Utilizing Cubic B-Spline Collocation Technique for Solving Linear and Nonlinear Fractional Integro-Differential Equations of Volterra and Fredholm Types
Abstract
:1. Introduction
- .
- , where n is a natural number ().
2. Basic Definitions of Fractional Derivatives
- .
- , for .
- , for .
- , for .
- .
3. Numerical Scheme
Algorithm 1 Algorithm Describing the Proposed Scheme |
Input : Output Solution vector C containing coefficients : Procedure:
|
4. Stability Analysis
5. Convergence Analysis
6. Numerical Findings and Discussion
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benzahi, A.; Arar, N.; Abada, N.; Rhaima, M.; Mchiri, L.; Makhlouf, A.B. Numerical Investigation of Fredholm Fractional Integro-differential Equations by Least Squares Method and Compact Combination of Shifted Chebyshev Polynomials. J. Nonlinear Math. Phys. 2023, 30, 1392–1408. [Google Scholar] [CrossRef]
- Yi, M.; Huang, J. CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel. Int. J. Comput. Math. 2015, 62, 1715–1728. [Google Scholar] [CrossRef]
- Mirzaee, F.M.; Alipour, S. Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order. J. Comput. Appl. Math. 2020, 366, 112440. [Google Scholar] [CrossRef]
- Erfanian, M.; Zeidabadi, H. Approximate solution of linear Volterra integro-differential equation by using cubic B-spline finite element method in the complex plane. Adv. Differ. Equ. 2019, 2019, 62. [Google Scholar] [CrossRef]
- Arshed, S. B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Partial. Differ. Equ. 2017, 33, 1565–1581. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, Z.; Alipour, S. An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 2020, 151, 199–212. [Google Scholar] [CrossRef]
- Mohammed, D.S. Numerical Solution of fractional-integro-differential equations by Least Squares Method and Shifted Chebyshev Polynomial. Comput. Methods Eng. Sci. 2014, 2014, 431965. [Google Scholar] [CrossRef]
- Saeedi, H.; Moghadam, M.; Mollahasani, M.M.; Chuev, G.N. A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1154–1163. [Google Scholar] [CrossRef]
- Awawdeh, F.; Rawashdeh, E.A.; Jaradat, H.M. Analytic solution of fractional integro-differential equations. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2011, 38, 1–10. [Google Scholar]
- Bhrawy, A.H.; Alghamdi, M.A. A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals. Bound. Value Probl. 2012, 2012, 62. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Huang, Y. Spectral-collocation method for fractional Fredholm integro-differential equations. J. Korean Math. Soc. 2014, 51, 203–224. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Alofi, A.S. The operational matrix of fractional integration for shifted Chebyshev polynomial. Commun. Nonlinear Sci. Numer. Simul. 2013, 26, 25–31. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 2011, 35, 5662–5672. [Google Scholar] [CrossRef]
- Irandoust, P.S.; Kheiri, H.; Abdi, M. Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 2013, 37, 53–62. [Google Scholar]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPS. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Liao, S. On the homotopy analysis method for nonlinear problems. Stud. Appl. Math. 2004, 64, 629–635. [Google Scholar] [CrossRef]
- Yang, C. Numerical Solution of Nonlinear Fredholm Integro differential Equations of Fractional Order by Using Hybrid of Block-Pulse Functions and Chebyshev Polynomials. Math. Probl. Eng. 2011, 2011, 341989. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Yuanlu, L. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2284–2292. [Google Scholar]
- Li, Y.; Sun, N. Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Comput. Math. Appl. 2011, 62, 1046–1054. [Google Scholar] [CrossRef]
- Araci, S. Novel identities for q-Genocchi numbers and polynomials. J. Funct. Spaces. Appl. 2012, 2012, 214961. [Google Scholar] [CrossRef]
- Gürbüz, B.; Sezer, M. Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields. Acta Phys. Pol. A 2016, 130, 194–197. [Google Scholar] [CrossRef]
- Nazari, D.; Shahmorad, S. Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J. Comput. Appl. Math. 2010, 234, 883–891. [Google Scholar] [CrossRef]
- Ali, K.K.; Abd El Salam, M.A.; Mohamed, E.M.; Samet, B.; Kumar, S.; Osman, M.S. Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Adv. Differ. Equ. 2020, 2020, 494. [Google Scholar] [CrossRef]
- Oyedepo, T.; Taiwo, O.A.; Abubakar, J.U.; Ogunwobi, Z.O. Numerical Studies for Solving Fractional Integro-Differential Equations by using Least Squares Method and Bernstein Polynomials. Fluid Mech. Open Access 2016, 3, 1–7. [Google Scholar]
- Nigarchi, N.; Nouri, K. Numerical solution of Volterra and Fredholm integral equations using the collocation method based on a special form of the Müntz Legendre polynomials. J. Comput. Appl. Math. 2018, 344, 15–24. [Google Scholar] [CrossRef]
- Beni, M.R. Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations. Iran. J. Numer. Anal. Optim. 2022, 12, 229–249. [Google Scholar]
- Kumar, K.; Pandey, R.K.; Sharma, S. Comparative study of three numerical schemes for fractional integro-differential equations. J. Comput. Appl. Math. 2017, 239, 74–88. [Google Scholar] [CrossRef]
- Sun, Z.-Z.; Gao, G.-H. Fractional Differential Equations: Finite Difference Methods; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020. [Google Scholar]
- Hall, C.A. On error bounds for spline interpolation. J. Approx. Theory 1968, 1, 209–218. [Google Scholar] [CrossRef]
- Prenter, P.M. Spline and Variational Methods; Wiley: New York, NY, USA, 1975. [Google Scholar]
x | Our Results | Results in [25] |
---|---|---|
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | ||
0.7 | ||
0.8 | ||
0.9 |
x | Present Method | Method in [25] |
---|---|---|
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | ||
0.7 | ||
0.8 | ||
0.9 |
x | Present Method | Method in [27] |
---|---|---|
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | 0 | |
0.7 | ||
0.8 | 7 | |
0.9 |
x | Present Method | Method in [27] |
---|---|---|
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | ||
0.7 | ||
0.8 | ||
0.9 |
x | Present Method | Method in [21] |
---|---|---|
0 | ||
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | ||
0.7 | ||
0.8 | ||
0.9 | ||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Yaseen, M.; Akram, I. Utilizing Cubic B-Spline Collocation Technique for Solving Linear and Nonlinear Fractional Integro-Differential Equations of Volterra and Fredholm Types. Fractal Fract. 2024, 8, 268. https://doi.org/10.3390/fractalfract8050268
Ali I, Yaseen M, Akram I. Utilizing Cubic B-Spline Collocation Technique for Solving Linear and Nonlinear Fractional Integro-Differential Equations of Volterra and Fredholm Types. Fractal and Fractional. 2024; 8(5):268. https://doi.org/10.3390/fractalfract8050268
Chicago/Turabian StyleAli, Ishtiaq, Muhammad Yaseen, and Iqra Akram. 2024. "Utilizing Cubic B-Spline Collocation Technique for Solving Linear and Nonlinear Fractional Integro-Differential Equations of Volterra and Fredholm Types" Fractal and Fractional 8, no. 5: 268. https://doi.org/10.3390/fractalfract8050268
APA StyleAli, I., Yaseen, M., & Akram, I. (2024). Utilizing Cubic B-Spline Collocation Technique for Solving Linear and Nonlinear Fractional Integro-Differential Equations of Volterra and Fredholm Types. Fractal and Fractional, 8(5), 268. https://doi.org/10.3390/fractalfract8050268