Non-Polynomial Collocation Spectral Scheme for Systems of Nonlinear Caputo–Hadamard Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Non-Polynomial Spectral Collocation Scheme
4. Auxiliary Lemmas
5. Convergence Analysis
5.1. Convergence Analysis in -Norm
5.2. Convergence Analysis in –Norm
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Yang, Y.; Zhang, H.H. Fractional Calculus with Its Applications in Engineering and Technology; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Meerschaert, M.M.; Scheffler, H.P. Stochastic model for ultraslow diffusion. Stoch. Process. Their Appl. 2006, 116, 1215–1235. [Google Scholar] [CrossRef]
- Kochubei, A.N. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 2008, 340, 252–281. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc 2001, 38, 1191–1204. [Google Scholar]
- Kilbas, A.; Marzan, S.; Titioura, A. Hadamard-type fractional integrals and derivatives and differential equations of fractional order. Dokl. Math. 2003, 67, 263–267. [Google Scholar]
- He, B.B.; Zhou, H.C.; Kou, C.H. Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay. Fract. Calc. Appl. Anal. 2022, 25, 2420–2445. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, K.; Vats, R.K.; Vijayakumar, V. Analysis of Neutral Fractional Differential Equation via the Method of Upper and Lower Solution. Qual. Theory Dyn. Syst. 2023, 22, 93. [Google Scholar] [CrossRef]
- Gohar, M.; Li, C.; Yin, C. On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 2020, 97, 1459–1483. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, L. Mathematical Analysis of the Hadamard-Type Fractional Fokker–Planck Equation. Mediterr. J. Math. 2023, 20, 245. [Google Scholar] [CrossRef]
- Ou, C.; Cen, D.; Vong, S.; Wang, Z. Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Appl. Numer. Math. 2022, 177, 34–57. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2020, 6, 168–194. [Google Scholar] [CrossRef]
- Ould Sidi, H.; Babatin, M.; Alosaimi, M.; Hendy, A.S.; Zaky, M.A. Simultaneous numerical inversion of space-dependent initial condition and source term in multi-order time-fractional diffusion models. Rom. Rep. Phys. 2024, 76, 104. [Google Scholar]
- Sidi Ould, H.; Zaky, M.A.; Waled, K.E.; Akgül, A.; Hendy, A.S. Numerical reconstruction of a space-dependent source term for multidimensional space-time fractional diffusion equations. Rom. Rep. Phys. 2023, 75, 120. [Google Scholar] [CrossRef]
- Zaky, M.; Hendy, A.; Aldraiweesh, A. Numerical algorithm for the coupled system of nonlinear variable-order time fractional Schrödinger equations. Rom. Rep. Phys. 2023, 75, 106. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Zaky, M.A.; Hendy, A.S.; Suragan, D. Logarithmic Jacobi collocation method for Caputo–Hadamard fractional differential equations. Appl. Numer. Math. 2022, 181, 326–346. [Google Scholar] [CrossRef]
- Shen, J.; Tang, T.; Wang, L.L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 41. [Google Scholar]
-Errors | -Errors | |||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 |
-Errors | -Errors | |||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 |
-Errors | -Errors | |||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 | ||||
25 |
-Errors | -Errors | |||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 | ||||
25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaky, M.A.; Ameen, I.G.; Babatin, M.; Akgül, A.; Hammad, M.; Lopes, A.M. Non-Polynomial Collocation Spectral Scheme for Systems of Nonlinear Caputo–Hadamard Differential Equations. Fractal Fract. 2024, 8, 262. https://doi.org/10.3390/fractalfract8050262
Zaky MA, Ameen IG, Babatin M, Akgül A, Hammad M, Lopes AM. Non-Polynomial Collocation Spectral Scheme for Systems of Nonlinear Caputo–Hadamard Differential Equations. Fractal and Fractional. 2024; 8(5):262. https://doi.org/10.3390/fractalfract8050262
Chicago/Turabian StyleZaky, Mahmoud A., Ibrahem G. Ameen, Mohammed Babatin, Ali Akgül, Magda Hammad, and António M. Lopes. 2024. "Non-Polynomial Collocation Spectral Scheme for Systems of Nonlinear Caputo–Hadamard Differential Equations" Fractal and Fractional 8, no. 5: 262. https://doi.org/10.3390/fractalfract8050262
APA StyleZaky, M. A., Ameen, I. G., Babatin, M., Akgül, A., Hammad, M., & Lopes, A. M. (2024). Non-Polynomial Collocation Spectral Scheme for Systems of Nonlinear Caputo–Hadamard Differential Equations. Fractal and Fractional, 8(5), 262. https://doi.org/10.3390/fractalfract8050262