Fixed Point Theorems: Exploring Applications in Fractional Differential Equations for Economic Growth
Abstract
:1. Introduction
2. Preliminaries
- ()
- for all such that , which implies
- ()
- for each sequence , if and only if
- ()
- there exists and such that
- for all and for some
- (D1)
- , if and only if ;
- (D2)
- for all ;
- (D3)
- for all and , with for all , we have
3. Results and Discussions
3.1. Fixed Point Results for -(,h)-Contractions
3.2. Fixed Point Results for Interpolative Contractions
- (i)
- There exists such that
- (ii)
- Either is continuous, or, for any sequence in X with for all and as , we have for all .
4. Applications
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bestvina, M. R-trees in topology, geometry and group theory. In Handbook of Geometric Topology; North-Holland: Amsterdam, The Netherlands, 2002; pp. 55–91. [Google Scholar]
- Semple, C.; Steel, M. Phylogenetics; Oxford University Press: Oxford, UK, 2023; Volume 24. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces. Publ. Math. Debrecen. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Osstrav. 1993, 1, 5–11. [Google Scholar]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed. Point. Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 38, 2014. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α–ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Latif, A.; Isik, H.; Ansari, A.H. Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings. J. Nonlinear Sci. Appl. 2016, 9, 1129–1142. [Google Scholar] [CrossRef]
- Ansari, A.H.; Shukla, S. Some fixed point theorems for ordered F-(-h)-contraction and subcontraction in 0-f-orbitally complete partial metric spaces. J. Adv. Math. Stud. 2016, 9, 37–53. [Google Scholar]
- Alizadeh, S.; Moradlou, F.; Salimi, P. Some fixed point results for (α,β) − (ψ,φ)-contractive mappings. Filomat 2014, 28, 3635–3647. [Google Scholar] [CrossRef]
- Hussain, A.; Kanwal, T. Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. Razmadze Math. Inst. 2018, 172, 481–490. [Google Scholar] [CrossRef]
- Faraji, H.; Mirkov, N.; Mitrović, Z.D.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some new results for (α,β)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 2022, 14, 2429. [Google Scholar] [CrossRef]
- Younis, M.; Singh, D.; Abdou, A.A.N. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Math. Methods Appl. Sci. 2022, 45, 2234–2253. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Rawashdeh, A.S.; Al-Mazrooei, A.E. Fixed point results for (α,)-contractions in orthogonal -metric spaces with applications. J. Funct. Spaces 2022, 2022, 8532797. [Google Scholar] [CrossRef]
- Asif, A.; Nazam, M.; Arshad, M.; Kim, S.O. F-Metric, F-contraction and common fixed point theorems with applications. Mathematics 2019, 7, 586. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Aleroeva, H.; Aleroev, T. Some applications of fractional calculus. IOP Conf. Ser. Mater. Sci. Eng. 2020, 747, 1–5. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; Kausar, N.; Munir, M.; Salahuddin, S. Orthogonal F-contraction mapping on O-complete metric space with applications. Int. J. Fuzzy Log. Intell. Syst. 2021, 21, 243–250. [Google Scholar] [CrossRef]
- McTier, A. Fractional Calculus Fundamentals and Applications in Economic Modeling. Bachelor’s Thesis, Georgia College & State University, Milledgeville, GA, USA, 2016; pp. 1–25. [Google Scholar]
- Tejado, I.; Valério, D.; Pérez, E.; Valério, N. Fractional calculus in economic growth modelling: The Spanish and Portuguese cases. Int. J. Dynam. Control 2017, 5, 208–222. [Google Scholar] [CrossRef]
- Ming, H.; Wang, J.R.; Feckan, M. The application of fractional calculus in Chinese economic growth models. Mathematics 2019, 7, 665. [Google Scholar] [CrossRef]
- Johansyah, M.D.; Supriatna, A.K.; Rusyaman, E.; Saputra, J. Application of fractional differential equation in economic growth model: A systematic review approach. AIMS Math. 2021, 6, 10266–10280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdou, A.A.N. Fixed Point Theorems: Exploring Applications in Fractional Differential Equations for Economic Growth. Fractal Fract. 2024, 8, 243. https://doi.org/10.3390/fractalfract8040243
Abdou AAN. Fixed Point Theorems: Exploring Applications in Fractional Differential Equations for Economic Growth. Fractal and Fractional. 2024; 8(4):243. https://doi.org/10.3390/fractalfract8040243
Chicago/Turabian StyleAbdou, Afrah Ahmad Noman. 2024. "Fixed Point Theorems: Exploring Applications in Fractional Differential Equations for Economic Growth" Fractal and Fractional 8, no. 4: 243. https://doi.org/10.3390/fractalfract8040243
APA StyleAbdou, A. A. N. (2024). Fixed Point Theorems: Exploring Applications in Fractional Differential Equations for Economic Growth. Fractal and Fractional, 8(4), 243. https://doi.org/10.3390/fractalfract8040243