A Note on Averaging Principles for Fractional Stochastic Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (H1′)
- (H2′)
- (H3′)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.Y.; Liu, Z.X.; Röckner, M. Averaging principle for stochastic complex Ginzburg-Landau equations. J. Differ. Equ. 2023, 368, 58–104. [Google Scholar] [CrossRef]
- Liu, J.K.; Wei, W.; Xu, W. An averaging principle for stochastic fractional differential equations driven by fBm involving impulses. Fractal. Fract. 2022, 6, 256. [Google Scholar] [CrossRef]
- Xu, W.J.; Xu, W.; Zhang, S. The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett. 2019, 93, 79–84. [Google Scholar] [CrossRef]
- Xu, W.J.; Duan, J.Q.; Xu, W. An averaging principle for fractional stochastic differential equations with lévy noise. Chaos 2020, 30, 083126. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.F.; Zhu, Q.X.; Luo, Z.G. An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett. 2020, 105, 106290. [Google Scholar] [CrossRef]
- Duan, P.J.; Hao, L.; Li, J.; Zhang, P. Averaging principle for Caputo fractional stochastic differentialequations driven by fractional Brownian motion with delays. Complexity 2021, 2021, 6646843. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Zhu, Q.X. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 105, 106755. [Google Scholar] [CrossRef]
- Guo, Z.K.; Hu, J.H.; Yuan, C.G. Averaging principle for a type of Caputo fractional stochastic differential equations. Chaos 2021, 31, 053123. [Google Scholar] [CrossRef]
- Xiao, G.L.; Fečkan, M.; Wang, J.R. On the averaging principle for stochastic differential equations involving Caputo fractional derivative. Chaos 2022, 32, 101105. [Google Scholar] [CrossRef]
- Shen, G.J.; Wu, J.L.; Xiao, R.D.; Yin, H. An averaging principle for neutral stochastic fractional order differential equations with variable delays driven by Lévy noise. Stoch. Dynam. 2022, 22, 2250009. [Google Scholar] [CrossRef]
- Xia, X.Y.; Chen, Y.M.; Yan, L.T. Averaging principle for a class of time-fractal-fractional stochastic differential Equations. Fractal. Fract. 2022, 6, 558. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Mchiri, L.; Arfaoui, H.; Dhahri, S.; El-Hady, E.S.; Cherif, B. Hadamard Itô-Doob Stochastic Fractional Order Systems Equations. Discrete. Cont. Dynam. Syst. 2023, 16, 2060–2074. [Google Scholar] [CrossRef]
- Liu, J.K.; Wei, W.; Wang, J.B.; Xu, W. Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations. Appl. Math. Lett. 2023, 140, 108586. [Google Scholar] [CrossRef]
- Yang, M.; Lv, T.; Wang, Q.R. The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise. Fractal. Fract. 2023, 7, 701. [Google Scholar] [CrossRef]
- Li, M.M.; Wang, J.R. The existence and averaging principle for Caputo fractional stochastic delay differential systems. Fract. Calc. Appl. Anal. 2023, 26, 893–912. [Google Scholar] [CrossRef]
- Bai, Z.Y.; Bai, C.Z. The existence and averaging principle for Caputo fractional stochastic delay differential systems with Poisson jumps. Axioms 2024, 13, 68. [Google Scholar] [CrossRef]
- Umamaheswari, P.; Balachandran, K.; Annapoorani, N. Existence and stability results for Caputo fractional stochastic differential equations with Lévy noise. Filomat 2020, 34, 1739–1751. [Google Scholar] [CrossRef]
- Ye, H.P.; Gao, J.M.; Ding, Y.S. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, J.Q.; Xu, W. An averaging principle for stochastic dynamical systems with Lévy noise. Phys. D 2011, 240, 1395–1401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, H.; Wang, J.; Jin, C.; Li, J.; Xu, W. A Note on Averaging Principles for Fractional Stochastic Differential Equations. Fractal Fract. 2024, 8, 216. https://doi.org/10.3390/fractalfract8040216
Liu J, Zhang H, Wang J, Jin C, Li J, Xu W. A Note on Averaging Principles for Fractional Stochastic Differential Equations. Fractal and Fractional. 2024; 8(4):216. https://doi.org/10.3390/fractalfract8040216
Chicago/Turabian StyleLiu, Jiankang, Haodian Zhang, Jinbin Wang, Chen Jin, Jing Li, and Wei Xu. 2024. "A Note on Averaging Principles for Fractional Stochastic Differential Equations" Fractal and Fractional 8, no. 4: 216. https://doi.org/10.3390/fractalfract8040216
APA StyleLiu, J., Zhang, H., Wang, J., Jin, C., Li, J., & Xu, W. (2024). A Note on Averaging Principles for Fractional Stochastic Differential Equations. Fractal and Fractional, 8(4), 216. https://doi.org/10.3390/fractalfract8040216