, . . . , gk), m1, . . . , mk, g1, . . . , gk ∈ Z, k ∈ N,
(36)

where Fkξm1,...,mk
=

{(
(t1, . . . , tk), Fkξ

(x1, . . . , xk, t1, . . . , tk)
)

: (t1, . . . , tk) ∈ Wcm1
× . . . ×Wcmk

}
is a k-dimensional distribution function, which shows that t1, . . . , tk belong to the areas{

Wcm1
, . . . , Wcmk

}
in the definition of one-dimensional cycles

{
ξcm1

, . . . , ξcmk

}
.

If we consider the set
{∼

Fkξm1,...,mk
(x1, . . . , xk, t1, . . . , tk), (t1, . . . , tk) ∈ Rk, m1, . . . .mk ∈ Z

}
,

whose elements
∼
Fkξm1,...,mk

(x1, . . . , xk, t1, . . . , tk) in the areas Wcm1
× . . .×Wcmk

coincide with

Fkξm1,...,mk
, but whose elements in the areas Rk\

(
Wcm1

× . . . × Wcmk

)
are all equal to zero(∼

Fkξm1,...,mk
(x1, . . . , xk, t1, . . . , tk) = 0, (t1, . . . , tk) ∈ Rk\

(
Wcm1

× . . . × Wcmk

))
, then the k-

dimensional distribution functions of the CRP ξ can be given as the sum of the elements of

the set
{∼

Fkξm1,...,mk
(x1, . . . , xk, t1, . . . , tk), (t1, . . . , tk) ∈ Rk, m1, . . . .mk ∈ Z

}
:

Fkξ
(x1, . . . , xk, t1, . . . , tk) = ∑m1,...,mk∈Z

∼
Fkξm1,...,mk

(x1, . . . , xk, t1, . . . , tk),

x1, . . . , xk ∈ R, (t1, . . . , tk) ∈ Rk, k ∈ N.
(37)
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Note that the elements
∼
Fkξm1,...,mk

(x1, . . . , xk, t1, . . . , tk) of the set
{∼

Fkξm1,...,mk
(x1, . . . , xk,

t1, . . . , tk), (t1, . . . , tk) ∈ Rk, m1, . . . .mk ∈ Z
}

are not distribution functions in the areas{
Rk\

(
Wcm1

× . . . × Wcmk

)
, m1, . . . .mk ∈ Z

}
.

Formulas (30)–(37) are the foundation for CRP models, computer simulations and
hardware generation (formation) [53,54].

6. Representations of CRP and Its Distribution Functions through Their
Phase Structures

Let us represent the CRP ξ and its Cartesian product ξk through the elements of their
phase structures, namely, through the elements of the partitions Dph

ξ =
{

ξ φ, φ ∈ Wc0

}
and

Dph
ξk =

{
ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
:

ξ =
⋃

φ∈Wc0
ξ φ, (38)

ξk =
⋃

(ψ1,...,ψk)∈Wc0×Rk−1 ξψ1,...,ψk , k ∈ N. (39)

Similarly to the representations of the Cartesian product ξk according to Formula (39),
we can obtain representations of the k-dimensional distribution functions Fkξ

(x1, . . . , xk, t1, . . . , tk)

(in another designation Fkξ
=

{(
(t1, . . . , tk), Fkξ

(x1, . . . , xk, t1, . . . , tk)
)

: (t1, . . . , tk) ∈ Rk
}

)
of the CRP ξ:

Fkξ
=

⋃
(ψ1,...,ψk)∈Wc0×Rk−1 Fkξψ1,...,ψk

, k ∈ N. (40)

where Fkξψ1,...,ψk
=

{((
tψ1
m , . . . , tψk

m

)
, Fkξ

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

))
:
(

tψ1
m , . . . , tψk

m

)
∈ Wcm

×Rk−1,
(

tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
, m ∈ Z

}
is a k-dimensional distribution function

Fkξψ1,...,ψk

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
of the k-dimensional phase ξψ1,...,ψk of the CRP ξ, for which

the following equality is given:

Fkξψ1,...,ψk

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
= Fkξψ1,...,ψk

(
x1, . . . , xk, tψ1

m+l , . . . , tψk
m+l

)
,(

tψ1
m , . . . , tψk

m

)
∈ Wcm × Rk−1,

(
tψ1
m , . . . , tψk

m

)
↔

(
tψ1
0 , . . . , tψk

0

)
,

m, l ∈ Z, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1, k ∈ N.

(41)

Note that Fkξψ1,...,ψk

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
= F

kAψ1,...,ψk

(
x1, . . . , xk, tψ1

m , . . . , tψk
m

)
.

Formulas (38)–(41) reflect the basic dependences of the phase structure of the CRP
and are the basis for applications of statistical estimation methods of the probabilistic
characteristics of the CRP.

7. Analytical Dependencies between Cyclic, Phase and Rhythm Structures of Cyclic
Random Process

The arbitrary m-th cycle of the CRP ξ can be presented as follows:

ξcm =
⋃

φ∈Wc0

(
tφ
m, ξ

(
ω, tφ

m

))
, m ∈ Z. (42)

The k-dimensional m-th cycle ξcm × ξk−1 of the CRP ξ can be presented as follows:

ξcm × ξk−1 =
⋃

(ψ1,...,ψk)∈Wc0×Rk−1

((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
, m ∈ Z, (43)

or it can be presented as follows:
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ξcm × ξk−1 =
{((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
: (ψ1, . . . , ψk) ∈ Wc0 × Rk−1

}
, m ∈ Z (44)

Given Formula (30), which represents the CRP ξ by the set of all its cycles ξcm , and
based on Formula (42), let us represent this random process through the set {

(
tφ
m, ξ

(
ω, tφ

m

))
:

m ∈ Z, φk ∈ Wc0} of the actualizations of all of its phases
{

ξ φ, φ ∈ Wc0

}
in the all the

cycles of the CRP ξ:

ξ =
⋃

m∈Z
ξcm =

⋃
m∈Z

⋃
φ∈Wc0

(
tφ
m, ξ

(
ω, tφ

m

))
. (45)

Given Formula (31), which represents a Cartesian product ξk of the CRP ξ by the set
of all of its k-dimensional cycles ξcm × ξk−1, and based on Formula (43), let us represent
the Cartesian degree ξk through the set {

((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
: m ∈ Z,

(ψ1, . . . , ψk) ∈ Wc0 × Rk−1} of actualizations of all of its k-dimensional phases{
ξψ1,...,ψk , (ψ1, . . . , ψk) ∈ Wc0 ×Rk−1

}
in the all of the k-dimensional cycles of the CRP ξ:

ξk =
⋃

m∈Z ξcm × ξk−1 =

=
⋃

m∈Z

⋃
(ψ1,...,ψk)∈Wc0×Rk−1

((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
. (46)

Let us represent an arbitrary phase ξφ of the CRP ξ through the set{(
tφ
m, ξ

(
ω, tφ

m

))
: m ∈ Z

}
of its actualizations in all of the cycles of the CRP ξ:

ξ φ =
⋃

m∈Z

(
tφ
m, ξ

(
ω, tφ

m

))
, φ ∈ Wc0 . (47)

Let us represent an arbitrary k-dimensional phase ξψ1,...,ψk of the CRP ξ through the

set
{((

tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
: m ∈ Z

}
of its actualizations in all of the k-

dimensional cycles of the CRP ξ as follows:

ξψ1,...,ψk =
⋃

m∈Z

((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1. (48)

Let us represent an arbitrary φ set Aφ of the single-phase values of the CRP ξ through

the set
{

ξ
(

ω, tφ
m

)
: m ∈ Z

}
of its actualizations in all of the cycles of the CRP ξ as follows:

Aφ =
⋃

m∈Z
ξ
(

ω, tφ
m

)
, φ ∈ Wc0 . (49)

Let us represent an arbitrary ψ1, . . . , ψk set Aψ1,...,ψk of k-dimensional single-phase

values of the cyclic random process ξ through the set
{(

ξ
(

ω, tφ1
m

)
, . . . , ξ

(
ω, tφk

m

))
: m ∈ Z

}
of its actualizations in all of the k-dimensional cycles of the CRP ξ as follows:

Aψ1,...,ψk =
⋃

m∈Z

(
ξ
(

ω, tψ1
m

)
, . . . , ξ

(
ω, tψk

m

))
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1. (50)

Formulas (42)–(50) establish a strong relationship between the cyclic and phase multi-
dimensional structures of CRPs.

To obtain a cyclically correlated random process [61] for the CRP, let us formulate the
following theorem.
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Theorem 1. For a CRP ξ = {(t, ξ(ω, t)): t ∈ R}, there exists a numerical function T(t, n), t ∈
R, n ∈ Z, for which the following properties occur:

T(t, n) > 0 (T(t, 1) < ∞), t ∈ R, i f n > 0,
T(t, n) = 0, t ∈ R, i f n = 0,
T(t, n) < 0, t ∈ R, i f n < 0;

(51)

for any t1 ∈ R and t2 ∈ R, for which t1 < t2, and for function T(t, n), a strict inequality holds as
shown below:

T(t1, n) + t1 < T(t2, n) + t2, ∀n ∈ Z; (52)

and for each k-dimensional distribution function Fkξ
(x1, . . . , xk, t1, . . . , tk) from families of consis-

tent distribution functions (1) of the CRP ξ, there are the following equalities:

Fkξ
(x1, . . . , xk, t1, . . . , tk) = Fkξ

(x1, . . . , xk, t1 + T(t1, n), . . . , tk + T(tk, n)),
x1, . . . , xk, t1, . . . , tk ∈ R, n ∈ Z, k ∈ N

(53)

In contrast, if for a random process ξ, there exists a numerical function T(t, n), t ∈ R, n ∈ Z
with all the above-mentioned properties ((51) and (52)) and if the equalities in (53) are true for any
k ∈ N, then it is a CRP.

Similar to the results of the work of [61], we can provide the following definition.

Definition 13. The function T(t, n) which is the smallest in modulus (|T(t, n)| ≤ |Tγ(t, n)|)
among all such functions {Tγ(t, n), γ ∈ N} which satisfy (51)–(53) is called a rhythm function of
a CRP ξ.

Using the rhythm function T(t, n) of a CRP, let us represent an arbitrary k-dimensional
phase ξψ1,...,ψk of the CRP ξ by the set

{((
tψ1
m , ξ

(
ω, tψ1

m

))
, . . . ,

(
tψk
m , ξ

(
ω, tψk

m

)))
: m ∈ Z

}
of its actualizations in all k-dimensional cycles of the CRP ξ as follows:

ξψ1,...,ψk =
⋃

n∈Z

((
tψ1
0 + T

(
tψ1
0 , n

)
, ξ
(

ω, tψ1
0 + T

(
tψ1
0 , n

)))
, . . . ,

(
tψk
0 + T

(
tψk
0 , n

)
, ξ
(

ω, tψk
0 + T

(
tψk
0 , n

))))
,(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1.

(54)

Let us represent an arbitrary φ1, . . . , φk set Aφ1,...,φk of k-dimensional single-phase

values of the CRP ξ by the set
{(

ξ
(

ω, tφ1
m

)
, . . . , ξ

(
ω, tφk

m

))
: m ∈ Z

}
of its actualizations in

all k-dimensional cycles of the CRP ξ as follows:

Aψ1,...,ψk =
⋃

m∈Z

(
ξ
(

ω, tψ1
0 + T

(
tψ1
0 , n

))
, . . . , ξ

(
ω, tψk

0 + T
(

tψk
0 , n

)))
,(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1.

(55)

Using the rhythm function T(t, n) of the CRP ξ, similar to expressions (45) and (46),
let us represent the CRP ξ and its Cartesian product ξk as follows:

ξ =
⋃

n∈Z

⋃
φ∈Wc0

(
tφ
0 + T

(
tφ
0 , n

)
, ξ
(

ω, tφ
0 + T

(
tφ
0 , n

)))
, (56)

ξk =
⋃

n∈Z
⋃
(ψ1,...,ψk)∈Wc0×Rk−1

((
tψ1
0 + T

(
tψ1
0 , n

)
, ξ
(

ω, tψ1
0 +

+T
(

tψ1
0 , n

)))
, . . . ,

(
tψk
0 + T

(
tψk
0 , n

)
, ξ
(

ω, tψk
0 + T

(
tψk
0 , n

))))
.

(57)

Similarly to the representations of the Cartesian product ξk according to Formula (57),
we can provide the following representations of the k-dimensional distribution functions
Fkξ

(x1, . . . , xk, t1, . . . , tk) of the CRP ξ:
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Fkξ
=

⋃
(ψ1,...,ψk)∈Wc0×Rk−1

⋃
n∈Z

((
tψ1
0 + T

(
tψ1
0 , n

)
, . . . , tψk

0 +

T
(

tψk
0 , n

))
, Fkξψ1,...,ψk

(
x1, . . . , xk, tψ1

0 + T
(

tψ1
0 , n

)
, . . . , tψk

0 + T
(

tψk
0 , n

)))
, k ∈ N.

(58)

For the k-dimensional distribution functions Fkξ
(x1, . . . , xk, t1, . . . , tk) of the CRP ξ

from family (2), the following equality is obtained:

pk

((
tψ1
0 , ξ

(
ω, tψ1

0

))
, . . . ,

(
tψk
0 , ξ

(
ω, tψk

0

)))
=

= pk

((
tψ1
0 + T

(
tψ1
0 , n

)
, ξ
(

ω, tψ1
0 + T

(
tψ1
0 , n

)))
, . . . ,

(
tψk
0 + T

(
tψk
0 , n

)
, ξ
(

ω, tψk
0 + T

(
tψk
0 , n

))))
=

= Fkξ

(
x1, . . . , xk, tψ1

0 , . . . , tψk
0

)
= Fkξ

(
x1, . . . , xk, tψ1

0 + T
(

tψ1
0 , n

)
, . . . , tψk

0 + T
(

tψk
0 , n

))
,

x1, . . . , xk ∈ R,
(

tψ1
0 , . . . , tψk

0

)
, (ψ1, . . . , ψk) ∈ Wc0 × Rk−1, n ∈ Z, k ∈ N.

(59)

The analytical dependencies presented above show that although cyclic, phase and
rhythm structures are separate structures that reflect different aspects of the temporal
(spatial) structure of cyclic signals, they are conceptually, formally and methodologically
interrelated, as they are different aspects of the same mathematical model of cyclic signals.
As an illustration of the close relationship between the cyclic, phase, and rhythm structures
of a cyclic signal, Figure 4 presents a graphical representation of a segment of a cyclic
deterministic function ξ(t), along with its cycles, phases and rhythm function. The cyclic
deterministic function ξ(t) can be interpreted as a degenerate case of a CRP, namely, as a
CRP with zero dispersion.

Definition 3 for cyclic random processes does not contain the requirement of sep-
arability; however, this definition can always be supplemented with this requirement,
which enables a full probabilistic description of a CRP using the countable family (2) of
its consistent distribution functions. As follows from Theorem 1, it is possible to provide
another definition of a CRP.

Definition 14. A separable random process ξ(ω, t), ω ∈ Ω, t ∈ R is called a cyclic ran-
dom process of continuous argument if the function T(t, n), t ∈ R, n ∈ Z exists and sat-
isfies conditions (51) and (52) and if for any t1, . . . , tk from the set of separability of the pro-
cess ξ(ω, t), ω ∈ Ω, t ∈ R, the k-dimensional random vectors (ξ(ω, t1), . . . , ξ(ω, tk)) and
(ξ(ω, t1 + T(t1, n)), . . . , ξ(ω, tk + T(tk, n))) are stochastically equivalent in a broad sense for
all n ∈ Z and for all k ∈ N.

At the theoretical level, such dependences of cyclic, phase and rhythm structures will
be manifested in the fact that if there are given phase and rhythm structures, then it is
possible to reproduce the cyclic structure of a cyclic signal, and vice versa: if the cyclic
structure is given, then it is possible to reproduce the phase and rhythm structures. At the
applied level, the connection of cyclic, phase and rhythm structures is manifested in the
need to evaluate the characteristics of some structures in order to be able to evaluate the
characteristics of other structures, for example, in the need to pre-determine the rhythm
function of a cyclic signal in order to evaluate the characteristics of its cyclic and phase
structures. On the other hand, in order to evaluate the characteristics of the rhythmic
structure (rhythm function), it is necessary first to have information about the cyclic and
phase structures, for example, information about the time points of the beginning of the
cycles of a cyclic signal.
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8. The Main Subclasses of CRP

CRPs include many different subclasses of random processes with cyclic probabilistic
characteristics [47]. In particular, if the type of function of the rhythm of the process is a
feature of the division of the class, then it is possible to distinguish a class of CRPs with
a regular (stable) rhythm, known in the literature as periodic (cyclostationary) random
processes, and CRPs with an irregular (variable) rhythm. Namely, the periodic random
process is a CRP with a regular (stable) rhythm, or rather with a rhythm function T(t, n) =
n·T, T = const > 0. The irregular rhythm signal (variable rhythm signal) is a signal whose
model is a CRP with a rhythm function T(t, n) ̸= n·T (T(t, 1) ̸= const). Depending on
the type of distribution function of a CRP, it is possible to distinguish a class of normally
distributed CRPs, a class of CRPs with a Poisson distribution, a class of CRPs with a uniform
distribution, etc. It is also possible to distinguish a class of cyclic Markov random processes
and a class of CRPs with independent values (a class of cyclic white noise). Provided
that the mathematical expectation and correlation function of CRPs exist, then a CRP is a
cyclically correlated random process.

Among CRPs, it is important in theoretical and applied dimensions to distinguish
the class of fractal cyclic random (stochastic) processes. Namely, CRPs in which all or
some probabilistic characteristics (distribution functions and moment functions) have a
fractal dimension should be called fractal cyclic random processes (fractal cyclic stochastic
processes). These random processes combine both the properties of cyclicity and fractality.
Studies of the fractal properties of CRPs such as the Hurst parameter and the Hausdorff
measure are promising. Such research is interesting to conduct both from the standpoint of
the phase multidimensional structure of a cyclic random process and from the standpoint
of its multidimensional cyclic probabilistic structure. It will be necessary to devote a
separate scientific article to the construction of such random processes and the study of
their properties.

9. Advantages of a Cyclic Random Process Compared to a Periodic Random Process

As shown above, a subclass of the CRP is the cyclostationary (periodic) random process.
This enables the use of a set of powerful methods of processing cyclic signals with a stable
rhythm, which developed over 60 years of active research. However, the main advantage
of a CRP in comparison to a periodic random process is revealed precisely in the tasks of
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mathematical modeling, computer simulations and the processing of cyclic signals with a
variable rhythm, since for such cyclic signals, a periodic random process is an inadequate
mathematical model. The main reason for the CRP’s advantage is the presence of the formal
means of adaptation to changes in the rhythm of the investigated cyclic signals, which is
lacking in the periodic random process. This property of the model enables the development
of effective rhythm-adaptive methods for the statistical processing of cyclic signals with a
variable (irregular) rhythm in both the time and spectral domains [62]. This ensures high
levels of accuracy and reliability in solving many applied problems in medical diagnostics,
biometric authentication, the construction of brain–computer interfaces, diagnosing the
surface state of materials, and analyzing and forecasting cyclic economic processes and
cyclic processes in energy.

Statistical methods for CRP processing are based on its cyclic and phase multidimen-
sional structures (studied above) and make it possible to estimate one-dimensional and
multidimensional probabilistic characteristics of cyclic stochastic signals regardless of the
type of their rhythm, i.e., they are suitable for analyzing signals with regular and with
irregular rhythms. Let us demonstrate the process of the statistical estimation of some
one-dimensional and two-dimensional moment functions of cyclic stochastic signals for
the task of biometric authentication by ECG signals. We will conduct this study within
the framework of two mathematical models of the ECG, namely, in the form of the peri-
odic [32,40,63–65] and CRP, which will enable us to demonstrate the advantages of the CRP
as a more general random process over the periodic random process. We use ECG signals
(see Figures 5 and 6) that were registered in the first and second lead from a conditionally
healthy patient at rest over a long observation period. These data were obtained from the
open CEBS database (PhysioNet resource) [66], taken from the file entitled m013.dat.
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Figure 6. Graph of ECG results (lead II).

For the statistical processing of the ECG, we used software that was developed in the
Python language and is described in the article of [52]. The estimation T̂(t, 1) of the rhythm
function T(t, 1) for these ECG signals is presented in Figure 7. The estimation of the rhythm
function was carried out using the method of the piecewise linear interpolation of a discrete
rhythm function [49]. The Python library NeuroKit2 was used for ECG segmentation and
the ECG rhythm function evaluation.
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The first cycles of the statistical estimations of some initial and central moment func-
tions of the ECG signals are presented in Figures 8–12. The statistical estimation m̂kξ

(t) of
the initial moment function of the k-th order mkξ

(t) of the ECG signals is calculated based
on the following formula:

m̂kξ
(t) =

1
M

· ∑M−1
n=0 ξk

ω

(
t + T̂(t, n)

)
, t ∈ Wc1 . (60)
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Figure 12. Graph of statistical estimation of central moment function of the 2nd order (dispersion) of
the ECG for processing on the basis of CRP (lead I).

Under the condition that k = 1, Formula (60) is a calculation formula for the statis-
tical estimation m̂ξ(t) = m̂1ξ

(t) of the mathematical expectation mξ(t) of the ECG (see
Figures 8 and 9).

Under the condition that k = 2, Formula (60) is a calculation formula for the statistical
estimation m̂2ξ

(t) of the initial moment function of the second-order m2ξ
(t) of the ECG (see

Figures 10 and 11).
The statistical estimation d̂kξ

(t) of the central moment function of the k-th order dkξ
(t)

of the ECG is calculated based on the following formula:

d̂kξ
(t) =

1
M − 1

· ∑M−1
n=0

[
ξω

(
t + T̂(t, n)

)
− m̂ξ

(
t + T̂(t, n)

)]k, t ∈ Wc1 . (61)

Under the condition that k = 2, Formula (61) is a calculation formula for the statistical
estimation d̂2ξ

(t) of the central moment function of the 2nd order (dispersion) d2ξ
(t) of the

ECG (see Figures 12 and 13).
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the ECG for processing on the basis of CRP (lead II).

The statistical estimation R̂2ξ
(t1, t2) of the autocorrelation function R2ξ

(t1, t2) of the
ECG is calculated based on the following formula:

R̂2ξ
(t1, t2) =

1
M−M1+1 · ∑M−M1

n=0
[
ξω

(
t1 + T̂(t1, n)

)
· ξω

(
t2 + T̂(t2, n)

)]
,

t1 ∈ Wc1 , t2 ∈ ⋃M1
m=1 Wcm ,

(62)

where M1(M1 << M)- the number of cycles in which argument t2 gain value [47].
The statistical estimation Ĉ2ξ

(t1, t2) of the autocovariation function C2ξ
(t1, t2) of the

ECG is calculated based on the following formula:

Ĉ2ξ
(t1, t2) =

1
M−M1

∑M−M1
n=0 [

(
ξω

(
t1 + T̂(t1, n)

)
− m̂ξ

(
t1 + T̂(t1, n)

))
· . . . ·(

ξω

(
t2 + T̂(t2, n)

)
− m̂ξ

(
t2 + T̂(t2, n)

))
], t1 ∈ Wc1 , t2 ∈ ⋃M1

m=1 Wcm .
(63)

Graphs of the statistical estimations of the autocorrelation and autocovariation func-
tions of the ECG are presented in Figures 14 and 15.
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A similar statistical evaluation of the probabilistic characteristics of the studied cardiac
signal was carried out within the framework of its model in the form of a periodic (cy-
clostationary) random process, which is described in works of [32,40,63–65]. The average
value of the duration of its cardiocycles is taken as a statistical estimate of the period of the
cardiac signal, as shown below:

T̂av = ∑M
n=1 T̂

(∼
t 1,1, n

)
= ∑M−1

n=0 T̂
(∼

t n,1, 1
)

. (64)

The first cycles of the statistical estimations of some initial and central moment func-
tions of the ECG ξω(t) for processing on the basis of the periodic random process are
presented in Figures 16–21.

The statistical estimation m̂kξT̂av
(t) of the initial moment function of the k-th order

mkξT̂av
(t) of the ECG ξω(t) for processing on the basis of the periodic random process is

calculated based on the following formula:

m̂kξT̂av
(t) =

1
M

· ∑M−1
n=0 ξk

ω

(
t + n · T̂av

)
, t ∈ Wc1 . (65)

Under the condition that k = 1, Formula (65) is a calculation formula for the statistical
estimation m̂ξT̂av

(t) = m̂1ξT̂av
(t) of the mathematical expectation mξT̂av

(t) = m1ξT̂av
(t) of the

ECG for processing on the basis of the periodic random process (see Figures 16 and 17).
Under the condition that k = 2, Formula (61) is a calculation formula for the statistical

estimation m̂2ξT̂av
(t) of the initial moment function of the second-order m2ξT̂av

(t) of the ECG

for processing on the basis of the periodic random process (see Figures 18 and 19).
The statistical estimation of the central moment function of the k-th order of the ECG

for processing on the basis of the periodic random process is calculated based on the
following formula:

d̂kξT̂av
(t) =

1
M − 1

· ∑M−1
n=0

[
ξω

(
t + n · T̂av

)
− m̂ξ

(
t + n · T̂av

)]k, t ∈ Wc1 . (66)

Under the condition that k = 2, Formula (62) is a calculation formula for the sta-
tistical estimation d̂2ξT̂av

(t) of the central moment function of the second-order (disper-
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sion) d2ξT̂av
(t) of the ECG for processing on the basis of the periodic random process (see

Figures 20 and 21).
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The statistical estimation R̂2ξT̂av
(t1, t2) of the autocorrelation function R2ξT̂av

(t1, t2) of

the ECG for processing on the basis of the periodic random process is calculated based on
the following formula:

R̂2ξT̂av
(t1, t2) =

1
M−M1+1 · ∑M−M1

n=0
[
ξω

(
t1 + n · T̂av

)
· ξω

(
t2 + n · T̂av

)]
,

t1 ∈ Wc1 , t2 ∈ ⋃M1
m=1 Wcm .

(67)

where M1(M1 << M)- the number of cycles in which argument t2 gain value [47].
The statistical estimation Ĉ2ξT̂av

(t1, t2) of the autocovariation function C2ξT̂av
(t1, t2) of

the ECG for processing on the basis of the periodic random process is calculated based on
the following formula:

Ĉ2ξT̂av
(t1, t2) =

1
M−M1

∑M−M1
n=0 [

(
ξω

(
t1 + n · T̂av

)
− m̂ξ

(
t1 + n · T̂av(t1, n)

))
· . . . ·(

ξω

(
t2 + n · T̂av

)
− m̂ξ

(
t2 + n · T̂av

))
], t1 ∈ Wc1 , t2 ∈ ⋃M1

m=1 Wcm

(68)

Graphs of the statistical estimates of the autocorrelation and autocovariation functions
of the ECG for processing on the basis of the periodic random process are presented in
Figures 22 and 23.

As can be seen from Figures 8–15, the estimated probabilistic characteristics of the
ECG based on its mathematical model in the form of the CRP, thanks to the adaptation
of our statistical estimation methods to changes in its rhythm, have a clear, non-blurred
time structure (the effect of blurring is practically absent). The opposite situation occurs
when applying methods for the statistical estimation of probabilistic characteristics of the
ECG based on its mathematical model in the form of a periodic (cyclostationary) random
process. Namely, as can be seen from Figures 16–23, there is a significant effect from
blurring statistical ECG estimates, since these statistical methods do not take into account
changes in the rhythm of the signal.

Additional indicators that illustrate the significant advantages of CRP over a peri-
odic random process are dependences of the average on the interval (0,1) of the sample
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standard deviation of the ECG from the number of averaged cycles, which are shown in
Figures 24 and 25.
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As can be seen from these figures, the average of the interval (0,1) of the sample
standard deviation of the ECG within the framework of the CRP is more than 10 times
smaller than the same values for a periodic random process, which additionally indicates
the rhythm-adaptive methods for processing cyclic biomedical signals based on their model
in the form of CRPs have a significant higher accuracy.

Let us demonstrate the practically oriented advantages of the CRP in ECG biometric
authentication problems, which is an important way to dynamically biometrically authen-
ticate humans, the methods of which, in particular, are described in [67–69]. The main
averaged characteristics of the effectiveness and time computational complexity of the
authentication of humans using eight different types of binary classifiers (statistical interval
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classifier (sic), K-nearest neighbors, linear SVM, decision tree, random forest, multilayer
perceptron, adaptive boosting and naive Bayes) based on the estimation of the mathemati-
cal expectation of the ECG are presented in Tables 1–4. Note that the characteristics given
in Tables 1–4 are the averaged characteristics of 18 out of 20 people selected from the CEBS
database [66].
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As can be seen from Tables 1–4, the use of rhythm-adaptive ECG processing on the
basis of a CRP, compared to non-rhythm-adaptive ECG processing on the basis of a pe-
riodic random process, is characterized by a significantly higher level of effectiveness in
biometrically authenticating people. According to the characteristics of the time computa-
tional complexity of authentication algorithms, there are no significant differences between
rhythm-adaptive and non-rhythm-adaptive ECG-processing methods.

Table 1. The main averaged characteristics of biometric authentication of humans in case of applica-
tion of rhythm adaptive methods of ECG processing (lead I).

Classifier Type

SIC k-Nearest
Neighbors

Linear
SVM

Decision
Tree

Random
Forest

Multilayer
Perceptron

Adaptive
Boosting

Naive
Bayes

Accuracy 0.977 0.999 1.0 1.0 0.992 0.993 1.0 1.0
Balanced Accuracy 0.978 0.999 1.0 1.0 0.992 0.993 1.0 1.0

F1 score 0.978 0.999 1.0 1.0 0.992 0.994 1.0 1.0
Training time (ms.) 0.81 4.98 15.09 8223.5 84.77 34.36 3790.3 673.49
Testing time (ms.) 3.96 28.81 2.34 63.21 2.26 3.31 3.05 11.99
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Table 2. The main averaged characteristics of biometric authentication of humans in case of applica-
tion of non-rhythm adaptive methods of ECG processing (lead I).

Classifier Type

SIC k-Nearest
Neighbors

Linear
SVM

Decision
Tree

Random
Forest

Multilayer
Perceptron

Adaptive
Boosting

Naive
Bayes

Accuracy 0.629 0.751 0.555 0.714 0.731 0.787 0.813 0.769
Balanced Accuracy 0.618 0.752 0.548 0.703 0.729 0.784 0.813 0.769

F1 score 0.384 0.719 0.529 0.644 0.705 0.761 0.802 0.761
Training time (ms.) 0.71 6.11 61.96 8888.9 160.55 37.49 6328.2 1118.8
Testing time (ms.) 3.73 23.59 13.47 67.44 1.22 3.48 5.46 18.01

Table 3. The main averaged characteristics of biometric authentication of humans in case of applica-
tion of rhythm adaptive methods of ECG processing (lead II).

Classifier Type

SIC k-Nearest
Neighbors

Linear
SVM

Decision
Tree

Random
Forest

Multilayer
Perceptron

Adaptive
Boosting

Naive
Bayes

Accuracy 0.979 0.998 1.0 1.0 0.992 0.993 1.0 0.994
Balanced Accuracy 0.979 0.998 1.0 1.0 0.992 0.993 1.0 0.994

F1 score 0.979 0.998 1.0 1.0 0.992 0.993 1.0 0.994
Training time (ms.) 0.62 4.23 13.31 4833.5 84.71 33.24 1960.1 683.45
Testing time (ms.) 3.15 22.52 2.19 68.62 2.08 2.95 2.14 11.06

Table 4. The main averaged characteristics of biometric authentication of humans in case of applica-
tion of rhythm adaptive methods of ECG processing (lead II).

Classifier Type

SIC k-Nearest
Neighbors

Linear
SVM

Decision
Tree

Random
Forest

Multilayer
Perceptron

Adaptive
Boosting

Naive
Bayes

Accuracy 0.663 0.738 0.552 0.705 0.717 0.792 0.797 0.777
Balanced Accuracy 0.648 0.741 0.547 0.694 0.718 0.791 0.796 0.777

F1 score 0.419 0.713 0.538 0.667 0.697 0.778 0.783 0.767
Training time (ms.) 0.61 4.49 62.01 9986.2 159.61 29.21 4615.9 1077.9
Testing time (ms.) 2.82 20.51 15.51 60.65 1.24 3.38 5.28 16.82

10. Discussion

The approach to the construction of CRPs developed in the work is based on the ideas
of category theory, that is not typical for the theory of random processes, in particular, is
based on the idea of a certain type of isomorphism between relational systems, the carriers
of which are certain segments of the random process. This made it possible to build a math-
ematical model of cyclic stochastic signals that simultaneously integrates the properties of
the investigated signals with both regular (stable) and irregular (variable) rhythms. Also,
the approach proposed in this work made it possible to carry out a formalization of cyclic,
phase and rhythm structures of cyclic stochastic signals.

Mathematical objects that represent cyclic, phase and rhythm structures provide a
wide range of mathematical tools that can be used as diagnostic and prognostic features in
the tasks of cyclic signal processing. In particular, all the features can be divided into two
large classes: the features of the morphological structure and the features of the rhythm
structure of cyclic signals. Morphological features are determined by the cyclic and phase
structures of a cyclic random process, and rhythmic features are determined by the rhythm
structure of a CRP. Morphological features complement rhythmic ones, and rhythmic
features complement morphological ones. The rhythmic structure, on the other hand, is a
carrier of another type of information about the oscillatory process, namely, information
on the unfolding of the cyclic phase structure in time, in reference to the time axis. Such
information in itself is a valuable feature in the tasks of analyzing the rhythm of many
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oscillating dynamic systems (biological, physical, economic, energetic and astronomical).
For example, this takes place in the tasks of analyzing heart rhythms, the economic system’s
own time, and in the tasks of analyzing and predicting the time of occurrence of recurring
astronomical phenomena (spots on the Sun, the pulse activity of stars, pulsars and quasars).
Without a clear mathematical description of such structures, it is impossible to solve similar
problems both at the theoretical and applied levels.

The cyclic structure of a CRP, in addition to its independent role as a fundamental
mathematical object in the tasks of modeling and processing cyclic signals, also plays a
purely methodological role as a class-forming property that is used as a structural reference
point in the task of establishing necessary and sufficient conditions of structural function
(rhythm function), which are given in Theorem 1.

11. Conclusions

In this work, for the first time in the literature, we proposed a procedure for construct-
ing a CRP based on the idea of isomorphism between relational systems, whose carriers
are certain segments (cycles) of the CRP. The CRP takes into account the cyclicity and
stochasticity of cyclic signals and has the effective means of taking into account both the
regularity and irregularity of the rhythm of cyclic signals. Mathematical objects that are
modeling the cyclic, phase and rhythm structures, in particular, the multidimensional cyclic
and phase structures of CRPs, are presented. The fundamental properties of and analytical
dependencies between the multidimensional cyclic, phase and rhythm structures of a cyclic
random process have been established, which are important for solving theoretical and
applied problems for mathematically modeling and statistically processing cyclic stochastic
signals with both regular and irregular rhythms.

Based on a series of experiments, the significant advantages of the CRP as a mathemat-
ical model of the ECG compared to the periodic random process are shown. In particular, a
significantly higher accuracy of the rhythm-adaptive methods of ECG processing based
on their model in the form of a cyclic random process was demonstrated. It is also estab-
lished that the use of rhythm-adaptive ECG processing on the basis of a CRP, compared
to non-rhythm-adaptive ECG processing on the basis of a periodic random process, is
characterized by a significantly higher level of effectiveness in biometrically authenticating
people.

The results obtained in this article significantly improve the theory of the modeling of
cyclic stochastic signals within the family of their consistent distribution functions, and,
thanks to the detailed formal representation of the multidimensional cyclic structure, multi-
dimensional phase structure and rhythmic structure of CRPs, open up new opportunities
to increase the informativeness of analyses of cyclic signals of various natures (biological,
physical, economic, energetic and astronomical) in modern systems for automated analyses,
forecasting and computer simulations.
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