Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion
Abstract
:1. Introduction
1.1. Indicators of Boundary Layer Disturbance
1.2. Urban Meteorology and Pollutants in the Boundary Layer
1.3. Kolmogorov Entropy (SK) and Loss of Information (<ΔI>)
1.4. History of Applications of the CK Parameter
1.5. Anomalous Diffusion
1.5.1. Types of Anomalous Diffusion
1.5.2. Anomalous Diffusion Is a Nonlinear Process
1.6. Complex Systems (Corollary)
2. Materials and Methods
2.1. Study Area
2.2. The Data
2.3. Mathematical Method Used in the Analysis of Nonlinear Time Series
2.4. The Statistics of Heavy-Tailed Distributions
3. Results
3.1. Chaotic Results
3.2. Heavy Tail Probability
3.2.1. Basin
3.2.2. Mountain
3.2.3. Coast
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Basin | Variables Each 17,520 h | λ [bits] | Dc | Sk [bits/h] | H | LZ | <ΔI> |
---|---|---|---|---|---|---|---|
(a). Pudahuel (2018–2019, 584 masl) | CO | 0.017 ± 0.006 | 2.937 ± 0.115 | 0.459 | 0.933 | 0.014 | −0.056 |
PM10 | 0.593 ± 0.030 | 3.531 ± 1.665 | 0.246 | 0.942 | 0.178 | −1.970 | |
PM2.5 | 0.260 ± 0.026 | 1.231 ± 0.309 | 0.326 | 0.919 | 0.309 | −0.864 | |
0.931 | −0.963 | ||||||
T | 0.261 ± 0.016 | 2.551 ± 0.069 | 0.289 | 0.917 | 0.238 | −0.867 | |
WS | 0.960 ± 0.018 | 4.029 ± 0.292 | 0.371 | 0.908 | 0.468 | −3.189 | |
RH | 0.305 ± 0.021 | 3.026 ± 0.119 | 0.355 | 0.936 | 0.449 | −1.013 | |
0.920 | −1.690 | ||||||
Variables each 17,520 h | |||||||
(b) Kingston College (2017–2018, 2 masl) | CO | 0.141 ± 0.012 | 2.240 ± 0.058 | 0.389 | 0.915 | 0.076 | −0.468 |
PM10 | 0.224 ± 0.027 | 1.412 ± 0.183 | 0.179 | 0.908 | 0.204 | −0.744 | |
PM2.5 | 0.255 ± 0.025 | 2.435 ± 1.032 | 0.334 | 0.896 | 0.523 | −0.847 | |
0.906 | −0.686 | ||||||
T | 0.269 ± 0.017 | 1.879 ± 0.082 | 0.292 | 0.915 | 0.200 | −0.894 | |
WS | 0.613 ± 0.018 | 4.749 ± 0.647 | 0.342 | 0.892 | 0.569 | −2.036 | |
RH | 1.060 ± 0.023 | 2.040 ± 0.327 | 0.161 | 0.893 | 0.595 | −3.521 | |
0.900 | −2.150 | ||||||
Variables each 28,463 h | |||||||
(c). Quilicura (2019–2022, 485 masl) | CO | 0.5800.077 | 2.1270.110 | 0.285 | 0.933 | 0.0014 | −1.927 |
PM10 | 0.5740.030 | 0.9450.017 | 0.252 | 0.930 | 0.175 | −1.907 | |
PM2.5 | 0.2410.021 | 1.4320.216 | 0.415 | 0.938 | 0.337 | −0.800 | |
0.934 | 1.545 | ||||||
T | 0.1610.014 | 1.5590.761 | 0.153 | 0.920 | 0.054 | −0.535 | |
WS | 0.0800.013 | 1.9390.078 | 0.351 | 0.940 | 0.165 | −0.266 | |
RH | 0.7140.048 | 2.7040.036 | 0.100 | 0.934 | 0.027 | −2.372 | |
0.931 | −1.058 | ||||||
Variables each 28,463 h | |||||||
(d). La Florida 2019–2022, 784 masl) | CO | 0.0250.007 | 2.0890.052 | 0.382 | 0.933 | 0.016 | −0.083 |
PM10 | 0.7160.031 | 1.0670.203 | 0.257 | 0.930 | 0.164 | −2.378 | |
PM2.5 | 0.2460.020 | 1.3060.172 | 0.367 | 0.946 | 0.257 | −0.817 | |
0.936 | −1.093 | ||||||
T | 0.1910.016 | 1.6320.798 | 0.175 | 0.920 | 0.073 | −0.634 | |
WS | 0.3140.016 | 1.9910.045 | 0.275 | 0.942 | 0.181 | −1.043 | |
RH | 0.1670.017 | 2.4650.701 | 0.229 | 0.934 | 0.144 | −0.555 | |
0.932 | −0.744 | ||||||
Variables each 17,520 h | |||||||
(e). Coyhaique (2016–2017, 310 masl) | CO | 0.740 ± 0.026 | 3.765 ± 1.356 | 0.207 | 0.867 | 0.477 | −2.458 |
PM10 | 0.500 ± 0.031 | 1.523 ± 0.996 | 0.656 | 0.926 | 0.236 | −1.661 | |
PM2.5 | 0.531 ± 0.032 | 1.960 ± 0.737 | 0.312 | 0.925 | 0.256 | −1.764 | |
0.906 | −1.961 | ||||||
T | 0.718 ± 0.033 | 1.660 ± 0.605 | 0.436 | 0.903 | 0.486 | −2.385 | |
WS | 0.331 ± 0.025 | 3.750 ± 0.975 | 0.211 | 0.816 | 0.364 | −1.100 | |
RH | 0.007 ± 0.005 | 1.660 ± 0.605 | 0.383 | 0.903 | 0.007 | −0.023 | |
0.874 | 1.169 | ||||||
Variables each 8760 h | |||||||
(f). Las Encinas Station (2018, 360 masl) | CO | 0.016 ± 0.008 | 1.107 ± 0.025 | 0.197 | 0.928 | 0.015 | −0.053 |
PM10 | 0.146 ± 0.034 | 0.990 ± 0.031 | 0.218 | 0.909 | 0.307 | −0.485 | |
PM2.5 | 0.728 ± 0.053 | 3.108 ± 0.847 | 0.784 | 0.897 | 0.422 | −2.418 | |
0.911 | −0.985 | ||||||
T | 0.477 ± 0.023 | 2.823 ± 0.214 | 0.467 | 0.909 | 0.365 | −1.585 | |
WS | 1.335 ± 0.039 | 1.138 ± 0.120 | 0.388 | 0.862 | 0.449 | −4.435 | |
RH | 0.823 ± 0.034 | 0.792 ± 0.113 | 0.317 | 0.897 | 0.308 | −2.734 | |
0.889 | −2.918 | ||||||
Variables each 8760 h | |||||||
(g). Entre Lagos Station (2011, 39 masl) | CO | 1.090 ± 0.093 | 1.678 ± 0.269 | 0.626 | 0.854 | 0.353 | −3.621 |
PM10 | 0.586 ± 0.074 | 0.988 ± 0.611 | 0.624 | 0.767 | 0.587 | −1.947 | |
PM2.5 | 0.808 ± 0.082 | 1.025 ± 0.210 | 0.531 | 0.783 | 0.644 | −2.684 | |
0.801 | −2.751 | ||||||
T | 1.166 ± 0.087 | 1.110 ± 0.233 | 0.913 | 0.847 | 0.388 | −3.873 | |
WS | 1.166 ± 0.096 | 2.158 ± 0.228 | 0.448 | 0.838 | 0.353 | −3.873 | |
RH | 0.527 ± 0.065 | 2.151 ± 0.105 | 0.379 | 0.958 | 0.400 | −1.751 | |
0.881 | −3.166 | ||||||
Variables each 17,520 h | |||||||
(h). México City (2018, 2250 masl) | CO | 0.248 ± 0.025 | 2.602 ± 0.591 | 0.374 | 0.932 | 0.138 | −0.824 |
PM10 | 0.160 ± 0.039 | 1.112 ± 0.147 | 0.409 | 0.905 | 0.287 | −0.532 | |
PM2.5 | 0.135 ± 0.030 | 1.107 ± 0.09 | 0.456 | 0.949 | 0.350 | −0.448 | |
0.927 | −0.601 | ||||||
T | 0.803 ± 0.041 | 1.386 ± 0.794 | 0.083 | 0.998 | 0.283 | −2.668 | |
WS | 0.532 ± 0.037 | 4.145 ± 0.154 | 0.190 | 0.933 | 0.211 | −1.767 | |
RH | 0.019 ± 0.009 | 2.279 ± 0.511 | 0.164 | 0.999 | 0.006 | −0.063 | |
0.976 | −1.499 | ||||||
Mountain | Variables each 17,520 h | ||||||
(i). Center Station (2016–2017, 2400 masl) | CO | 0.681 ± 0.018 | 4.316 ± 2.747 | 0.058 | 0.919 | 0.397 | −2.262 |
PM10 | 0.071 ± 0.014 | 2.802 ± 1.566 | 0.197 | 0.919 | 0.088 | −0.236 | |
PM2.5 | 0.301 ± 0.021 | 4.067 ± 0.086 | 0.509 | 0.898 | 0.463 | −1.000 | |
0.912 | −1.166 | ||||||
T | 0.318 ± 0.016 | 3.143 ± 0.086 | 0.298 | 0.913 | 0.266 | −1.056 | |
WS | 0.694 ± 0.037 | 4.180 ± 0.26 | 0.497 | 0.882 | 0.565 | −2.305 | |
RH | 0.175 ± 0.012 | 3.016 ± 0.096 | 0.431 | 0.921 | 0.423 | −0.581 | |
0.905 | −1.314 | ||||||
Variables each 9468 h | |||||||
(j). Tumbaco, Ecuador (2020 −2021, 2320 masl) | CO | 0.631 ± 0.098 | 1.929 ± 0.079 | 0.183 | 0.929 | 0.006 | −2.096 |
PM10 | 0.493 ± 0.035 | 1.292 ± 0.130 | 0.425 | 0.809 | 0.044 | −1.637 | |
PM2.5 | 0.874 ± 0.040 | 2.164 ± 0.636 | 0.436 | 0.892 | 0.044 | −2.903 | |
0.876 | −2.212 | ||||||
T | 0.033 ± 0.009 | 4.229 ± 0.085 | 0.498 | 0.928 | 0.002 | −0.110 | |
WS | 0.586 ± 0.086 | 3.719 ± 0.063 | 0.345 | 0.929 | 0.002 | −1.946 | |
RH | 0.160 ± 0.017 | 1.731 ± 0.218 | 0.379 | 0.948 | 0.149 | −0.531 | |
0.935 | −0.862 | ||||||
Variables each 11,000 h | |||||||
(k). Carapungo, Ecuador (2020 −2021, 2697 masl) | CO | 0.695 ± 0.091 | 3.348 ± 0.199 | 0.296 | 0.930 | 0.002 | −2.308 |
PM10 | 0.296 ± 0.024 | 1.188 ± 0.076 | 0.273 | 0.843 | 0.050 | −0983 | |
PM2.5 | 0.893 ± 0.037 | 1.720 ± 0.390 | 0.275 | 0.897 | 0.050 | −2.966 | |
0.890 | −2.086 | ||||||
T | 0.077 ± 0.010 | 4.259 ± 0.097 | 0.499 | 0.930 | 0.002 | −0.256 | |
WS | 0.610 ± 0.082 | 3.670 ± 0.048 | 0.389 | 0.930 | 0.002 | −2.026 | |
RH | 0.137 ± 0.015 | 1.545 ± 0.132 | 0.294 | 0.947 | 0.142 | −0.455 | |
0.936 | −0.912 | ||||||
Variables each 29,998 h | |||||||
(l). Andacollo Station (2016–2019, 1017 masl) | CO | ||||||
PM10 | 0.167 ± 0.020 | 4.477 ± 0.541 | 0.195 | 0.906 | 0.110 | −0.555 | |
PM2.5 | |||||||
0.906 | −0.555 | ||||||
T | 0.499 ± 0.021 | 1.928 ± 0.439 | 0.419 | 0.917 | 0.304 | −1.658 | |
WS | 0.670 ± 0.022 | 3.000 ± 0.968 | 0.306 | 0.895 | 0.380 | −2.226 | |
RH | 0.027 ± 0.007 | 2.514 ± 0.05 | 0.146 | 0.974 | 0.113 | −0.090 | |
0.929 | −1.325 | ||||||
Variables each 29,998 h | |||||||
(ll). Camal, Ecuador (2013 −2017, 2850 masl) | CO | 0.037 ± 0.008 | 2.551 ± 0.214 | 0.407 | 0.933 | 0.024 | −0.123 |
PM10 | 0.745 ± 0.031 | 4.037 ± 0.686 | 0.191 | 0.936 | 0.254 | −2.475 | |
PM2.5 | 0.853 ± 0.031 | 1.284 ± 0.193 | 0.313 | 0.921 | 0.226 | −2.833 | |
0.930 | −1.810 | ||||||
T | 0.096 ± 0.013 | 4.678 ± 0.105 | 0.410 | 0.933 | 0.043 | −0.319 | |
WS | 0.091 ± 0.013 | 3.424 ± 0.059 | 0.272 | 0.934 | 0.047 | −0.302 | |
RH | 0.065 ± 0.012 | 2.003 ± 0.266 | 0.360 | 0.940 | 0.095 | −0.216 | |
0.936 | −0.279 | ||||||
Variables each 29,998 h | |||||||
(m). Belisario, Ecuador (2013–2017, 2850 masl) | CO | 0.021 ± 0.007 | 2.485 ± 0.151 | 0.341 | 0.933 | 0.022 | −0.069 |
PM10 | 0.725 ± 0.032 | 2.932 ± 0.514 | 0.313 | 0.937 | 0.246 | −2.408 | |
PM2.5 | 0.844 ± 0.032 | 1.362 ± 0.259 | 0.270 | 0.910 | 0.085 | −2.804 | |
0.926 | −1760 | ||||||
T | 0.151 ± 0.015 | 4.674 ± 0.107 | 0.420 | 0.932 | 0.043 | −0.502 | |
WS | 0.095 ± 0.013 | 4.490 ± 0.077 | 0.381 | 0.934 | 0.047 | −0.316 | |
RH | 0.068 ± 0.012 | 2.084 ± 0.377 | 0.358 | 0.943 | 0.095 | −0.226 | |
0.936 | −0.348 | ||||||
Coast | Variables each 17,520 h | ||||||
(n). Concón Station (2018–2019, 2 masl) | CO | 0.023 ± 0.010 | 2.457 ± 0.414 | 0.326 | 0.927 | 0.016 | −0.076 |
PM10 | 0.058 ± 0.024 | 0.861 ± 0.053 | 0.211 | 0.892 | 0.067 | −0.193 | |
PM2.5 | 0.475 ± 0.046 | 1.178 ± 0.271 | 0.474 | 0.989 | 0.166 | −1.578 | |
0.936 | −0.616 | ||||||
T | 0.105 ± 0.018 | 1.462 ± 0.995 | 0.140 | 0.920 | 0.094 | −0.349 | |
WS | 0.642 ± 0.028 | 3.902 ± 0.217 | 0.636 | 0.839 | 0.056 | −2.133 | |
RH | 0.961 ± 0.033 | 2.999 ± 0.289 | 0.483 | 0.915 | 0.275 | −3.192 | |
0.891 | −1.891 | ||||||
Variables each 5399 h | |||||||
(ñ). Loncura Station (2016–2017, 3 masl) | CO | 0.609 ± 0.084 | 2.189 ± 0.297 | 0.327 | 0.927 | 0.048 | −2.023 |
PM10 | 0.184 ± 0.029 | 1.136 ± 0.058 | 0.284 | 0.835 | 0.031 | −0.611 | |
PM2.5 | 0.223 ± 0.032 | 1.848 ± 0.311 | 0.212 | 0.886 | 0.029 | −0.740 | |
0.883 | −1.125 | ||||||
T | 0.149 ± 0.025 | 1.083 ± 0.380 | 0.619 | 0.917 | 0.051 | −0.495 | |
WS | 0.718 ± 0.063 | 4.335 ± 0.060 | 0.331 | 0.927 | 0.066 | −2.385 | |
RH | 0.553 ± 0.039 | 4.741 ± 0.203 | 0.415 | 0.947 | 0.295 | −1.837 | |
0.930 | −1.572 | ||||||
Variables each 17,520 h | |||||||
(o). Lota Rural Station (2016–2017, 16 masl) | CO | 0.027 ± 0.009 | 1.997 ± 0.061 | 0.121 | 0.896 | 0.043 | −0.090 |
PM10 | 0.366 ± 0.031 | 1.206 ± 0.341 | 0.305 | 0.890 | 0.242 | −1.216 | |
PM2.5 | 0.512 ± 0.030 | 1.603 ± 0.414 | 0.301 | 0.890 | 0.220 | −1.701 | |
0.892 | −1.002 | ||||||
T | 0.314 ± 0.023 | 1.396 ± 0.380 | 0.319 | 0.913 | 0.052 | −1.043 | |
WS | 0.068 ± 0.018 | 2.734 ± 0.034 | 0.202 | 0.843 | 0.038 | −0.226 | |
RH | 0.210 ± 0.020 | 1.857 ± 0.376 | 0.209 | 0.938 | 0.182 | −0.698 | |
0.898 | −0.656 | ||||||
Variables each 22,248 h | |||||||
(p). Lagunillas (2021–2023, 2 masl) | CO | 0.528 ± 0.071 | 3.092 ± 0.023 | 0.410 | 0.933 | 0.020 | −1.754 |
PM10 | 0.347 ± 0.031 | 1.363 ± 0.432 | 0.252 | 0.899 | 0.344 | −1.153 | |
PM2.5 | 0.195 ± 0.015 | 1.481 ± 0.262 | 0.591 | 0.942 | 0.249 | −0.648 | |
0.925 | −1.185 | ||||||
T | 0.391 ± 0.021 | 1.391 ± 0.421 | 0.432 | 0.909 | 0.126 | −1.300 | |
WS | 0.717 ± 0.051 | 1.719 ± 0.254 | 1.081 | 0.933 | 0.028 | −2.382 | |
RH | 0.105 ± 0.013 | 0.371 ± 0.215 | 0.246 | 0.944 | 0.066 | −0.349 | |
0.929 | −1.344 | ||||||
Variables each 22,248 h | |||||||
(q) El Escuadrón (2021–2023, 2 masl) | CO | 0.606 ± 0.076 | 2.836 ± 0.041 | 0.436 | 0.933 | 0.014 | −2.013 |
PM10 | 0.427 ± 0.026 | 1.575 ± 0.458 | 0.249 | 0.908 | 0.432 | −1.418 | |
PM2.5 | 0.517 ± 0.027 | 1.888 ± 0.496 | 0.255 | 0.909 | 0.403 | −1.717 | |
0.916 | −1.716 | ||||||
T | 0.366 ± 0.021 | 1.345 ± 0.306 | 0.236 | 0.916 | 0.110 | −1.216 | |
WS | 0.767 ± 0.050 | 4.541 ± 0.099 | 0.439 | 0.934 | 0.028 | −2.548 | |
RH | 0.376 ± 0.023 | 0.605 ± 0.043 | 0.298 | 0.900 | 0.190 | −1.249 | |
0.916 | −1.671 |
Appendix E
References
- Mandelbrot, B. The Fractal Geometry of Nature, 2nd ed.; Times Books: New York, NY, USA, 1982. [Google Scholar]
- Mandelbrot, B.; Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Falconer, K. The local structure of random processes. J. Lond. Math. Soc. 2003, 67, 657–672. [Google Scholar] [CrossRef]
- Sprott, J.C. Chaos and Time-Series Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Manríquez, R. Estructuras disipativas. De la termodinámica a la psicoterapia familiar. Rev. Asoc. Esp. Neuropsiquiatría 1987, VII, 435–454. [Google Scholar]
- Chen, Y. Normalizing and classifying shape indexes of cities by ideas from fractals. Chaos Solitons Fractals 2022, 154, 111653. [Google Scholar] [CrossRef]
- Molinero, C. A Fractal Theory of Urban Growth. Front. Phys. 2022, 10, 861678. [Google Scholar] [CrossRef]
- Chen, Y.G.; Wang, Y.H.; Li, X.J. Fractal dimensions derived from spatial allometric scaling of urban form. Chaos Solitons Fractals 2019, 126, 122–134. [Google Scholar] [CrossRef]
- Cheng, Q. The perimeter-area fractal model and its application in geology. Math. Geosci. 1995, 27, 69–82. [Google Scholar] [CrossRef]
- De Keersmaecker, M.-L.; Frankhauser, P.; Thomas, I. Using fractal dimensions for characterizing intra-urban diversity: The example of Brussels. Geogr. Anal. 2003, 35, 310–328. [Google Scholar] [CrossRef]
- Dutton, G. Size and shape in the growth of human communities. Ekistics 1973, 36, 142–243. [Google Scholar]
- Feng, J.; Chen, Y.G. Spatiotemporal evolution of urban form and land use structure in Hangzhou, China: Evidence from fractals. Environ. Plan. B Plan. Des. 2010, 37, 838–856. [Google Scholar] [CrossRef]
- Frankhauser, P. La Fractalité des Structures Urbaines (The Fractal Aspects of Urban Structures); Economic: Paris, France, 1994; ISBN 2-7178-2668-8. [Google Scholar]
- Frankhauser, P. The Fractal Approach. A New Tool for the Spatial Analysis of Urban Agglomerations. Popul. Engl. Sel. 1998, 10, 205–240. Available online: http://www.jstor.org/stable/2998685 (accessed on 20 October 2023). [CrossRef]
- Frankhauser, P. Fractal geometry for measuring and modeling urban patterns. In The Dynamics of Complex Urban Systems: An Interdisciplinary Approach; Albeverio, S., Andrey, D., Giordano, P., Vancheri, A., Eds.; Physica-Verlag: Heidelberg, Germany, 2008; pp. 213–243. [Google Scholar]
- Voss, R.F. Random fractals: Characterization and measurement. In Scaling Phenomena in Disordered Systems; Plenum Press: New York, NY, USA, 1985; pp. 1–11. [Google Scholar]
- Voss, R.F. Random Fractal Forgeries. In Fundamental Algorithms for Computer Graphics; Earnshaw, R.A., Ed.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1985; Volume 17. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Gaston, K.J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Phil. Trans. R. Soc. B 2018, 373, 20170092. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- González, J.E.; Ramamurthy, P.; Bornstein, R.D.; Chen, F.; Bou-Zeid, E.R.; Ghandehari, M.; Luvall, J.; Mitra, C.; Niyogi, D. Urban climate and resiliency: A synthesis report of state of the art and future research directions. Urban Clim. 2021, 38, 100858. [Google Scholar] [CrossRef]
- Stull, R.B. Introduction to Boundary Layer Meteorology; Kluwer Academic: Alphen an den Rijn, The Netherland, 1988; p. 666. [Google Scholar]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Crétaux, J.F.; Wada, Y.; Berge-Nguyen, M. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. Available online: https://www.science.org/doi/10.1126/science.abo2812 (accessed on 20 October 2023). [CrossRef] [PubMed]
- World Meteorological Organization. WMO-No. 1290, State of the Global Climate 2021. 2022. ISBN 978-92-63-11290-3. Available online: https://library.wmo.int/doc_num.php?explnum_id=11178 (accessed on 27 October 2023).
- Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; Cameron, L.; Poirier-Bergeron, L.; Poulin-Rheault, R.A.; Fallon, C.; Tricco, A.C.; Witteman, H.O. Health effects of climate change: An overview of systematic reviews. BMJ Open 2021, 11, e046333. [Google Scholar] [CrossRef] [PubMed]
- Tracey Areal, A.; Zhao, Q.; Wigmann, C.; Schneider, A.; Schikowski, T. The effect of air pollution when modified by temperature on respiratory health outcomes: A systematic review and meta-analysis. Sci. Total Environ. 2022, 811, 152336. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Chen, R.; Meng, X.; Yang, C.B.; Zhao, Z.; Kan, H. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China. Environ. Pollut. 2015, 203, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A. Heat and violence. Curr. Dir. Psychol. Sci. 2001, 10, 33–38. [Google Scholar] [CrossRef]
- Miles-Novelo, A.; Anderson, C.A. Climate Change and Aggression. Conference: Army Public Health Council Working Meeting on the Environmental Impacts on Mental Health 2019. Available online: https://www.researchgate.net/publication/354253705_Climate_Change_and_Aggression/citations (accessed on 14 September 2023).
- Eliran Halali, E.; Meiran, N.; Shalev, I. Keep it cool: Temperature priming effect on cognitive control. Psychol. Res. 2017, 81, 343–354. [Google Scholar] [CrossRef]
- Dyke, J.; Kleidon, A. The Maximum Entropy Production Principle: Its Theoretical Foundations and Applications to the Earth System. Entropy 2010, 12, 613–630. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Wang, D. Understanding Atmospheric Behaviour in Terms of Entropy: A Review of Applications of the Second Law of Thermodynamics to Meteorology. Entropy 2011, 13, 211–240. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Approaches to study urban heat island–abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, Q.; Riley, W.J.; Li, F.; Wu, H. Understanding and reducing the uncertainties of land surface energy flux parti-tioning within CMIP6 land models. Agric. For. Meteorol. 2022, 319, 108920. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, Q.; Zheng, S.; Zhao, L.; Chen, M.; Riley, W.J.; Cai, X.; Ma, H.; Li, M.; Wu, H. Deforestation reshapes land-surface energy-flux partitioning. Environ. Res. Lett. 2021, 16, 024014. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Black, S.; Minnett, D.; Parry, I.; Roaf, J.; Zhunussova, K. A Framework for Comparing Climate Mitigation Effort across Countries; Working Paper 2022/254; International Monetary Fund: Washington, DC, USA, 2022. [Google Scholar]
- Fu, J.; Dupre, K.; Tavares, S.; King, D.; Banhalmi-Zakar, Z. Optimized greenery configuration to mitigate urban heat: A decade systematic review. Front. Archit. Res. 2022, 11, 466–491. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Z.; Zhong, J. Analysis of the Impact of Landscape Patterns on Urban Heat Islands: A Case Study of Chengdu, China. Int. J. Environ. Res. Public Health 2022, 19, 13297. [Google Scholar] [CrossRef]
- Palma Behnke, R.; Barría, C.; Basoa, K.; Benavente, D.; Benavides, C.; Campos, B.; de la Maza, N.; Farías, L.; Gallardo, L.; García, M.J.; et al. Chilean NDC Mitigation Proposal: Methodological Approach and Supporting Ambition; Mitigation and Energy Working Group Report; COP25 Scientific Committee; Ministry of Science, Technology, Knowledge and Innovation: Santiago, Chile, 2019; Available online: https://mma.gob.cl/wp-content/uploads/2020/03/Mitigation_NDC_White_Paper.pdf (accessed on 15 January 2023).
- Zhu, L.; Ge, X.; Chen, Y.; Zeng, X.; Pan, W.; Zhang, X.; Ben, S.; Yuan, Q.; Xin, J.; Shao, W.; et al. Short-term effects of ambient air pollution and childhood lower respiratory diseases. Sci. Rep. 2017, 7, 4414. [Google Scholar] [CrossRef]
- Ferrelli, F.; Lujan, M.; Piccolo, M.C. Modificaciones en la distribución espacial de la temperatura y la humedad relativa como resultado del crecimiento urbano: El caso de la ciudad de Bahía Blanca. Rev. Climatol. 2016, 16, 51–61. [Google Scholar]
- Pacheco, P.; Mera, E. Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability. Atmosphere 2022, 13, 1639. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Feng, J. Understanding the Fractal Dimensions of Urban Forms through Spatial Entropy. Entropy 2017, 19, 600. [Google Scholar] [CrossRef]
- Martínez, J.A.; Vinagre, F.A. La Entropía de Kolmogorov; su Sentido Físico y su Aplicación al Estudio de Lechos Fluidizados 2D; Departamento de Química Analítica e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares: Madrid, Spain, 2019; Available online: https://www.academia.edu/2479372 (accessed on 23 September 2022).
- Singh, P.; Sharma, A.; Sur, U.; Rai, P.K. Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri región, Himachal Pradesh, India. Environ. Dev. Sustain. 2021, 23, 5233–5250. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Lv, X.; Ren, X.; Xiao, R. Pollution threshold assessment and risk area delineation of heavy metals in soils through the finite mixture distribution model and Bayesian maximum entropy theory. J. Hazard. Mater. 2023, 452, 131231. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tan, Z.; Liu, C.; Wang, Z.; Cai, X.; Wang, X.; Ye, Z.; Zheng, S. Multi-timescale analysis of air pollution spreaders in Chinese cities based on a transfer entropy network. Front. Environ. Sci. 2022, 10, 970267. [Google Scholar] [CrossRef]
- Alifa, M.; Castruccio, S.; Bolster, D.; Bravo, M.; Crippa, P. Information entropy tradeoffs for efficient uncertainty reduction in estimates of air pollution mortality. Environ. Res. 2022, 212, 113587. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.; Mera, E. Evolution over Time of Urban Thermal Conditions of a City Immersed in a Basin Geography and Mitigation. Atmosphere 2023, 14, 777. [Google Scholar] [CrossRef]
- Pacheco, P.R.; Salini, G.A.; Mera, E.M. Entropía y neguentropía: Una aproximación al proceso de difusión de contaminantes y su sostenibilidad. Rev. Int. Contam. Ambient. 2021, 37, 167–185. [Google Scholar] [CrossRef]
- Pacheco, P.; Mera, E.; Salini, G. Urban Densification Effect on Micrometeorology in Santiago, Chile: A Comparative Study Based on Chaos Theory. Sustainability 2022, 14, 2845. [Google Scholar] [CrossRef]
- Dijkstra, H.A.; Viebahn, J.P. Sensitivity and resilience of the climate system: A conditional nonlinear optimization approach. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 13–22. [Google Scholar] [CrossRef]
- Pacheco, P.; Mera, E.; Fuentes, V. Intensive Urbanization, Urban Meteorology and Air Pollutants: Effects on the Temperature of a City in a Basin Geography. Int. J. Environ. Res. Public Health 2023, 20, 3941. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.; Mera, E.; Fuentes, V.; Parodi, C. Initial Conditions and Resilience in the Atmospheric Boundary Layer of an Urban Basin. Atmosphere 2023, 14, 357. [Google Scholar] [CrossRef]
- Farmer, J.D. Chaotic attractors of an infinite dimensional dynamical system. Phys. D 1982, 4, 366–393. [Google Scholar] [CrossRef]
- Farmer, J.D.; Otto, E.; Yorke, J.A. The dimension of chaotic attractors. Phys. D 1983, 7, 153–180. [Google Scholar] [CrossRef]
- Yu, B.; Huang, C.; Liu, Z.; Wang, H.; Wang, L. A chaotic analysis on air pollution index change over past 10 years in Lanzhou, northwest China. Stoch. Environ. Res. Risk Assess. 2011, 25, 643–653. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick, 1980; Rand, D.Y., Young, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom. 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, L. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On Entropy per unit Time as a Metric Invariant of Automorphisms. In Doklady Akademii Nauk SSSR; Akademiia nauk SSSR: Moscow, Russia, 1959; Volume 124, pp. 754–755. [Google Scholar]
- Sinai, Y.G. On the concept of entropy of a dynamical system. In Doklady Akademii Nauk SSSR; Akademiia nauk SSSR: Moscow, Russia, 1959; Volume 124, p. 768. [Google Scholar]
- Pesin, Y.B. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 1977, 32, 55–114. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A new invariant for transitive dynamical systems. Dokl. Akad. Nauk. Souiza Sovestkikh Sotsialisticheskikh Respuplik 1958, 119, 861–864. [Google Scholar]
- Ruelle, D. Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics; Addison-Wesley Pub Co.: Reading, MA, USA, 1978. [Google Scholar]
- Shaw, R. Strange attractors, chaotic behavior and information flow. Z. Nat. A 1981, 36, 80–112. [Google Scholar] [CrossRef]
- Cohen, A.; Procaccia, I. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A 1985, 31, 1872–1882. [Google Scholar] [CrossRef]
- Han, W.; Li, Z.; Wu, F.; Zhang, Y.; Guo, J.; Su, T.; Cribb, M.; Fan, J.; Chen, T.; Wei, J.; et al. The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmos. Chem. Phys. 2020, 20, 6479–6493. [Google Scholar] [CrossRef]
- SINCA (Sistema de Información Nacional de Calidad del Aire). Available online: https://sinca.mma.gob.cl/ (accessed on 13 April 2023).
- SINAICA. 2022. Mexico, Sistema Nacional de Información de la Calidad del Aire. Available online: https://sinaica.inecc.gob.mx/ (accessed on 12 February 2023).
- SUIA. 2022. Ecuador, Sistema Único de Información Ambiental. Available online: http://suia.ambiente.gob.ec/ambienteseam/home.seam (accessed on 14 January 2023).
- Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 2004, 87, 3518–3524. [Google Scholar] [CrossRef] [PubMed]
- Shlesinger, M.F. Mathematical physics: Search research. Nature 2006, 443, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Herran, D.; Núñez López, M.; Velasco-Hernandez, J.X. Telegraphic double porosity models for head transient behavior in naturally fractured aquifers. Water Resour. Res. 2013, 49, 4399–4408. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Peng, C.K.; Stanley, H.E. Fractals in Biology and Medicine: From DNA to the Heartbeat. In Fractals in Science; Bunde, A., Havlin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Masoliver, J.; Montero, M.; Weiss, G.H. Continuous-time random-walk model for financial distributions. Phys. Rev. E 2003, 67, 021112. [Google Scholar] [CrossRef] [PubMed]
- Magré, O.; Guglielmi, M. Modelling and analysis of fractional Brownian motions. Chaos Solitons Fractals 1997, 8, 377–388. [Google Scholar] [CrossRef]
- Sanaz, S.; Higgins, J.L.; Mannion, P.C.; Tamkun, M.M.; Krapf, D. Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork. Phys. Rev. X 2017, 7, 011031. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Chechkin, A.V.; Metzler, R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 2013, 15, 083039. [Google Scholar] [CrossRef]
- Lim, S.C.; Muniandy, S.V. Self-similar Gaussian processes for modeling anomalous diffusion. Phys. Rev. E 2002, 66, 021114. [Google Scholar] [CrossRef] [PubMed]
- Krapf, D.; Metzler, R. Strange interfacial molecular dynamics. Phys. Today 2019, 72, 48–54. [Google Scholar] [CrossRef]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef] [PubMed]
- Yoav, S.; Miri, B.; Ido, A.; Nir, D. Observation of Anomalous Diffusion and Fractional Self-Similarity in One Dimension. Phys. Rev. Lett. 2012, 108, 093002. [Google Scholar] [CrossRef]
- Bronshtein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shav-Tal, Y.; Barkai, E.; Garini, Y. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 2009, 103, 018102. [Google Scholar] [CrossRef]
- Weigel, A.V.; Simon, B.; Tamkun, M.M.; Krapf, D. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA 2011, 108, 6438–6443. [Google Scholar] [CrossRef] [PubMed]
- Regner, B.M.; Vučinić, D.; Domnisoru, C.; Bartol, T.M.; Hetzer, M.W.; Tartakovsky, D.M.; Sejnowski, T.J. Anomalous Diffusion of Single Particles in Cytoplasm. Biophys. J. 2013, 104, 1652–1660. [Google Scholar] [CrossRef]
- Sabri, A.; Xu, X.; Krapf, D.; Weiss, M. Elucidating the Origin of Heterogeneous Anomalous Diffusion in the Cytoplasm of Mammalian Cells. Phys. Rev. Lett. 2020, 125, 058101. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Leijnse, N.; Oddershede, L.B.; Metzler, R. Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. 2013, 15, 045011. [Google Scholar] [CrossRef]
- Georgiev, S.; Vulkov, L. Parameters Identification and Numerical Simulation for a Fractional Model of Honeybee Population Dynamics. Fractal Fract. 2023, 7, 311. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wrme geforderte Bewegung von in ruhenden Flssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Matheron, G.; De Marsily, G. Is Transport in Porous Media Always Diffusive, a Counterexample. Water Resour. Res. 1980, 16, 901–917. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Mantoglou, A.; Wlty, C.; Rehfeldt, K.R. A Review of Field-Scale Physical Solute Transport Processes in Saturated and Unsaturated Porous Media. Research Project 2485-5 1985, MIT, Cambridge Massachusetts 02139. Available online: https://www.nrc.gov/docs/ML0331/ML033100477.pdf (accessed on 5 August 2023).
- Vainstein, M.H.; Costa, I.V.L.; Oliveira, F.A. Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in complex systems. arXiv 2005. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Benson, D.A.; Meerschaert, M.M.; LaBolle, E.M.; Scheffler, H.-P. Random walk approximation of fractional order multiscaling anomalous diffusion. Phys. Rev. E 2006, 74, 039901. [Google Scholar] [CrossRef]
- Chaves, A.S. A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 1998, 239, 13–16. [Google Scholar] [CrossRef]
- Sprott, J.C. Chaos Data Analyzer Software, Version 2.1; EEUU: Madison, WI, USA, 1995; Available online: https://sprott.physics.wisc.edu./cda.htm (accessed on 7 January 2023).
- Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 2002, 51, 187–292. [Google Scholar] [CrossRef]
- Balcerek, M.; Wyłomańska, A.; Burnecki, K.; Metzler, R.; Krapf, D. Modelling intermittent anomalous diffusion with switching fractional Brownian motion. arXiv 2023. [Google Scholar] [CrossRef]
Station Name | Geography | Climate | Pollution | Wind | T (°C) | RH (%) |
---|---|---|---|---|---|---|
1. Pudahuel, EMO, masl:469 (m) | Located at the bottom of the basin | Cold, dry winters and hot, dry summers. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | South–east day East–south night | 15.3 | 57.7 |
2. Quilicura, EMV, masl:485(m) | Located at the bottom of the basin | Cold, dry winters and hot, dry summers. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | South–east day East–south night | 22 | 50 |
3. La Florida, EML, masl:784 (m) | Andean cryonival retention mountain range and Santiago Basin | Cold, dry winters and hot, dry summers. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | South–east day East–south night | 23 | 55 |
4. Kingston College, NI, masl:12 (m) | River edge plain | Cool, wet summers and cold, wet winters. | Presence, in descending order: PM2.5, CO, PM10, SO2, NO2, and O3 | Northwest–southeast day East–northwest night | 13.3 | 75.2 |
5. Coyhaique, NI, masl:310 (m) | Inland valley plain | Cold and wet winters and summers. | Presence, in descending order: PM2.5 and PM10 | Northwest–east day East–southwest night | 4.8 | 82 |
6. Las Encinas, NI, masl:360 (m) | Inland valley plain | Cool, wet summers and cold, wet winters. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | West–northeast day East–west night | 11.4 | 64.5 |
7. Entre Lagos, NI, masl:39 (m) | Undulating sectors of the intermediate depression | Cool, wet summers and cold, wet winters. | Presence, in descending order: PM2.5, CO, PM10, SO2, and NO2 | East–west day West–east night | 14 | 83 |
8. Mexico City, México, BJU, masl:2250 (m) | Valley bottom plain | Warm and dry in the summer and cool and wet in the winter. | Presence, in descending order: PM10, PM2.5, and CO | North–east day East–west night | 16 | 58.8 |
9. Center Station, NI, masl:2400 (m) | Valley bottom plain | Cool, dry winters and mild, dry summers. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | West–northeast day East–west night | 17.2 | 28.8 |
10. Andacollo, NI, masl:1017 (m) | Coastal mountain range plain | Cool, dry winters and hot, dry summers. | PM10 | North–southeast day East–west night | 21 | 60 |
11. Tumbaco, Ecuador, NI, masl:2331 (m) | Cordilleran plain | Cool and wet in the winter and warm and wet in the summer. | Presence, in descending order: PM10, SO2, and O3 | Northwest–southeast day Southeast–northwest night | 16 | 86 |
12. Carapungo, Ecuador, NI, masl:2851 (m) | Cordilleran valley bottom plain | Cool and wet in the winter and warm and wet in the summer. | Presence, in descending order: PM10, PM2.5, CO, SO2, NOx, and O3 | Northwest–east day East–west night | 11.3 | 86.1 |
13. El Camal Ecuador, NI, masl:2850(m) | Cordilleran valley bottom plain | Cool and wet in the winter and warm and wet in the summer. | Presence, in descending order: PM10, PM2.5, CO, SO2, NOx, and O3 | Northwest–east day East–west night | 11 | 87 |
14. Belisario Ecuador, NI, masl:2850 (m) | Cordilleran valley bottom plain | Cool and wet in the winter and warm and wet in the summer. | Presence, in descending order: PM10, PM2.5, CO, SO2, NOx, and O3 | Northwest–east day East–west night | 12 | 86.5 |
15. Concon, NI, masl:2 (m) | Sector between coastal plain and coastal mountain range | Hot, dry summers and cold, wet winters. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | West–east day East–west night | 15 | 69.5 |
16. Loncura, NI, masl:3 (m) | Hill near the coast | Hot, dry summers and cold, wet winters. | Presence, in descending order: PM10, PM2.5, CO, SO2, NO2, and O3 | West–east day East–west night | 15.1 | 71.5 |
17. Lota Rural Station, NI, masl:16 (m) | Creek and coastal hill | Cool, wet summers and cold, wet winters. | Presence, in descending order: PM2.5, CO, PM10, SO2, NO2, and O3 | West–east day East–west night | 12.7 | 73.8 |
18. Lagunillas, NI, masl:2 (m) | Plain near the coast | Hot, dry summers and cold, wet winters. | Presence, in descending order: PM2.5, CO, PM10, SO2, NO2, and O3 | West–east day East–west night | 14.5 | 68.5 |
19. El Escuadrón, NI, masl:2 (m) | Plain near the coast | Hot, dry summers and cold, wet winters. | Presence, in descending order: PM2.5, CO, PM10, SO2, NO2, and O3 | West–east day East–west night | 14 | 68.2 |
Station Name | Coordinates | PM10 | PM2.5 | CO | T | RH | WV | Owner |
---|---|---|---|---|---|---|---|---|
1. Pudahuel, EMO, masl:469 (m) | 33°27′06.2″ S 70°40′07.8″ W | A | A | B | C | C | D | SINCA |
2. Qulicura, EMV, masl:485 (m) | 33°22′00″ S 70°45′00″ W | A | A | B | C | C | D | SINCA |
3. La Florida, EML, masl:784 (m) | 33°33′00″ S 70°34′00″ W | A | A | B | C | C | D | SINCA |
4. Kingston College, NI, masl:12 (m) | 36°47′4.74″ S 73°3′7.42″ W | E | E | F | G | G | H | SINCA |
5. Coyhaique, NI, masl:310 (m) | 45°34′44.57″ S 72°2′59.88″ W | A | A | I | J | J | K | SINCA |
6. Las Encinas, NI, masl:360 [m] | 38°44′55.38″ S 72°37′14.54″ W | A | A | I | L | L | L | SINCA |
7. Entre Lagos, NI, masl:39 (m) | 40°41′2.36″ S 72°35′47.25″ W | E | E | F | F | F | F | SINCA |
8. Mexico City, BJU, Mexico, masl:2250 (m) | 19°22′12.00″ N 99°9′36.00″ W | F | F | F | F | F | F | SINAICA |
9. Center Station, NI, masl:2400 (m) | 22°27′42.55″ S 68°55′41.45″ W | N | N | M | O | P | Q | SINCA |
10. Andacollo, NI, masl:1017 (m) | 30°13′39.94″ S 71°5′10.09″ W | A | ---- | --- | R | R | S | SINCA |
11. Tumbaco, NI, Ecuador, masl:2331 (m) | 0°12′36′′ S 78°24′00′′ W, | T | T | U | V | V | D | SUIA |
12. Carapungo, NI, Ecuador, masl:2851 (m) | 0°5′54′′ S 78°26′50′′ W | T | W | B | V | V | D | SUIA |
13. El Camal, NI, masl:2850 (m) | 0°6′58′′ S 79°26′52′′ W | T | W | B | V | V | D | SUIA |
14. Belisario, NI, masl:2850 (m) | 0°7′57′′ S 78.4°27′54′′ W | T | W | B | V | V | D | SUIA |
15. Concon, NI, masl:2 (m) | 32°55′29.12″ S 71°30′55.73″ W | N | N | X | O | Y | Z | SINCA |
16. Loncura, NI, masl:3 (m) | 32°47′41.69″ S 71°29′47.11″ W | E | E | AA | P | Y | H | SINCA |
17. Lota Rural Station, NI, masl:16 (m) | 37° 6′0.70″ S 73° 9′7.87″ W | AB | AB | AC | G | G | AD | SINCA |
18. Lagunillas, NI, masl:37 (m) | 36°58′53″ S 73°9′30″ W | N | N | X | O | Y | Z | SINCA |
19. El Escuadrón, NI, masl:2 (m) | 36.5°57′53″ S 73.6°8.4′52″ W | N | N | X | 0 | Y | Z | SINCA |
Morphology | masl | Localities | Σ Sk [bits/h]P | Σ Sk [bits/h]MV | CK |
---|---|---|---|---|---|
Basin (1) | 2250 | México, DF (1) | 1.240 | 0.440 | 0.350 |
Basin (2) | 469 | Pudahuel (2) | 1.030 | 1.020 | 0.980 |
Basin (3) | 495 | Quilicura (3) | 0.952 | 0.604 | 0.634 |
Basin (4) | 784 | La Florida (4) | 1.006 | 0.679 | 0.675 |
Basin (5) | 12 | Kinston College (5) | 0.900 | 0.800 | 0.880 |
Basin (6) | 310 | Coyhaique (6) | 1.180 | 1.030 | 0.870 |
Basin (7) | 360 | Las Encinas (7) | 1.200 | 1.170 | 0.970 |
Basin (8) | 39 | Entre Lagos (8) | 1.780 | 1.740 | 0.970 |
Mountain (9) | 2400 | Centro Station (9) | 0.760 | 1.230 | 1.600 |
Mountain (10) | 1017 | Andacollo Station (10) | 0.200 | 0.870 | 4.460 |
Mountain (11) | 2320 | Tumbaco, Ecuador (11) | 1.044 | 1.222 | 1.170 |
Mountain (12) | 2697 | Carapungo, Ecuador (12) | 0.844 | 1.182 | 1.400 |
Mountain (13) | 2850 | El Camal, Ecuador (13) | 0.911 | 1.042 | 1.144 |
Mountain (14) | 2850 | Belisario, Ecuador (14) | 0.924 | 1.159 | 1.254 |
Coast (15) | 2 | Concón Station (15) | 1.010 | 1.260 | 1.240 |
Coast (16) | 3 | Loncura (16) | 0.820 | 1.360 | 1.660 |
Coast (17) | 16 | Lota Rural Station (17) | 0.730 | 0.733 | 1.004 |
Coast (18) | 37 | Lagunillas (18) | 1.253 | 1.759 | 1.404 |
Coast (19) | 2 | El Escuadrón (19) | 0.940 | 0.964 | 1.030 |
Period | Σ(<ΔI>)P | Σ(<ΔI>)MV | <ΔI>MV/<ΔI>P | <ΔI>comp | Hcomp | DFP | DFMV | |
---|---|---|---|---|---|---|---|---|
Basin | ||||||||
Pudahuel | 2018/2019 | −2.89 | −5.07 | 1.75 | (2) | (3) | 1.069 | 1.080 |
Quilicura | 2019/2022 | −4.63 | −3.17 | 0.68 | (1) | (3) | 1.037 | 1.022 |
La Florida | 2019/2022 | −3.29 | −2.23 | 0.67 | (1) | (3) | 1.034 | 1.015 |
Kingst. Coll | 2017/2018 | −2.06 | −6.45 | 3.13 | (2) | (3) | 1.094 | 1.100 |
Coyhaique | 2016/2017 | −5.88 | −3.51 | 0.60 | (1) | (3) | 1.094 | 1.126 |
Las Enc. Stat | 2018 | −3.00 | −8.75 | 2.92 | (2) | (3) | 1.089 | 1.111 |
Ent. Lag. Stat | 2011 | −8.25 | −9.50 | 1.15 | (2) | (4) | 1.199 | 1.119 |
Mex. City | 2018 | −1.80 | −4.50 | 2.50 | (2) | (4) | 1.073 | 1.024 |
Mountain | ||||||||
Centro Stat | 2016/2017 | −3.50 | −3.94 | 1.13 | (2) | (3) | 1.088 | 1.095 |
Tumbaco | 2020/2021 | −6.64 | −2.59 | 0.40 | (1) | (4) | 1.124 | 1.065 |
Carapungo | 2020/2021 | −6.26 | −2.74 | 0.44 | (1) | (4) | 1.110 | 1.064 |
Andac. Stat | 2016/2019 | −0.56 | −3.97 | 7.09 | (2) | (4) | 1.094 | 1.071 |
El Camal | 2013/2017 | −5.43 | −0.840 | 0.16 | (1) | (4) | 1.070 | 1.063 |
Belisario | 2013/2017 | −5.28 | −1.043 | 0.20 | (1) | (4) | 1.073 | 1.064 |
Coast | ||||||||
Con-Con Stat | 2018/2019 | −1.85 | −5.67 | 3.07 | (2) | (3) | 1.064 | 1.109 |
Loncura Stat | 2016/2017 | −3.37 | −4.72 | 1.40 | (2) | (4) | 1.117 | 1.070 |
Lot. Ru Stat | 2016/2017 | −3.00 | −1.97 | 0.66 | (1) | (4) | 1.108 | 1.102 |
Lagunillas | 2021/2023 | −3.55 | −4.03 | 1.14 | (2) | (4) | 1.075 | 1.071 |
El Escuadron | 2021/2023 | −5.15 | −5.01 | 0.97 | (1) | (4) | 1.083 | 1.083 |
2010–2013 | 2017–2020 | 2019–2022 | |
---|---|---|---|
Station | CK | CK | CK |
EML (La Florida) | 0.86511025 | 0.81420419 | 0.6749503 |
EMM (Las Condes) | 0.93677419 | 0.85704125 | 0.68085106 |
EMO (Pudahuel) | 0.9892562 | 0.60920245 | 0.59803044 |
EMS (Puente Alto) | 0.93609296 | 0.73443008 | 0.58932039 |
EMV (Quilicura) | 0.83997205 | 0.8147541 | 0.63445378 |
EMN (Santiago—Parque O’Higgins) | 0.82429784 | 0.77417174 | 0.5350488 |
Period | Prob |
---|---|
2010/2013 | 34% |
2017/2020 | 29% |
2019/2022 | 23% |
Period | masl (m) | Location | SK,P | SK,MV | CK | Prob | Symbol |
---|---|---|---|---|---|---|---|
2021/2022 | 2320 | Tumbaco, Ecuador (11) | 1.044 | 1.222 | 1.170 | 0.41396870 | o |
2021/2022 | 2697 | Carapungo, Ecuador (12) | 0.844 | 1.182 | 1.400 | 0.46579605 | ◊ |
2013/2017 | 2850 | El Camal, Ecuador (13) | 0.911 | 1.042 | 1.144 | 0.40739806 | Δ |
2013/2017 | 2850 | Belisario, Ecuador (14) | 0.924 | 1.159 | 1.254 | 0.43414516 | □ |
Period | masl (m) | Location | CK | Prob | Symbol |
---|---|---|---|---|---|
2018/2019 | 2 | Concón Station (15) | 1.240 | 0.43088926 | Δ |
2016/2017 | 3 | Loncura (16) | 1.660 | 0.51341334 | ◊ |
2021/2023 | 37 | Lagunillas (18) | 1.404 | 0.46579605 | □ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, P.; Mera, E.; Navarro, G.; Parodi, C. Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion. Fractal Fract. 2024, 8, 204. https://doi.org/10.3390/fractalfract8040204
Pacheco P, Mera E, Navarro G, Parodi C. Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion. Fractal and Fractional. 2024; 8(4):204. https://doi.org/10.3390/fractalfract8040204
Chicago/Turabian StylePacheco, Patricio, Eduardo Mera, Gustavo Navarro, and Carolina Parodi. 2024. "Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion" Fractal and Fractional 8, no. 4: 204. https://doi.org/10.3390/fractalfract8040204
APA StylePacheco, P., Mera, E., Navarro, G., & Parodi, C. (2024). Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion. Fractal and Fractional, 8(4), 204. https://doi.org/10.3390/fractalfract8040204