Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation
Abstract
:1. Introduction
1.1. Compartments of the Blastocyst
1.2. Motivation and Contribution
- -
- We developed PSF-Net to identify the human blastocyst compartments without any preprocessing requirements of blastocyst images. PSF-Net is a multiscale architecture, and it is based on the fusion of two parallel feature streams with different scales. PSF-Net is a computationally efficient network and uses only 0.7 million trainable parameters.
- -
- In PSF-Net, low-level features from multiscale streams are transferred and fused in the deeper stage of the network using two skip connections. Multiscale feature fusion helps the network to identify the indistinctive boundaries of the embryo compartments.
- -
- The proposed work also delivers fractal dimension estimation to assist medical experts by providing significant information of the distributional characteristics of blastocyst compartments.
- -
- The proposed PSF-Net models were made publicly available via Github site [26].
2. Proposed Method
2.1. The Overview of the Proposed Method
2.2. PSF-Net Architecture and Design Principles
2.3. Parallel Stream Fusion and Layer-Wise Configuration of PSF-Net
3. Experimental Environment, Results, and Discussion
3.1. Blastocyst Image Dataset
3.2. Training Details and Environment for PSF-Net
3.3. Evaluation of the Proposed PSF-Net
3.4. The Computation of Fractal Dimension
3.5. Experimental Ablation Study for PSF-Net
3.6. PSF-Net Comparison with Existing Methods
3.7. Fractal Dimension Estimate for Blastocyst Images
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huangfu, C.; Li, J.; Liu, H.; Tang, N. Psychological Resilience as the Mediating Factor Between Stigma and Social Avoidance and Distress of Infertility Patients in China: A Structural Equation Modeling Analysis. Psychol. Res. Behav. Manag. 2022, 15, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.M.; Erwin, A.; Handayani, N.; Polim, A.A.; Boediono, A.; Sini, I. Review of Computer Vision Application in in Vitro Fertilization: The Application of Deep Learning-Based Computer Vision Technology in the World of IVF. J. Assist. Reprod. Genet. 2021, 38, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Zaninovic, N.; Rosenwaks, Z. Artificial Intelligence in Human in Vitro Fertilization and Embryology. Fertil. Steril. 2020, 114, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, P.; Matyas, S. Choosing an Embryo for Transfer. In Assisted Reproduction Techniques; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 484–491. ISBN 978-1-119-62221-5. [Google Scholar]
- Goeckenjan, M.; Madej, D.; Klimova, A.; Wimberger, P.; Birdir, C.; Glaß, K. Are Two Children at Once Better than One? Risk Analysis of Twin Pregnancies and Births after Assisted Reproduction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Revelli, A.; Canosa, S.; Carosso, A.; Filippini, C.; Paschero, C.; Gennarelli, G.; Delle Piane, L.; Benedetto, C. Impact of the Addition of Early Embryo Viability Assessment to Morphological Evaluation on the Accuracy of Embryo Selection on Day 3 or Day 5: A Retrospective Analysis. J. Ovarian Res. 2019, 12, 73. [Google Scholar] [CrossRef]
- Pribenszky, C.; Nilselid, A.-M.; Montag, M. Time-Lapse Culture with Morphokinetic Embryo Selection Improves Pregnancy and Live Birth Chances and Reduces Early Pregnancy Loss: A Meta-Analysis. Reprod. BioMed. Online 2017, 35, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, K.; Berkkanoglu, M.; Bulut, H.; Donmez, L.; Isikli, A.; Coetzee, K. Blastocyst Age, Expansion, Trophectoderm Morphology, and Number Cryopreserved Are Variables Predicting Clinical Implantation in Single Blastocyst Frozen Embryo Transfers in Freeze-Only-IVF. J. Assist. Reprod. Genet. 2021, 38, 1077–1087. [Google Scholar] [CrossRef]
- Zhou, Z.; Ni, C.; Wu, L.; Chen, B.; Xu, Y.; Zhang, Z.; Mu, J.; Li, B.; Yan, Z.; Fu, J.; et al. Novel Mutations in ZP1, ZP2, and ZP3 Cause Female Infertility Due to Abnormal Zona Pellucida Formation. Hum. Genet. 2019, 138, 327–337. [Google Scholar] [CrossRef]
- Ganeva, R.; Parvanov, D.; Velikova, D.; Vasileva, M.; Nikolova, K.; Stamenov, G. Sperm Morphology and DNA Fragmentation after Zona Pellucida Selection. Reprod. Fertil. 2021, 2, 221–230. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, R.; Yuan, P.; Ren, Y.; Mao, Y.; Li, R.; Lian, Y.; Li, J.; Wen, L.; Yan, L.; et al. Reconstituting the Transcriptome and DNA Methylome Landscapes of Human Implantation. Nature 2019, 572, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Ezoe, K.; Miki, T.; Ohata, K.; Fujiwara, N.; Yabuuchi, A.; Kobayashi, T.; Kato, K. Prolactin Receptor Expression and Its Role in Trophoblast Outgrowth in Human Embryos. Reprod. BioMed. Online 2021, 42, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, R.; Palini, S.; Vento, M.E.; La Ferlita, A.; Lo Faro, M.J.; Caroppo, E.; Borzì, P.; Falzone, L.; Barbagallo, D.; Ragusa, M.; et al. Identification of Extracellular Vesicles and Characterization of miRNA Expression Profiles in Human Blastocoel Fluid. Sci. Rep. 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Arsalan, M.; Haider, A.; Choi, J.; Park, K.R. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. J. Pers. Med. 2022, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Guh, R.-S.; Wu, T.-C.J.; Weng, S.-P. Integrating Genetic Algorithm and Decision Tree Learning for Assistance in Predicting in Vitro Fertilization Outcomes. Expert Syst. Appl. 2011, 38, 4437–4449. [Google Scholar] [CrossRef]
- Kumaravel, A.; Vijayan, T. Comparing Cost Sensitive Classifiers by the False-Positive to False- Negative Ratio in Diagnostic Studies. Expert Syst. Appl. 2023, 227, 120303. [Google Scholar] [CrossRef]
- Mahmood, T.; Cho, S.W.; Park, K.R. DSRD-Net: Dual-Stream Residual Dense Network for Semantic Segmentation of Instruments in Robot-Assisted Surgery. Expert Syst. Appl. 2022, 202, 117420. [Google Scholar] [CrossRef]
- Serte, S.; Serener, A.; Al-Turjman, F. Deep Learning in Medical Imaging: A Brief Review. Trans. Emerg. Telecommun. Technol. 2022, 33, e4080. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.; Hong, Q.-Q.; Teku, R.; Wang, S.-H.; Zhang, Y.-D. Transfer Learning for Medical Images Analyses: A Survey. Neurocomputing 2022, 489, 230–254. [Google Scholar] [CrossRef]
- Joshi, H.; Jha, B.K. 2D Memory-Based Mathematical Analysis for the Combined Impact of Calcium Influx and Efflux on Nerve Cells. Comput. Math. Appl. 2023, 134, 33–44. [Google Scholar] [CrossRef]
- Siristatidis, C.; Stavros, S.; Drakeley, A.; Bettocchi, S.; Pouliakis, A.; Drakakis, P.; Papapanou, M.; Vlahos, N. Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol. Diagnostics 2021, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Chen, Q.; Huang, X. An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network. Fractal Fract. 2023, 7, 820. [Google Scholar] [CrossRef]
- Jiao, Q.; Liu, M.; Ning, B.; Zhao, F.; Dong, L.; Kong, L.; Hui, M.; Zhao, Y. Image Dehazing Based on Local and Non-Local Features. Fractal Fract. 2022, 6, 262. [Google Scholar] [CrossRef]
- An, Q.; Chen, X.; Wang, H.; Yang, H.; Yang, Y.; Huang, W.; Wang, L. Segmentation of Concrete Cracks by Using Fractal Dimension and UHK-Net. Fractal Fract. 2022, 6, 95. [Google Scholar] [CrossRef]
- Muhammad Arsalan PSF-Net Models for Human Blastocyst Compartment Detection. Available online: https://github.com/Arsal8484/Embryo-Component-Detection-for-IVF (accessed on 11 March 2024).
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogniton, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Salehi, S.S.M.; Erdogmus, D.; Gholipour, A. Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks. In Proceedings of the Machine Learning in Medical Imaging; Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 379–387. [Google Scholar]
- Saeedi, P.; Yee, D.; Au, J.; Havelock, J. Automatic Identification of Human Blastocyst Components via Texture. IEEE Trans. Biomed. Eng. 2017, 64, 2968–2978. [Google Scholar] [PubMed]
- Aurelio, Y.S.; de Almeida, G.M.; de Castro, C.L.; Braga, A.P. Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function. Neural Process Lett. 2019, 50, 1937–1949. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Québec City, QC, Canada, 14 September 2017; pp. 240–248. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. BLAST-NET: Semantic Segmentation of Human Blastocyst Components via Cascaded Atrous Pyramid and Dense Progressive Upsampling. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1865–1869. [Google Scholar]
- Arsalan, M.; Haider, A.; Cho, S.W.; Kim, Y.H.; Park, K.R. Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis. Biomedicines 2022, 10, 1717. [Google Scholar] [CrossRef]
- Theiler, J. Estimating Fractal Dimension. J. Opt. Soc. Am. A JOSAA 1990, 7, 1055–1073. [Google Scholar] [CrossRef]
- Rezaie, A.; Mauron, A.J.P.; Beyer, K. Sensitivity Analysis of Fractal Dimensions of Crack Maps on Concrete and Masonry Walls. Autom. Constr. 2020, 117, 103258. [Google Scholar] [CrossRef]
- Ghatak, S.; Chakraborti, S.; Gupta, M.; Dutta, S.; Pati, S.K.; Bhattacharya, A. Fractal Dimension-Based Infection Detection in Chest X-Ray Images. Appl. Biochem. Biotechnol. 2023, 195, 2196–2215. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhan, Y.; Deng, Q.; Qiu, Y.; Zhang, A. An Improved Differential Box Counting Method to Measure Fractal Dimensions for Pavement Surface Skid Resistance Evaluation. Measurement 2021, 178, 109376. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K. Image Texture Surface Analysis Using an Improved Differential Box Counting Based Fractal Dimension. Powder Technol. 2020, 364, 276–299. [Google Scholar] [CrossRef]
- Hong, D.; Pan, Z.; Wu, X. Improved Differential Box Counting with Multi-Scale and Multi-Direction: A New Palmprint Recognition Method. Optik 2014, 125, 4154–4160. [Google Scholar] [CrossRef]
- Iglovikov, V.; Shvets, A. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Arsalan, M.; Haider, A.; Choi, J.; Park, K.R. Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to Improve Success Rate of In Vitro Fertilization. J. Pers. Med. 2022, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Filho, E.S.; Noble, J.A.; Poli, M.; Griffiths, T.; Emerson, G.; Wells, D. A Method for Semi-Automatic Grading of Human Blastocyst Microscope Images. Hum. Reprod. 2012, 27, 2641–2648. [Google Scholar] [CrossRef]
- Singh, A.; Au, J.; Saeedi, P.; Havelock, J. Automatic Segmentation of Trophectoderm in Microscopic Images of Human Blastocysts. IEEE Trans. Biomed. Eng. 2015, 62, 382–393. [Google Scholar] [CrossRef]
Unit | Layer | Size | Stride | Filters | Output Size | #Param. |
---|---|---|---|---|---|---|
Input | Conv-in-1 * | 3 × 3 × 1 | 1 | 16 | 400 × 400 × 16 | 192 |
Conv-in-2 | 3 × 3 × 16 | 1 | 16 | 2320 | ||
Add-in | - | - | - | - | ||
BN+ReLU (Conv-in-2) | - | - | - | 32 | ||
Pool-in (to A-DConv, B-DConv) | 2 × 2 × 16 | 2 | - | 200 × 200 × 16 | - | |
Stream-A | A-DConv * (From Pool-in) | 3 × 3 × 16 | 2 | 32 | 100 × 100 × 32 | 4704 |
A-Conv-2 | 3 × 3 × 32 | 32 | 9248 | |||
A-Add-1 (A-Conv-2, A-DConv) | 3 × 3 × 16 | 32 | - | |||
BN+ReLU (A-Conv-2) | - | - | 64 | |||
A-Conv3 * | 3 × 3 × 16 | 2 | 32 | 100 × 100 × 64 | 18,624 | |
A-Conv-4 | 3 × 3 × 32 | 32 | 36,928 | |||
A-Add-2 (A-Conv-4, A-Conv3) | 3 × 3 × 16 | 32 | - | |||
BN+ReLU (A-Conv-4) | - | - | 128 | |||
A-Pool-1 | 2 × 2 × 64 | 64 | 50 × 50 × 64 | - | ||
A-Conv5 * | 3 × 3 × 64 | 1 | 96 | 50 × 50 × 96 | 55,584 | |
A-Conv-6 | 3 × 3 × 96 | 96 | 83,040 | |||
A-Add-3 (A-Conv-6, A-Conv5) | - | - | - | - | ||
BN+ReLU (A-Conv-6) | - | - | 192 | |||
A-Conv-7 * | 1 × 1 × 96 | 1 | 64 | 50 × 50 × 64 | 6336 | |
Stream-B | B-DConv * (From Pool-in) | 3 × 3 × 16 | 4 | 32 | 50 × 50 × 32 | 4704 |
B-Conv-2 | 3 × 3 × 32 | 32 | 9248 | |||
B-Add-1 (A-Conv-2, A-DConv) | - | - | - | - | ||
BN+ReLU (A-Conv-2) | - | - | 64 | |||
B-Conv3 * | 3 × 3 × 32 | 1 | 64 | 50 × 50 × 64 | 18,624 | |
B-Conv-4 | 3 × 3 × 32 | 32 | 36,928 | |||
B-Add-2 (B-Conv-4, B-Conv3) | - | - | - | - | ||
BN+ReLU (B-Conv-4) | - | - | 128 | |||
B-Pool-1 | 2 × 2 × 64 | 2 | - | 25 × 25 × 64 | - | |
B-Conv5 * | 3 × 3 × 64 | 1 | 96 | 25 × 25 × 96 | 55,584 | |
B-Conv-6 | 3 × 3 × 96 | 96 | 83,040 | |||
B-Add-3 (B-Conv-6, B-Conv5) | - | - | - | - | ||
BN+ReLU (B-Conv-6) | - | - | 192 | |||
B-TConv * | 3 × 3 × 96 | 2 | 64 | 50 × 50 × 64 | 55,488 | |
Concat (B-TConv, A-Conv-7) | - | - | - | 50 × 50 × 128 | - | |
Mid-Bloc | M-Conv1 * | 3 × 3 × 128 | 1 | 128 | 147,840 | |
M-Conv2 * | 3 × 3 × 128 | 1 | 64 | 50 × 50 × 64 | 73,920 | |
M-Conv3 | 3 × 3 × 64 | 1 | 32 | 50 × 50 × 32 | 18,464 | |
M-Add-1 (M-Conv3, B-DConv) | - | - | - | - | ||
BN+ReLU (M-Conv3) | - | - | 64 | |||
M-TConv | 2 × 2 × 32 | 32 | 100 × 100 × 32 | 4128 | ||
M-Add-2 (M-TConv, A-DConv) | - | - | - | - | ||
Final-bloc | BN+ReLU (M-TConv) | - | - | 64 | ||
F-TConv1 * | 2 × 2 × 32 | 2 | 32 | 200 × 200 × 32 | 4192 | |
F-TConv2 * | 2 × 2 × 32 | 2 | 32 | 400 × 400 × 32 | 4192 | |
F-MaskConv * | 3 × 3 × 32 | 1 | 5 | 400 × 400 × 5 | 1455 | |
BN-22 | - | - | 4 |
Method | #Parameters | TE | ICM | BL | ZP | BG | Mean JI |
---|---|---|---|---|---|---|---|
PSF-Net (FL) | 0.7 M | 72.00 | 81.38 | 77.45 | 82.31 | 95.40 | 81.71 |
PSF-Net (GDL) | 0.7 M | 78.56 | 86.31 | 88.60 | 84.92 | 95.58 | 86.80 |
PSF-Net (TVL without skip paths) | 0.7 M | 78.39 | 85.82 | 88.92 | 84.94 | 95.79 | 86.77 |
PSF-Net (TVL with skip paths) | 0.7 M | 80.00 | 86.46 | 90.15 | 85.77 | 96.10 | 87.69 |
Method | #Parameters | TE | ICM | BL | ZP | BG | Mean JI |
---|---|---|---|---|---|---|---|
Base-UNet [29] | 31.03 M | 75.06 | 79.03 | 79.41 | 79.32 | 94.04 | 81.37 |
Ternaus-UNet [46] | 10 M | 76.16 | 77.58 | 78.61 | 80.24 | 94.50 | 81.42 |
PSP-Net [47] | 35 M | 74.83 | 78.28 | 79.26 | 80.57 | 94.60 | 81.51 |
DeepLabV3 [28] | 40 M | 73.98 | 80.60 | 78.35 | 80.84 | 94.49 | 81.65 |
BlastNet [38] | 25 M | 76.52 | 81.07 | 80.79 | 81.15 | 94.74 | 82.85 |
SSS-Net-R [48] | 4.04 M | 77.40 | 84.94 | 88.39 | 82.88 | 96.03 | 85.93 |
SSS-Net-D [48] | 4.04 M | 78.15 | 84.50 | 88.68 | 84.51 | 95.82 | 86.34 |
MASS-Net-Plain [39] | 1.63 M | 77.25 | 84.55 | 87.78 | 84.76 | 95.96 | 86.06 |
MASS-Net-FBB [39] | 2.06 M | 79.08 | 85.88 | 89.28 | 84.69 | 96.07 | 87.00 |
PSF-Net (TVL without skip paths) (Proposed) | 0.7 M | 78.39 | 85.82 | 88.92 | 84.94 | 95.79 | 86.77 |
PSF-Net (TVL with skip paths) (Proposed) | 0.7 M | 80.00 | 86.46 | 90.15 | 85.77 | 96.10 | 87.69 |
ICM | BL | TE | ZP |
---|---|---|---|
1.47 | 1.73 | 1.43 | 1.35 |
1.52 | 1.70 | 1.39 | 1.40 |
1.46 | 1.61 | 1.48 | 1.52 |
1.46 | 1.68 | 1.43 | 1.38 |
1.39 | 1.61 | 1.49 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsalan, M.; Haider, A.; Hong, J.S.; Kim, J.S.; Park, K.R. Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation. Fractal Fract. 2024, 8, 267. https://doi.org/10.3390/fractalfract8050267
Arsalan M, Haider A, Hong JS, Kim JS, Park KR. Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation. Fractal and Fractional. 2024; 8(5):267. https://doi.org/10.3390/fractalfract8050267
Chicago/Turabian StyleArsalan, Muhammad, Adnan Haider, Jin Seong Hong, Jung Soo Kim, and Kang Ryoung Park. 2024. "Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation" Fractal and Fractional 8, no. 5: 267. https://doi.org/10.3390/fractalfract8050267
APA StyleArsalan, M., Haider, A., Hong, J. S., Kim, J. S., & Park, K. R. (2024). Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation. Fractal and Fractional, 8(5), 267. https://doi.org/10.3390/fractalfract8050267