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Abstract: In this study, we investigate multiscale auto- and cross-correlation structural characteristics
of sea surface temperature (SST) variability using our new methodology, called the multifractal
asymmetric cross-correlation analysis (MF-ACCA), incorporating signs of a segment’s detrended
covariance and linear trend. SST is greatly affected by air–sea interactions and the advection of
water masses with a wide range of spatiotemporal scales. Since these force factors are imprinted
on SST variability, their features can be revealed in terms of long-range auto- and cross-correlation
structures of SST variability via a multifractal analysis. By applying the MF-ACCA methodology
to SST variability in the East/Japan Sea, we have found the following features: (1) the auto- and
cross-correlation multifractal features are dependent on several parameters, such as the location,
linear trends (rising or falling), level of fluctuations, and temporal scales; (2) there are crossover
behaviors that are discrete for small scales (less than 1000 days) but continuous for large scales (more
than 1000 days); (3) long-range persistence of auto- and cross-correlations is random for large scales
during the falling phase; (4) long-range persistence is stronger during the rising phase than during
the falling phase; (5) the degree of asymmetry is greater for large scales than for small scales.

Keywords: sea surface temperature; multifractal asymmetric cross-correlation analysis; generalized
Hurst exponent; air–sea interaction; advection of water mass

1. Introduction

In the climate system, the sea surface temperature (SST) is known as a proxy for various
energy fluxes occurring on the sea’s surface via air–sea interactions [1]. Many climatic
and physical processes are imprinted on the SST. That is, SST variability is indicative
of a lateral energy transport by surface currents such as the geostrophic velocity and
Ekman current velocity, a vertical energy transport by vertical entrainment and the Ekman
pumping velocity, a turbulent energy flux via various air–sea interactions, and radiative
flux. These factors have their own spatiotemporal dominant scales, and their impacts are
region-specific. However, the dominant components contributing to SST variability have
seasonality; that is, a peaked power is observed on an annual timescale. Also, there is a
multi-decadal tendency to warmer SSTs, which is mainly due to greenhouse gas forces in
the climate system [2].

Fractals and multifractals are ubiquitous in many diverse, complex systems, such as
financial markets, brains, and climate systems. These concepts are very useful for describing
the irregular or fragmented shape of natural features as well as other complex objects that are
often characterized by spatial or time-domain statistical scaling laws and power-law behaviors
of real-world physical systems, such as geophysics, biology, or fluid mechanics [3].

Most real-world systems are described by observable quantities in the form of a time
series, and their fractal and multifractal properties are investigated by many time series
analysis algorithms developed from multifractal formalism. The well-known Detrended
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Fluctuation Analysis (DFA) [4] and the Multifractal Detrended Fluctuation Analysis (MF-
DFA) [5] have long been widely used to explore the long-range auto-correlation structures
as well as multifractal features inherent in a singular nonstationary time series. Since the ad-
vent of DFA and MF-DFA, Podobnik and Stanley [6] have introduced the Detrended Cross-
Correlation Analysis (DCCA) to detect the long-range persistence in the cross-correlations
between synchronously observed nonstationary time series. Their methodology is used
in a variety of scientific fields, including finance, physics, and earth sciences [7–11]. To
explore the multifractal features in the cross-correlation structures of bivariate nonstation-
ary time series, Zhou [12] proposed the Multifractal Detrended Cross-Correlation Analysis
(MF-DCCA). MF-DCCA has been used in [13] to examine the cross-correlations between
meteorological parameters and air pollution and in [14] to explore the cross-correlations
between sunspot numbers and river flow fluctuations from a multifractal perspective.

The above methodologies have some shortcomings in revealing asymmetric features
present in the scaling behavior of a time series, and MF-DCCA and the original DCCA
algorithm naturally incorporate negative detrended covariances, leading to complex-valued
fluctuation functions. In most applications, the latter difficulty was resolved by taking on
the modulus of the covariance function in order to remove its negative sign. In most realistic
cases, this operation can spuriously amplify the multifractal cross-correlation measure. In
order to overcome these two limitations, the Multifractal Asymmetric Detrended Cross-
Correlation Analysis (MF-ADCCA) [15] and the Multifractal Cross-Correlation Analysis
(MFCCA) [16] were proposed for the former and the latter, respectively. In this study, we
present the combined version of these two methods, called the Multifractal Asymmetric
Cross-Correlation Analysis (MF-ACCA), which is used to investigate the auto- and cross-
correlational structures of SST variability, more precisely, the SST anomaly (hereafter, SSTA)
time series.

The East/Japan Sea (hereafter, EJS) is a semi-enclosed marginal sea surrounded by
three adjacent countries, Korea, Russia, and Japan, as shown in Figure 1. According to
previous studies [17–20], the SST variability in the EJS has a wide range of dominant
timescales, from annual to multi-decadal scales, and the major contributors are known
to be local wind anomalies, air–sea interactions, and the East Asian monsoon variability
in generating interannual-to-decadal SST variability in the EJS [19,21]. Also, an El Niño-
Southern Oscillation (ENSO) with a time scale of 3~7 years has been confirmed to be a
significant factor in EJS SST long-term variability from various studies [22–24]. Overall,
the dominant timescale in EJS SST variability has a wide range from 60–90 days and half a
year [25] to the decadal scale [26] through inter-decadal timescales [18,19,27]. The major
factors of EJS SST variability can be classified into two categories: air–sea interactions and
the advection of water masses; seasonal variability is mainly due to the atmospheric forcing
of the surface wind [28–31] and the transported volume of the Tsushima Warm Current
(TWC) has a significant impact on SST variability in the southern part of the EJS [32,33].

In this study, we investigate the auto- and cross-correlation structures of SSTA in the
EJS using two algorithms; one is the A-MFDFA as the multifractal version of asymmetric
DFA (A-DFA) [34,35], and the other is the newly proposed multifractal asymmetric cross-
correlation analysis (MF-ACCA); when considering two identical nonstationary time series,
MF-ACCA becomes equivalent to A-MFDFA. First, in order to examine the non-universal
properties of the auto-correlation multifractal features of SSTA, we apply the A-MFDFA
algorithm to three selected study regions (Figure 1), namely E-line (East Korea Bay), S-line
(western end of the Subpolar Front), and N-line (Nearshore Branch); also, the successive
stations along each selected line can be utilized to examine the impact of geophysical
distance. Second, in order to investigate the spatiotemporal scope of any dominant factors
contributing to SST variability in terms of cross-correlation multifractal features, we apply
the MF-ACCA algorithm to pairs of SSTA time series along all selected lines. It should be
noted that the three study regions indicate different patterns of surface currents, as shown
in Figure A1.
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Figure 1. A location map of SST monitoring stations. The three lines (E, S, and N) indicate the 
contrasting three regions which show a different dynamical aspect. We number the node along the line 
from where the tag is located. E-line denotes the East Korean Bay (EKB) and the southern part of the 
Subpolar Front (SPF); S-line is the northern part of the Subpolar Front (SPF); N-line denotes the vertical 
line goes across the Yamato basin from the Nearshore Branch of Tsushima Warm Current (TWC). 
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geostrophic currents estimated from sea surface height anomalies. 

2. Materials and Methods 

Figure 1. A location map of SST monitoring stations. The three lines (E, S, and N) indicate the contrasting
three regions which show a different dynamical aspect. We number the node along the line from where
the tag is located. E-line denotes the East Korean Bay (EKB) and the southern part of the Subpolar Front
(SPF); S-line is the northern part of the Subpolar Front (SPF); N-line denotes the vertical line goes across
the Yamato basin from the Nearshore Branch of Tsushima Warm Current (TWC).

This article is organized as follows. In the section of Materials and Methods, a brief
data description is presented, and we provide detailed explanations of multifractal analysis
algorithms as well as a global wavelet spectral methodology. In the Analysis Results section,
the analysis results are presented and described in detail. Lastly, in the Discussion and
Conclusion sections, we evaluate our results in comparison with previous studies and
present the direction of further research, especially on the extension of the study area and
the causal relationship between other factors, such as heat fluxes on the surface and surface
geostrophic currents estimated from sea surface height anomalies.

2. Materials and Methods
2.1. Data

The SST record used here was obtained from the National Oceanic and Atmospheric
Administration (NOAA) Optimum Interpolation SST (OISST) version 2.1 software [36,37],
with a horizontal resolution of 1/4◦ and a daily temporal resolution. By performing bias-
correction on a satellite SST dataset using additional measurements, such as SSTs from
the Argo float and buoy, and adopting revised correction methods, such as a ship–buoy
SST correction algorithm and conversion method of the sea–ice concentration, the dataset
quality has remarkably improved since 1 January 2016 [36,37]. Also, missing values in this
long-term climate data of the NOAA 1/4◦ daily OISST were filled via interpolation for a
spatially complete map of SST. The SSTA represents a departure from normal or average
conditions and is computed by subtracting a 30-year duration climatological mean from
each daily OISST value.
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Since our goal in this study was to characterize the auto- and cross-correlation struc-
tures of SSTA, we used the limited database of a global gridded dataset confined to the
EJS; the whole observation time was from 1 September 1981 to 4 April 2023. Since the
total number of lattice points of the original gridded datasets was 1768, we considered the
selected stations as shown in Figure 1 for the sake of computation time.

2.2. Multifractal Methodology
2.2.1. Multifractal Cross-Correlation Analysis (MFCCA)

This algorithm [16] allowed us to compute the arbitrary order covariance function of
any two signals by properly incorporating the relative signs in the signals. The procedure
of MFCCA is described as follows:

Step 1: Consider two time series xi, yi for i = 1, 2, · · · , N where N is the length of the
series. Then, we constructed the signal profile:

X(k) = ∑k
i=1[xi − ⟨x⟩], Y(k) = ∑k

i=1[yi − ⟨y⟩] (1)

where ⟨·⟩ denotes averaging over the entire time series.
Step 2: Both signal profiles were divided into Ns = int(N/s) disjoint segments ν

of length s. Because of the cases of the length N not being divided exactly by s, the
segmentation procedure was repeated starting from the end of the signal. Thus, we
obtained 2Ns segments in total.

Step 3: For each segment ν, the local trend was estimated by fitting a polynomial of

order m (
∼
X
(m)

ν for X and
∼
Y
(m)

ν for Y). In this study, we used a polynomial of order m = 2.
Then, the local trend was subtracted from the profile.

Step 4: The detrended cross-covariance within each segment was computed,

F2
XY(ν, s) =

1
s

s

∑
k=1

{(
X[(ν − 1)s + k]−

∼
X
(m)

ν (k)

)
×
(

Y[(ν − 1)s + k]−
∼
Y
(m)

ν (k)

)}
(2)

Compared to the detrended variance in the MF-DFA procedure [5], F2
XY(ν, s) takes

both positive and negative values. Thus, we had to consider the sign of F2
XY(ν, s) when

computing covariances of varying orders, q.
Step 5: The qth-order covariance function was computed by averaging across all seg-

ments,

Fq
XY(s) =

1
2Ns

∑2Ns
ν=1 sgn

(
F2

XY(ν, s)
)∣∣∣F2

XY(ν, s)
∣∣∣q/2

, (3)

where sgn
(

F2
XY(ν, s)

)
denotes the sign of F2

XY(ν, s). Equation (3) held good only for any
real number q except zero. In the case of q = 0, the logarithmic version of Equation (3) was
employed,

F0
XY(s) =

1
4Ns

2Ns

∑
ν=1

sgn
(

F2
XY(ν, s)

)
ln
∣∣∣F2

XY(ν, s)
∣∣∣ (4)

Step 6: The scaling behavior of the covariance function Fq
XY(s), in the case that the

function Fq
XY(s) developed scaling, was manifested in the power-law dependence of Fq

XY(s)
as follows,

Fq
XY(s)

1/q
= FXY(q, s) ∼ shXY(q) (5)

where hXY(q), known as the generalized cross-correlation exponent, quantitatively char-
acterized the fractal properties of the covariance. If hXY(q) was independent of q, the
cross-correlation was said to be mono-fractal. In the case of multifractal cross-correlation,
hXY(q) varied with q. Note that there was no fractal cross-correlation when Fq

XY(s) fluctu-
ated around zero. If both time series of xi and yi were identical, MFCCA became equivalent
to MF-DFA.
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2.2.2. Multifractal Asymmetric Detrended Cross-Correlation Analysis

The MF-ADCCA algorithm was first proposed to examine the asymmetric properties
of the cross-correlations between two financial markets [15]; that is, when any one of
two considered markets rose, there could be a different persistence for large and small
fluctuations. The algorithm is a combination of MF-DCCA and A-DFA, and the procedure
is described in detail below.

Step 1: Consider two time series xi, yi for i = 1, 2, · · · , N where N is the length of the
series. Then, their profiles were computed via a cumulative summation,

X(k) = ∑k
i=1[xi − ⟨x⟩], Y(k) = ∑k

i=1[yi − ⟨y⟩] (6)

where ⟨·⟩ denotes averaging over the entire time series, computed as ⟨x⟩ = 1
N ∑N

i=1 xi.
Step 2: We divided each of the time series {xi, yi} into Ns = int(N/s) non-overlapping

segments of equal length s. Likewise, the profiles {X(k), Y(k)} were also divided into
Ns = int(N/s) non-overlapping segments of equal length s, respectively, and {x(t)} into
N(s) = int(N/s) non-overlapping segments of equal length s, respectively. In order to
incorporate a short end part of the signal in the case that the record length N was not
divided by s, the same procedure was repeated from the end of the signal. Thus 2Ns
segments were obtained. Then, in the ν-th segment (ν = 1, · · · , 2Ns), we have two pairs of
segmented time series {xν(k), Xν(k)} and {yν(k), Yν(k)} for k = 1, · · · , s.

Step 3: For each segment time series of a pair of segmented time series {xν(k), Xν(k)},
we computed the local linear fits (equivalent to local linear trends) Lν,x and Lν,X us-
ing the least squares regression, each of which is expressed as Lν,x = aν,x + bν,xk and
Lν,X = aν,X + bν,Xk, respectively. In another pair of time series {yν(k), Yν(k)}, it was the
same. The linear fit Lν,x was used to determine whether the trend of the ν-th segment
{xν(k)} was positive (rising) or negative (falling), while the linear fit Lν,X was used to
locally detrend the ν-th profile segment {Xν(k)}. Thus, the detrended cross-covariance is
computed as

F2
XY(ν, s) =

1
s

s

∑
k=1

{|Xν(k)− Lν,X(k)| × |Yν(k)− Lν,Y(k)|} (7)

Step 4: The detrended covariances {F2
XY(ν, s)} were classified into two classes according

to the piecewise trend of the corresponding time series {xν(k), yν(k)}, and the classified
segments were used to assess the asymmetric cross-correlation scaling properties. As
mentioned in Step 3, the local trend was determined by the sign of the slope bν,x or bν,y.
By, for example, taking the trend of {xi}, we computed the so-called directional q-order
detrended covariances as follows,

F+
XY(q, s) =

(
1

M+

2Ns

∑
ν=1

sgn(bν,x) + 1
2

[
F2

XY(ν, s)
]q/2

)1/q

(8)

F−
XY(q, s) =

(
1

M−

2Ns

∑
ν=1

[−sgn(bν,x) + 1]
2

[
F2

XY(ν, s)
]q/2

)1/q

(9)

where M+ and M− denote the number of segments with positive and negative trends,
respectively. In case bν,x ̸= 0 for all segments, M+ + M− = 2Ns.

When the piecewise linear trend of {x(t)} was ignored, the traditional MF-DCCA [12]
was restored:

FXY(q, s) =

(
1

2Ns

2Ns

∑
v=1

[
F2

XY(ν, s)
]q/2

)1/q

(10)



Fractal Fract. 2024, 8, 239 6 of 25

Thereby, if there are power-law cross-correlations, the following scaling law was
established:

FXY(q, s) ∼ shXY(q), F+
XY(q, s) ∼ sh+XY(q), F−

XY(q, s) ∼ sh−XY(q) (11)

where hXY(q), h+XY(q), and h−XY(q) denote overall, rising-up, and falling-down scaling
exponents, respectively. The scaling behaviors in Equation (11) were determined in the
log–log plots, and the exponents were estimated via a linear fit over the scaling range.

In the case of q = 2, the exponent hXY(2) was interpreted in the same manner as the
Hurst exponent. If hXY(2) > 0.5, the cross-correlation of both time series was said to be
persistent, implying that an increase in one time series was followed by an increase in the
other. When hXY(2) < 0.5, the cross-correlation was said to be anti-persistent, meaning
that an increase in one signal was likely to be followed by a decrease in the other. The case
of hXY(2) = 0.5 indicated a short-range or no cross-correlation. This interpretation was
also valid in the MFCCA algorithm.

For the symmetricity of the cross-correlation of a pair of time series, the relation of
h+XY(q) = h−XY(q) indicated that the cross-correlation was symmetric. If h+XY(q) ̸= h−XY(q),
the cross-correlation was said to be asymmetric, meaning that there was a trend-dependent
scaling behavior. Further, the degree of cross-correlation asymmetry was measured via the
following formula,

∆hXY(q) = h+XY(q)− h−XY(q). (12)

The greater the magnitude of ∆hXY(q), the more pronounced the asymmetry of the
cross-correlation. The sign of ∆hXY(q) indicated the dependence on the trending behavior
of the chosen time series, herein {xi}.

Generally, in these multifractal time series analysis algorithms, the q-order played
the role of the microscope in the scaling behavior of detrended fluctuations (herein, the
detrended covariance). For positive values of q, since the average FXY(q, s) was dominated
by the segments with large covariance F2

XY(ν, s), the corresponding hXY(q) described the
scaling behavior of the segments with large covarying fluctuations. On the contrary, for
negative q, hXY(q) described the scaling behavior of small covarying fluctuations. All other
scaling exponents, including hXY(q) in the MFCCA algorithm were equally interpreted.

2.2.3. Multifractal Asymmetric Cross-Correlation Analysis (MF-ACCA)

Since the detrended covariance of Equation (7) did not consider the sign of F2
XY(ν, s),

there could be a limitation on taking a genuine covariance of the two signals, as stated
in [16]. Thus, we replaced Equation (7) with Equation (2) and modified the directional
q-order detrended covariances of Equations (8) and (9) into the following equations,

F+
XY(q, s) =

(
1

M+

2Ns

∑
ν=1

sgn
(

F2
XY(ν, s)

) sgn(bν,x) + 1
2

∣∣∣F2
XY(ν, s)

∣∣∣q/2
)1/q

(13)

F−
XY(q, s) =

(
1

M−

2Ns

∑
ν=1

sgn
(

F2
XY(ν, s)

) [−sgn(bν,x) + 1]
2

∣∣∣F2
XY(ν, s)

∣∣∣q/2
)1/q

(14)

In the presence of power-law cross-correlations, the scaling laws were the same as
in Equation (11). In the cross-correlation analysis of the SSTA time series, we used the
MF-ACCA algorithm. In the case that the two signals, {xi, yi}, were identical; the MF-ACCA
algorithm was equivalent to A-MFDFA, which is a multifractal version of A-DFA.

2.3. Global Wavelet Spectrum

For the spectral analysis of SSTA, we performed a wavelet analysis on each time
series by using the Morlet wavelet, a complex continuous wavelet with a zero mean [38],
defined as

ψ0(τ) = π−1/4eiωτe−τ2/2 (15)
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where ω and τ represent the dimensionless frequency and time, respectively. In the case
of ω = 6, the Morlet wavelet provided an optimal balance between time and frequency
by yielding that its Fourier period, TF , was close to its scale (TF = 1.03s) [39]. In order to
extract power spectral features from a single nonstationary time series, xn (n = 1, 2, · · · , N),
we performed a continuous wavelet-transform (CWT) on the pair of xn and the scaled and
normalized wavelet [40] in the manner of convolution. The used wavelet is expressed as

WX
n (s) =

√
∆/s

N

∑
n′=1

xn′ψ0[(n′ − n)∆/s] (16)

The wavelet power spectrum (WPS),
∣∣WX

n (s)
∣∣2, represents the power of a given single

time series at a localized time-frequency point, and its complex argument can be interpreted
as the local phase. By using the global wavelet spectrum (GWS) [41], defined as

W2
(s) =

1
N

N

∑
n=1

∣∣∣WX
n (s)

∣∣∣2 (17)

where N denotes the time duration, we find a dominant mode in a given time series.

3. Analysis Results
3.1. Spectral Pattern of SSTA

The SST variability in the upper-ocean mixed layer is governed by a variety of at-
mospheric and oceanic processes, and there are several dominant modes with different
temporal scales. The spectral patterns of SSTA in all lattice points under study (Figure 1)
are presented in Figure 2 in terms of GWS. As seen in Figure 1, two lines (E-line and
N-line) extend from the coast towards the offshore area, and an annual scale (300~400 days)
becomes apparent as going further away from the coast (Figure 2A,C); in particular, near
the EKB, a multi-year scale (~1000 days) is dominant. Along S-Line (Figure 2B), the annual
scaled mode is dominant over S2 through to S5 locations. It is noticeable that a wide
bandwidth over 60 through 1000 days is observed at the N2 and N3 locations (Figure 2C)
belonging to the Yamato basin. Although an annual scaled mode seems to be dominant
overall, it should be noted that a spectral pattern is dependent on the region; generally, the
current velocity is high near the coast, and an Ekman pumping is strong near the coast, too.
These dynamical characteristics should be considered when interpreting the multifractal
analysis results.
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3.2. Multifractal Characteristics of SSTA
3.2.1. Multifractal Detrended Fluctuation Analysis

In this study, we investigated the multifractal features of SST variability using the
MF-DFA algorithm, where the range of the order q is set to be from −10 to +10. Under the
multifractal scaling, the generalized Hurst exponent h(q) depends on the order q; h(q) for
q < 0 is usually larger than h(q) for q > 0 [5]. Among various measures for quantifying the
multifractality strength [42], we used a measure based on the generalized Hurst exponents,
which reads

∆h = hmax − hmin = h(qmin)− h(qmax) (18)

Although this measure is easy to adopt, there are some cases in which h(q) is not a
monotonic function of q [43], which is said to be an anomalous phenomenon. Thus, we
used the following measure ∆h, defined as [44]

∆h = max
q

h(q)− min
q

h(q) (19)

In fact, since the proper determination of multifractal properties is greatly dependent
on a good choice of scaling range, we should be cautious when applying these approaches.
However, for practical purposes, we set two scaling ranges, say small scales from 30 to
1000 days and large scales from 1000 to 5000 days. Thereby, any variation in logarithmic
plots of the fluctuation function based on detrended variance or covariance vs. the segment
size was evaluated in terms of crossover behaviors.

Figure 3 shows the logarithmic plot of segment size vs. fluctuation functions of the
order q over the segment range from 10 to 1000 days; for the sake of clarity, we considered
three orders of q, such as qmin = −10, qmax = +10, and q = 2. The multifractal strength,
computed via Equation (19), is given in Table 1. In terms of h(2), a crossover behavior was
clearly observed in some locations of S-line and N-line, which were mostly far from the
coast, with the crossover scale near an annual scale (300~400 days). This behavior seems
to be closely related to the dominant modes confirmed in the spectral analysis (Figure 2).
Also, the strength of multifractality becomes larger further from the coast, especially along
S-line (Table 1). Generally, two major contributions are known for the multifractality of a
single time series: distribution and linear/nonlinear auto-correlation. Since the SSTA time
series are nearly Gaussian-distributed, there could be a stronger nonlinear correlation in the
underlying dynamics of SST variability far from the coast. In the estimation of the double
logarithmic slope, the scaling range was almost mandatorily set to be from 30 to 1000 days.
Thus, a concave or convex behavior of F(s) vs. s against the corresponding fitted dotted
line in Figure 3 can be a criterion of the crossover (Figure 3).

The multifractal behaviors over the large scaling range of 1000 to 5000 days are presented
in Figure A2. In comparison with Figure 3, most slopes were lowered (Tables 1 and A1),
indicating that there was a clear crossover between the small and large scales. Also, in
terms of the Hurst exponent of q(+2), two locations in N1 and N2 showed no persistence.
These empirical results mean that the auto-correlation structure of SST variability was
clearly non-universal. Another interesting finding is that the convex crossover behaviors
were more salient (Figure A2B,C). This convexity led to a clear anomalous phenomenon; a
negative generalized Hurst exponent was smaller than the positive one. Overall, multiple
crossovers were present in the fractal/multifractal behaviors of SST variability.

The multifractality strength based on Equation (19) is presented in Table A1. Most
locations showed weak multifractality, and some were nearly mono-fractal (E1, E5, S1,
S2, S3, and N2). Thus, the SST variability showed a gradually weakening tendency of
multifractality as the segment scale increased. This scale-dependent behavior seems to
be related to the independence of forcing factors with different spatiotemporal scales [45],
in which there was a clear distinction in the network’s topology between small and large
temporal scales.
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Figure 3. The MF-DFA fluctuation functions F(q, s) vs. the segment size s in logarithmic plots. (A) E-
line, (B) S-line, and (C) N-line. The dotted lines denote the corresponding fitting line, respectively.
For q = −10, a continuous crossover behavior is observed in the form of concave curve.

Table 1. The generalized Hurst exponents and their multifractality strength are given for small scales
from 10 to 1000 days.

Location h(+10) h(+2) h(−10) ∆h * Crossover Behavior

E1 0.93 1.04 1.4 0.47 not clear
E2 0.96 1.07 1.3 0.34 not clear
E3 0.84 0.96 1.22 0.38 not clear
E4 0.83 0.98 1.33 0.5 not clear
E5 0.76 0.92 1.2 0.44 not clear
S1 0.86 0.98 1.19 0.33 not clear
S2 0.79 0.93 1.22 0.43 weak
S3 0.75 0.9 1.3 0.55 strong
S4 0.64 0.84 1.29 0.65 strong
S5 0.65 0.84 1.32 0.67 strong
N1 0.82 0.96 1.19 0.37 weak
N2 0.89 0.98 1.24 0.35 not clear
N3 0.82 0.94 1.09 0.27 weak
N4 0.81 0.95 1.22 0.41 moderate
N5 0.65 0.84 1.32 0.67 strong

* The strength of multifractality is computed using Equation (19), for the scaling range from 30 to 1000 days.

3.2.2. Asymmetric Multifractal Detrended Fluctuation Analysis

In this section, we investigated the asymmetric multifractal behaviors of SSTA using
the A-MFDFA algorithm. In SST variability, the trend-sensitive dynamics are important
to understand the underlying forces leading to rising and/or falling trends of the SST. To
address this topic, A-MFDFA could be a good candidate. Figures 4 and 5 show the asym-
metric auto-correlation multifractal behaviors for small scales of 10 through to 1000 days.
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Figure 5. The AMFDFA fluctuation functions F−(q, s) vs. the segment size s in logarithmic plots over
the small scaling range from 10 to 1000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted lines
denote the corresponding fitting line, respectively.
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Compared to Figures 3 and A2, there was still crossover behavior, although it was
dependent on locations. However, it is very clear that the crossover behavior became
clearer as being further from the coast; S-line shows a clearer crossover than E- and N-lines.
Another noticeable thing is that the crossover behavior was more conspicuous in negative
A-MFDFA results than in positive ones (Figures 4 and 5). The quantitative evaluations,
multifractality and asymmetricity, are given in Tables 2 and A2.

Table 2. The multifractality strength and degree of asymmetry are given for rising and falling trend,
respectively, for small scales from 10 to 1000 days.

Location ∆h+ * ∆h− * [q=+10] [q=+2] [q=−10]
h+

asy h−asy ∆h **
asy h+

asy h−asy ∆h **
asy h+

asy h−asy ∆h **
asy

E1 0.55 0.42 0.86 0.96 −0.1 0.99 1.09 −0.1 1.41 1.38 +0.03
E2 0.37 0.36 0.95 0.93 +0.02 1.08 1.03 0.05 1.32 1.29 0.03
E3 0.44 0.4 0.85 0.8 +0.05 0.99 0.93 0.06 1.29 1.2 0.09
E4 0.54 0.39 0.79 0.88 −0.09 0.97 0.99 −0.02 1.33 1.27 0.05
E5 0.39 0.48 0.78 0.74 0.04 0.93 0.92 0.01 1.17 1.22 −0.05
S1 0.39 0.29 0.81 0.91 −0.1 0.96 1 −0.04 1.2 1.2 0
S2 0.43 0.45 0.79 0.79 0 0.92 0.94 −0.02 1.22 1.24 −0.02
S3 0.53 0.56 0.73 0.78 −0.05 0.89 0.9 −0.01 1.26 1.34 −0.08
S4 0.66 0.65 0.64 0.65 −0.01 0.85 0.84 0.01 1.3 1.3 0
S5 0.61 0.71 0.68 0.65 0.03 0.85 0.83 0 1.29 1.36 −0.07
N1 0.37 0.38 0.81 0.86 −0.05 0.93 0.98 −0.05 1.18 1.27 −0.06
N2 0.38 0.32 0.9 0.88 0.02 0.97 0.98 −0.01 1.28 1.2 0.08
N3 0.29 0.43 0.83 0.76 0.07 0.94 0.92 0.02 1.12 1.19 −0.07
N4 0.38 0.46 0.82 0.77 0.05 0.97 0.93 0.04 1.2 1.23 −0.03
N5 0.61 0.71 0.68 0.65 0.03 0.85 0.85 0 1.29 1.36 −0.07

* The strength of multifractality for positive (rising) and negative (falling) trends, respectively, for the scaling
range from 30 to 1000 days. ** The degree of asymmetricity is computed via Equation (12).

According to Table 2, the asymmetry looks weak or is nearly zero, meaning that there
is no dependency of multifractality on trends. However, it should be noted that there was a
clear crossover behavior. The scaling slope was estimated via a mandatory linear fitting
over the determined scaling range, herein from 30 to 1000 days. Under the consideration of
crossover behaviors, the asymmetric feature was said to be securely observed.

Figures A3 and A4 show the asymmetric auto-correlation multifractal behaviors for
large scales of 1000 through to 5000 days; in this case, the scaling range was set to be
the whole range. Like the MF-DFA behaviors in Figure A2, the anomalous phenomenon
was obviously seen along S-Line and two locations (N4 and N5) for the positive (rising)
trend (Figure A3); this is also probably due to the strong convexity of fluctuation functions.
In contrast, there was no anomalous behavior in the negative trend (Figure A4). This
distinctive finding seems to imply that any forcing factors relating to a rising trend induce
anomalous behavior.

Compared to the scaling behaviors in Figure 4, the tendency of no-persistence and
weakly anti-persistence was certainly induced by the negative (falling) A-MFDFA compo-
nents. This finding implies that there were clearly trend-dependent dynamics yielding dis-
tinct auto-correlation structures, especially in large temporal scales. These trend-dependent
(asymmetric) dynamics seem to be closely related to the spatiotemporal scales of any domi-
nant force, as reported in [45]. The quantitative descriptions of the degree of asymmetricity
and strength of multifractality are given in Table A2 below.

Clearly, the asymmetric behavior was stronger for large scales compared to small
scales. As for the strength of multifractality, there was an asymmetry for underlying trends.
The degree of asymmetry was stronger in magnitude for the positive q-order than for
the negative one. Also, there was directionality, meaning that the positive q-order was
positively asymmetric, while the negative q-order seemed to be skewed into negative
asymmetry. This order-dependent asymmetric behavior indicates that large fluctuations
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were governed more by the rising trend, while small fluctuations described by negative
q-order were affected by the falling trend.

3.2.3. Multifractal Asymmetric Cross-Correlation Analysis (MF-ACCA)

In the previous section, we confirmed that the asymmetric multifractal behaviors
were significantly distinguished for small and large scales; weak and no asymmetry was
observed for small scales, while asymmetric behaviors were evidently observed for large
scales. Further, the asymmetric feature was marked for large fluctuations described by
positive q-orders, herein +2 and +10. These characteristics are related to the auto-correlation
structure of SST variability.

To examine the cross-correlation structures of SST variability, we conducted an MF-
ACCA analysis on pairs of SSTA time series. For simplicity, we set the first locations of
all considered study lines, say E-, S-, and N-lines, as the reference. That is, for positive
(rising) and negative (falling) trends of reference points, the MF-ACCA was performed
on the pairs consisting of a reference location and one of the other locations consecutively.
Figures 6 and A5 show the MF-ACCA results for small and large scales, respectively.
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Figure 6. The MF-ACCA fluctuation functions FXY(s) vs. the segment size s in logarithmic plots over
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In the MF-ACCA analysis, there was no long-range persistent behavior for small
fluctuations described by negative q-orders (Figures A6 and A7). Thus, we considered
only the two positive q-orders, +2 and +10. As confirmed in previous analysis results, the
crossover behavior became clearer as being further from the coast. Also, overall, there was
strong long-range persistent behavior, except for in N-line. As shown in Figure 1, N-line
crossed the surface currents in the EJS (Figure A1), while two lines, E- and S-line, were
closely related to the varying area of SPF. The SPF area showed seasonality in size and
location [46], and the surface currents were nearly parallel in the two studied lines. Thus,
the multifractal long-range cross-correlation behaviors can be interpreted as an indicator
of advection factors in SST variability. Further, when comparing Figures 6C and A5C, the
temporal scales played a significant role in the cross-correlation structure; the persistence
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in long-range cross-correlation structures tended to become weaker, or there was no persis-
tence as the temporal scale increased. This behavior is consistent with previous results of
MF-DFA and A-MFDFA analyses.

Also, there was a concavity in the scaling behaviors for small scales (Figure 6), while a
convex behavior was observed for large scales (Figure A5). This behavior was also consistent
with previous results of MF-DFA and A-MFDFA analyses. The quantitative description of the
strength of the multifractality of cross-correlation structures is provided in Table 3.

Table 3. Table for multifractality strength, in terms of Equation (19), of pairs of locations corresponding
to and Figures 6 and A5.

Location
Small Scales from 10 to 1000 Days Large Scales from 1000 to 5000 Days

hXY(+10) hXY(+2) ∆hXY
* hXY(+10) hXY(+2) ∆hXY

**

E12 0.93 1.07 0.14 0.88 0.93 0.05
E13 0.83 1 0.17 0.96 1 0.04

0.08E14 0.81 0.99 0.17 0.88 0.96
E15 0.77 0.99 0.22 0.95 0.99 0.04
S12 0.82 1 0.18 1.13 0.98 0.15
S13 0.73 0.94 0.21 1.11 1 0.11
S14 0.66 0.87 0.21 1.2 1.08 0.12
S15 0.66 0.88 0.22 1.35 1.19 0.16
N12 0.87 0.99 0.12 0.39 0.54 0.15
N13 0.79 0.94 0.15 0.52 0.64 0.12
N14 0.76 0.95 0.19 0.69 0.69 0
N15 0.73 0.93 0.2 0.56 0.41 0.15

* The scaling range is from 30 to 1000 days. ** The scaling range is from 1000 to 5000 days.

In order to examine the influence of linear trends on scaling behaviors, we conducted
the MF-ACCA analysis on all considered pairs of SSTA. Figures 7 and 8 show the MF-ACCA
results for small scales of 10 through to 1000 days. For small scales, there were no noticeable
distinctions compared to previous results; all generalized Hurst exponents showed a stable,
persistent behavior, and there was no anomalous phenomenon, irrespective of the linear
trends. Overall, the scaling behavior was concave for all trends.

Still, a crossover behavior became marked as being far away from the coast, and the
crossover seemed to be clearer in the negative (falling) trend than in the positive (rising)
trend. The quantitative descriptions of the degree of asymmetry and the strength of the
multifractal cross-correlation structure are given in Table 4 below.

As clearly shown in Table 4, the multifractality of the cross-correlation structure was
weak, and the asymmetry was slightly skewed into a negative (falling) trend. Since we
considered only the large fluctuations by a positive q-order, the weak negatively asymmetric
behavior indicates that small-scaled forcing factors were nearly symmetric, although they
had greater effects during linearly falling phases.

Figures A8 and A9 show the MF-ACCA results for large scales of 1000 through to
5000 days; the scaling range was set to be the whole range. An anomalous phenomenon was
observed in the positive (rising) trend only along S-line. A strong convex scaling behavior
was observed in the negative (falling) trend along E-line; an interesting inflective variation
with a convex-to-concave pattern was observed along S-line. In fact, these behaviors are
closely related to the complex surface current patterns because the study area belongs to the
varying SPF regions. Also, along N-line, no- and anti-persistent behaviors are consistent
with previous results of an A-MFDFA analysis.
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Table 4. The multifractality strength and degree of asymmetry of cross-correlation structure of SSTA
are given for rising and falling trend, respectively, for small scales from 10 to 1000 days.

Pairs ∆h+ *
XY ∆h− *

XY
[q=+10] [q=+2]

h+
XY h−XY ∆h **

XY h+
XY h−XY ∆h **

XY

E12 0.13 0.17 0.92 0.92 0 1.05 1.09 −0.04
E13 0.15 0.2 0.85 0.79 0.06 1 0.99 0.01
E14 0.18 0.17 0.79 0.85 −0.06 0.97 1.02 −0.05
E15 0.21 0.22 0.77 0.78 −0.01 0.98 1 −0.02
S12 0.17 0.19 0.79 0.84 −0.05 0.96 1.03 −0.07
S13 0.21 0.19 0.68 0.81 −0.13 0.89 1 −0.11
S14 0.21 0.19 0.61 0.74 −0.13 0.82 0.93 −0.11
S15 0.22 0.2 0.61 0.74 −0.13 0.83 0.94 −0.11
N12 0.1 0.13 0.86 0.88 −0.02 0.96 1.01 −0.05
N13 0.12 0.19 0.8 0.76 0.04 0.92 0.95 −0.03
N14 0.17 0.19 0.76 0.78 −0.02 0.93 0.97 −0.04
N15 0.18 0.2 0.74 0.72 0.02 0.92 0.92 0

* The strength of multifractality for positive (rising) and negative (falling) trends, respectively, for the scaling
range from 30 to 1000 days. ** The degree of asymmetricity is computed via Equation (12).

When closely examining Figure A9A, an anomalous behavior could be masked due to
a strong convexity in the scaling behavior. Thus, the determination of anomalous behavior
should be deferred. The quantitative descriptions are presented in Table A3 below. For
large scales, a strong asymmetric behavior was observed for almost all pairs, which was
especially stronger in large fluctuations (q = +10). This behavior seems to strongly state
that a positive (rising) trend derived from large-scale forcing was dominant in the SST
variability of EJS. Compared to previous studies on global warming, our results show that
the warming force could be significantly influenced by large-scale forcing factors.

4. Discussion

In this study, we examined the auto- and cross-correlation structures of SST variability
in the EJS in terms of multifractal time series analysis methodologies. In order to avoid the
spuriousness in evaluating the cross-correlation structure and evaluate the impact of linear
trends on the long-range correlation structures, we presented a new MF-ACCA algorithm,
combining two algorithms, MFCCA [16] and MF-ADCCA [15]. The MF-ACCA algorithm
retrieves the A-MFDFA when applied to two identical time series. Thus, by applying the
MF-ACCA to a singular SSTA time series and its pairs, we obtained some noteworthy
findings on auto- and cross-correlation structures of SST variability in the EJS.

Three studied regions in the EJS were selected in order to distinctly investigate the
effect of atmospheric and oceanic processes on multifractal features of SST variability; as
seen in Figure A1, E-line extended from the coast toward the offshore area, S-line captured
well the time-varying SPF currents, and N-line crossed the three branches of the Tsushima
warm current (TWC). The SST variability in the EKB, indicated by E-line (E1 through E3),
is dominantly described by interannual forcing factors (Figure 2A) and is known to be
associated with the eddy-like circulation anomaly via the Arctic Oscillation (AO)-related
wind forcing [47]. The SPF region, indicated by S-line, had a strong seasonality in spatial
scope [48], and its eastern end part spatiotemporally varied [46]. As observed in Figure 2B,
the annual forcing became stronger as it moved away from the eastern end of the SPF. Since
N-line is located in the southern part of EJS near the Korea–Tsushima Strait (KTS) and
crosses the western branches of TWC, it could be greatly affected by the TWC transport [32].
Thus, the auto- and cross-correlation structures of the SSTA time series on those regions
provide us with information on dominant underlying forcing factors, leading to long-range
persistence depending on spatiotemporal scales.

The presence of multifractality in SST variability meant that there were auto- and
cross-correlation structures depending on the fluctuation levels; the large positive q-value
denotes large fluctuations, while the large negative q-value denotes small fluctuations.
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As shown in Tables 1 and A1, although being a long-range persistence in most locations,
there was a difference in the degree of persistence, indicated by the generalized Hurst
exponent, and strength of multifractality when comparing the analysis results for small and
large scales; this difference strongly indicates that there was a scale-specific forcing factor
underlying the SST variability. A discrete or continuous crossover behavior also supports
the presence of scale-specific forcing.

The linear trend of SST variability was location- and scale-dependent. Thus, there
can be asymmetric features in the auto- and cross-correlation structures. Tables 2 and A2
show that the asymmetry in the auto-correlation structure was scale-dependent; there
was nearly symmetry in the positive (rising) and negative (falling) trends for small scales,
while a considerable asymmetry was seen for large scales. Also, the asymmetry in the
auto-correlations was dependent on the fluctuation levels (Table A2); large fluctuations
had a stronger persistence during positive (rising) trends, while small fluctuations had a
stronger persistence during negative (falling) trends. These results imply that there were
scale- and trend-dependent dynamics underlying the SST variability.

The multifractal features in the cross-correlation structures were strongly long-range
persistent for the whole scales from 30 to 5000 days, except for pairs of SSTA time series
along N-line (Table 3), where weak or nearly no persistence appeared for large scales.
Also, the relatively small multifractality was mainly due to the absence of long-range
cross-correlations for negative q-values (Figures A6 and A7); DCCA [6] and MFCCA [16]
algorithms regard the covariance functions fluctuating around zero as no cross-correlation.

The asymmetry in cross-correlation multifractal features (Tables 4 and A3) was very
similar to that in the auto-correlation multifractal features (Tables 2 and A2). The degree of
asymmetry was greater in the large scales than in the small scales, and the directionality
was the same; for large scales, the asymmetry skewed toward a positive (rising) trend
while being skewed toward a negative (falling) trend for small scales. This scale-dependent
asymmetry directionality could be closely related to climate change, especially a global
warming trend. Although there is no direct evidence supporting the causality, it can be
argued that any force leading to a positive (rising) trend in SST variability has a large scale
(more than 1000 days) and shows a more persistent behavior during a rising phase than
during a falling phase.

In a recent study [49], a warm bias in cold SST (−2°Cto10°C) was reported in the
EJS. However, since we deal with an SST anomaly dataset detrended by climatology, the
warm bias problem is not a critical matter in our analysis results. Also, the warm bias was
mainly restricted to the northern and north-western parts of EJS; only a part of S-line was
incorporated.

5. Conclusions

The analysis results in this study can be categorized into two parts: an auto-correlation
structure and a cross-correlation structure of SST variability. As for the auto-correlation, the
results of the MF-DFA and A-MFDFA analyses are found in Figures 3–5 (Figures A2–A4),
along with Tables 1 and 2 (Tables A1 and A2). Their summary is as follows:

• Overall, the long-range auto-correlation was strongly persistent for the whole scale
from 30 to 5000 days, meaning that the Hurst exponent h(+2) was very close to 1.
However, two locations of N1 and N2 near the KTS seemed to be random only for
large scales from 1000 to 5000 days; their Hurst exponents were nearly 0.5 (Table A1).

• All considered SSTAs from different locations show scale- and location-dependent
multifractal features (Tables 1 and 2); the strength of multifractality was greater for
small scales (30–1000 days) than for large scales (1000–5000 days), with the strongest
in the S-line region (near the SPF) for small scales.

• A distinct crossover behavior appeared along S-line (SPF region), with an annual
crossover scale (300–400 days), through which a long-range persistence changed into
anti- or no-persistence for small scales (Figure 3). For large scales, the crossover
behavior seemed continuous; a convex functional form was observed (Figure A2).
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• All the asymmetric long-range auto-correlations were strongly persistent for small
scales (Table 2), while some locations showed random behaviors (Table A2). The ran-
dom behavior of auto-correlation structures for large scales was observed more fre-
quently in negative (falling) trends than in positive (rising) trends.

• The crossover behaviors in the A-MFDFA analysis were the same as those in the
MF-DFA analysis.

• The degree of asymmetry for three q-order detrended fluctuation functions was greater
for large scales (1000 to 5000 days) than for small scales (30 to 1000 days); there seems
to be nearly no asymmetry for small scales. As for the asymmetry of large scales, large
fluctuations (with positive q-values, +2 and +10) showed a strong positive asymmetry,
while small fluctuations (with negative q-value, −10) showed a weak or moderate
negative asymmetry.

The analysis results concerning the cross-correlation structures are given in Figures 6–8
(Figure A9) as well as Tables 2 and 3 (Table A3). They are summarized as follows:

• There was no long-range cross-correlation for small fluctuations, indicated by negative
q-values (Figures A6 and A7).

• Most pairs showed a strong long-range cross-correlation structure for small and large
scales, which was indicated by the Hurst exponent hXY(+2) of nearly one (Table 3);
cross-correlation pairs along N-line showed considerably weak-persistent or random
behavior only for large scales (Table 3).

• Among weak crossover behaviors observed for small scales (Figure 6), N-line showed
a relatively stronger crossover behavior (Figure 6C) with an annual crossover scale,
indicating that there was a distinct difference in underlying forces between two remote
locations (N1 and N4 and N1 and N5).

• The strength of multifractality was a little stronger in the small scales than in the large
scales; note that the overall weak multifractality was mainly due to the absence of
long-range cross-correlations for negative q-values.

• Most asymmetric long-range cross-correlations were strongly persistent for small
and large scales, characterized by the Hurst exponent of nearly one for both positive
(rising) and negative (falling) trends. However, N-line clearly deviated from these
persistent behaviors, especially for large scales (Table A3); the Hurst exponents were
close to 0.5, indicating the randomness in cross-correlations, and the negative (falling)
Hurst exponents were less persistent than the positive (rising) ones.

• The degree of asymmetry for two positive q-order detrended fluctuation functions
was greater for large scales (1000 to 5000 days) than for small scales (30 to 1000 days).
As for the directionality of asymmetry, there was a weak negative skewed asymmetry
in the small scales, while a strong positive skewed asymmetry was observed in large
scales (Tables 4 and A3).

We found some noticeable multifractal features in auto- and cross-correlations of SST
variability using a combined algorithm, MF-ACCA. There was clearly scale- and location-
dependent long-range persistence in auto- and cross-correlation structures; however, no
concrete underlying forcing factors were revealed. It would be valuable to quantify the
degree of causal relations between SST variability and representative forcing factors, such as
advective forces relating to the surface currents and the air–sea interactions; the advective
forces can be indicated as the geostrophic currents by the sea surface heights (SSH), and
the air–sea interactions could be related to wind stresses and heat fluxes. These topics
will be studied in future research using a multifractal time series analysis methodology.
Also, examining scale-dependent structures of long-range cross-correlations in the EJS can
enhance our understanding of the evolutionary features of climate change in marginal seas.

Author Contributions: Conceptualization, G.L. and J.-J.P.; methodology, G.L.; validation, G.L.
and J.-J.P.; formal analysis, G.L.; investigation, G.L.; data curation, G.L.; writing—original draft
preparation, G.L.; writing—review and editing, G.L. and J.-J.P.; visualization, G.L.; supervision, J.-J.P.;



Fractal Fract. 2024, 8, 239 18 of 25

project administration, J.-J.P.; funding acquisition, J.-J.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Korea Institute of Marine Science & Technology Promotion
(KIMST) funded by the Ministry of Oceans and Fisheries (RS-2023-00256005). This work was also sup-
ported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2022R1A2C10014059).

Data Availability Statement: The data presented in this study are openly available in NCEI at
https://www.ncei.noaa.gov/products/optimum-interpolation-sst (accessed on 4 April 2023).

Acknowledgments: NOAA OI SST V2 High Resolution Dataset data were provided by the NOAA
PSL, Boulder, CO, USA, from their website at https://psl.noaa.gov (accessed on 4 April 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Fractal Fract. 2024, 8, x FOR PEER REVIEW 19 of 26 
 

 

supported by the National Research Foundation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT) (No. 2022R1A2C10014059). 

Data Availability Statement: The data presented in this study are openly available in NCEI at 
https://www.ncei.noaa.gov/products/optimum-interpolation-sst (accessed on 4 April 2023). 

Acknowledgments: NOAA OI SST V2 High Resolution Dataset data were provided by the NOAA 
PSL, Boulder, CO, USA, from their website at https://psl.noaa.gov (accessed on 4 April 2023). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

 
Figure A1.  Surface currents of the EJS, averaged over decades [32]. TWC: Tsushima Warm Current, 
EKWC: East Korea Warm Current, NB: Nearshore Branch of TWC, OB: Offshore Branch of TWC, 
NKCC: North Korea Cold Current, LCC: Liman Cold Current, KTS: Korea-Tsushima Strait, TS: Tsu-
garu Strait, SS: Soya Strait, JB: Japan Basin, YB: Yamato Basin, UB: Ulleung Basin. 
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NKCC: North Korea Cold Current, LCC: Liman Cold Current, KTS: Korea-Tsushima Strait, TS:
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lines denote the corresponding fitting line, respectively.
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over the large scaling range from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted
lines denote the corresponding fitting line, respectively.



Fractal Fract. 2024, 8, 239 21 of 25Fractal Fract. 2024, 8, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure A6. Covariance fluctuations vs. segment of small scales, using MF-CCA for q-values from −10 
to +10, in E-line. 

 
Figure A7. Covariance fluctuations vs. segment of large scales, using MF-CCA for q-values from −10 
to +10, in E-line. 

Figure A6. Covariance fluctuations vs. segment of small scales, using MF-CCA for q-values from
−10 to +10, in E-line.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure A6. Covariance fluctuations vs. segment of small scales, using MF-CCA for q-values from −10 
to +10, in E-line. 

 
Figure A7. Covariance fluctuations vs. segment of large scales, using MF-CCA for q-values from −10 
to +10, in E-line. 
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to +10, in E-line.



Fractal Fract. 2024, 8, 239 22 of 25Fractal Fract. 2024, 8, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure A8. The positive MF-ACCA fluctuation functions 𝐹ା (s) vs. the segment size s in logarithmic 
plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted lines 
denote the corresponding fitting line, respectively. 

 
Figure A9. The negative MF-ACCA fluctuation functions 𝐹ି(s) vs. the segment size s in logarith-
mic plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted 
lines denote the corresponding fitting line, respectively. 

Figure A8. The positive MF-ACCA fluctuation functions F+
XY(s) vs. the segment size s in logarithmic

plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted
lines denote the corresponding fitting line, respectively.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure A8. The positive MF-ACCA fluctuation functions 𝐹ା (s) vs. the segment size s in logarithmic 
plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted lines 
denote the corresponding fitting line, respectively. 

 
Figure A9. The negative MF-ACCA fluctuation functions 𝐹ି(s) vs. the segment size s in logarith-
mic plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted 
lines denote the corresponding fitting line, respectively. 
Figure A9. The negative MF-ACCA fluctuation functions F−

XY(s) vs. the segment size s in logarithmic
plots over the large scales from 1000 to 5000 days. (A) E-line, (B) S-line, and (C) N-line. The dotted
lines denote the corresponding fitting line, respectively.



Fractal Fract. 2024, 8, 239 23 of 25

Appendix B

Table A1. The generalized Hurst exponents and its multifractality strength are given for large scales
from 1000 to 5000 days.

Location h(+10) h(+2) h(−10) ∆h * Crossover Behavior

E1 0.86 0.84 0.82 0.04 not clear
E2 0.78 0.9 1.13 0.35 not clear
E3 0.86 0.88 1.08 0.22 not clear
E4 0.72 0.86 1.22 0.5 not clear
E5 0.9 0.89 1 0.1 not clear
S1 1.12 0.92 0.96 0.16 not clear
S2 1.05 0.95 1.01 0.04 strong (convex)
S3 0.85 0.79 0.69 0.16 strong (convex)
S4 0.99 0.81 0.61 0.38 not clear
S5 1.11 0.87 0.68 0.43 strong (convex)
N1 0.44 0.5 0.66 0.22 not clear
N2 0.41 0.56 0.89 0.48 not clear
N3 0.63 0.68 0.86 0.23 not clear
N4 1.29 1.1 1.11 0.18 strong (convex)
N5 1.11 0.87 0.68 0.43 weak (convex)

* The strength of multifractality is computed using Equation (19), for the scaling range from 1000 to 5000 days.

Table A2. The multifractality strength and degree of asymmetry are given for rising and falling trend,
respectively, for large scales from 1000 to 5000 days.

Location ∆h+ * ∆h− * [q=+10] [q=+2] [q=−10]
h+

asy h−asy ∆h **
asy h+

asy h−asy ∆h **
asy h+

asy h−asy ∆h **
asy

E1 0.09 0.43 0.94 0.28 0.66 0.89 0.48 0.41 0.85 0.71 0.14
E2 0.29 0.56 0.78 0.7 0.08 0.87 0.88 −0.01 1.07 1.26 −0.19
E3 0.22 0.27 0.85 0.85 0 0.85 0.94 −0.09 1.07 1.12 −0.05
E4 0.39 0.48 0.73 0.76 −0.03 0.85 0.87 −0.02 1.12 1.24 −0.12
E5 0.05 0.21 0.9 0.82 0.08 0.87 0.88 −0.01 0.95 1.03 −0.08
S1 0.25 0.64 1.11 0.53 0.58 0.94 0.71 0.23 0.86 1.17 −0.31
S2 0.24 0.49 1.08 0.69 0.49 0.99 0.8 0.19 0.84 1.18 −0.34
S3 0.18 0.3 0.88 0.52 0.36 0.83 0.62 0.21 0.7 0.82 −0.12
S4 0.37 0.18 1 0.46 0.54 0.85 0.53 0.32 0.63 0.64 −0.01
S5 0.5 0.3 1.16 0.38 0.78 0.96 0.46 0.5 0.66 0.68 −0.02
N1 0.21 0.3 0.46 0.32 0.14 0.53 0.41 0.12 0.67 0.62 0.05
N2 0.51 0.43 0.38 0.46 −0.08 0.55 0.58 −0.03 0.89 0.89 0
N3 0.25 0.4 0.62 0.38 0.24 0.68 0.51 0.17 0.87 0.78 0.09
N4 0.16 0.3 1.29 0.63 0.66 1.18 0.71 0.47 1.13 0.93 0.2
N5 0.5 0.3 1.16 0.38 0.78 0.96 0.46 0.5 0.66 0.68 −0.02

* The strength of multifractality for positive (rising) and negative (falling) trends, respectively, for the scaling
range from 1000 to 5000 days. ** The degree of asymmetricity is computed via Equation (12).

Table A3. The multifractality strength and degree of asymmetry of cross-correlation structure of
SSTA are given for rising and falling trend, respectively, for large scales from 1000 to 5000 days.

Pairs ∆h+ *
XY ∆h− *

XY
[q=+10] [q=+2]

h+
XY h−XY ∆h **

XY h+
XY h−XY ∆h **

XY

E12 0.05 0.13 0.87 0.59 0.28 0.92 0.72 0.2
E13 0.02 0.16 0.94 0.64 0.3 0.96 0.8 0.16
E14 0.03 0.27 0.88 0.61 0.27 0.91 0.88 0.03
E15 0.02 0.3 0.92 0.69 0.23 0.9 0.99 −0.09
S12 0.14 0.14 1.13 0.67 0.46 0.99 0.84 0.15
S13 0.11 0.26 1.14 0.55 0.59 1.03 0.81 0.22
S14 0.13 0.33 1.24 0.39 0.84 1.1 0.72 0.38
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Table A3. Cont.

Pairs ∆h+ *
XY ∆h− *

XY
[q=+10] [q=+2]

h+
XY h−XY ∆h **

XY h+
XY h−XY ∆h **

XY

S15 0.2 0.38 1.4 0.07 1.33 1.2 0.45 0.75
N12 0.16 0.17 0.41 0.28 0.13 0.57 0.45 0.12
N13 0.11 0.19 0.5 0.35 0.15 0.61 0.54 0.07
N14 0.03 0.15 0.71 0.28 0.43 0.68 0.43 0.25
N15 0.11 0.22 0.6 0.11 0.49 0.49 −0.11 0.6

* The strength of multifractality for positive (rising) and negative (falling) trends, respectively, for the scaling
range from 1000 to 5000 days. ** The degree of asymmetricity is computed via Equation (12).
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