On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics
Abstract
:1. Introduction
2. Formulation of the Crank–Nicolson Finite Difference Method (CN–FDM)
3. Formulation of the Explicit Decoupled Group Method (EDGM)
4. Stability Analysis
- (i)
- (ii)
- .
5. Convergence Analysis
6. Numerical Results and Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Teodoro, G.S.; Machado, J.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Matlob, M.A.; Jamali, Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer. Crit. Rev. Biomed. Eng. 2019, 47, 249–276. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef]
- Din, A.; Khan, F.M.; Khan, Z.U.; Yusuf, A.; Munir, T. The mathematical study of climate change model under nonlocal fractional derivative. Partial Differ. Equ. Appl. Math. 2022, 5, 100204. [Google Scholar] [CrossRef]
- Reyaz, R.; Mohamad, A.Q.; Lim, Y.J.; Saqib, M.; Shafie, S. Analytical solution for impact of Caputo-Fabrizio fractional derivative on MHD Casson fluid with thermal radiation and chemical reaction effects. Fractal Fract. 2022, 6, 38. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Yang, L.; Zhuo, X. Global analysis and simulation of a fractional order HBV immune model. Chaos Solitons Fractals 2022, 154, 111648. [Google Scholar] [CrossRef]
- Ullah, M.S.; Higazy, M.; Kabir, K.A. Modeling the epidemic control measures in overcoming covid-19 outbreaks: A fractional-order derivative approach. Chaos Solitons Fractals 2022, 155, 111636. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Bayones, F.S. On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel. AIMS Math. 2022, 7, 4552–4573. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Govindaraj, V.; Kumar, S. A fractional mathematical modeling of protectant and curative fungicide application. Chaos Solitons Fractals X 2022, 8, 100071. [Google Scholar] [CrossRef]
- Lauria, D.; Mottola, F.; Proto, D. Caputo derivative applied to very short time photovoltaic power forecasting. Appl. Energy 2022, 309, 118452. [Google Scholar] [CrossRef]
- Anwar, T.; Kumam, P.; Thounthong, P. A comparative fractional study to evaluate thermal performance of NaAlg–MoS2–Co hybrid nanofluid subject to shape factor and dual ramped conditions. Alex. Eng. J. 2022, 61, 2166–2187. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.; Li, X. Fractional Derivative Modeling in Mechanics and Engineering; Springer: Beijing, China, 2022. [Google Scholar]
- Zhuang, P.; Liu, F.; Turner, I.; Anh, V. Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algorithms 2016, 72, 447–466. [Google Scholar] [CrossRef]
- Kumar, L.; Sista, S.G.; Sreenadh, K. Galerkin Finite element analysis of time-fractional integro-differential equation of Kirchhoff type for non-homogeneous materials. Math. Methods Appl. Sci. 2024, 74, 2120–2153. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, J.; Liu, Y.; Nie, Y. Unconditional convergence analysis of two linearized Galerkin FEMs for the nonlinear time-fractional diffusion-wave equation. Results Appl. Math. 2023, 19, 100389. [Google Scholar] [CrossRef]
- Tural-Polat, S.N.; Dincel, A.T. Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind. Alex. Eng. J. 2022, 61, 5145–5153. [Google Scholar] [CrossRef]
- Samko, S.G.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Initialization, conceptualization, and application in the generalized (fractional) calculus. Crit. Rev. Biomed. Eng. 2007, 35, 447–553. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Coimbra, C.F. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Wei, H.; Chen, Y. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185–192. [Google Scholar] [CrossRef]
- Umarov, S.; Steinberg, S. Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Z. Anal. Ihre Anwendungen 2009, 28, 431–450. [Google Scholar] [CrossRef]
- Zaky, M.A.; Ezz-Eldien, S.S.; Doha, E.H.; Tenreiro Machado, J.A.; Bhrawy, A.H. An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations. J. Comput. Nonlinear Dyn. 2016, 11, 061002. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Zaky, M.A.; Bhrawy, A.H.; Baleanu, D. Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 2015, 67, 773–791. [Google Scholar]
- Ali, U.; Naeem, M.; Abdullah, F.A.; Wang, M.K.; Salama, F.M. Analysis and implementation of numerical scheme for the variable-order fractional modified sub-diffusion equation. Fractals 2022, 30, 2240253. [Google Scholar] [CrossRef]
- Salama, F.M.; Fairag, F. On numerical solution of two-dimensional variable-order fractional diffusion equation arising in transport phenomena. AIMS Math. 2024, 9, 340–370. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef]
- Sweilam, N.; Khader, M.; Adel, M. Numerical simulation of fractional cable equation of spiny neuronal dendrites. J. Adv. Res. 2014, 5, 253–259. [Google Scholar] [CrossRef]
- Henry, B.; Langlands, T.; Wearne, S. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 2008, 100, 128103. [Google Scholar] [CrossRef]
- Mittal, A.K.; Balyan, L.K.; Panda, M.K.; Shrivastava, P.; Singh, H. Pseudospectral analysis and approximation of two-dimensional fractional cable equation. Math. Methods Appl. Sci. 2022, 45, 8613–8630. [Google Scholar] [CrossRef]
- Bhrawy, A.; Zaky, M. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 2015, 80, 101–116. [Google Scholar] [CrossRef]
- Irandoust-Pakchin, S.; Abdi-Mazraeh, S.; Khani, A. Numerical solution for a variable-order fractional nonlinear cable equation via Chebyshev cardinal functions. Comput. Math. Math. Phys. 2017, 57, 2047–2056. [Google Scholar] [CrossRef]
- Nagy, A.; Sweilam, N. Numerical simulations for a variable order fractional cable equation. Acta Math. Sci. 2018, 38, 580–590. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.; Li, H.; Liu, F.; Wang, Y. Some second-order schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 2019, 80, 533–555. [Google Scholar] [CrossRef]
- Sweilam, N.; Al-Mekhlafi, S. A novel numerical method for solving the 2-D time fractional cable equation. Eur. Phys. J. Plus 2019, 134, 323. [Google Scholar] [CrossRef]
- Akram, T.; Abbas, M.; Ismail, A.I. Numerical solution of fractional cable equation via extended cubic b-spline. AIP Conf. Proc. 2019, 2138, 030004. [Google Scholar]
- Salama, F.M.; Ali, N.H.M. Fast O(N) hybrid method for the solution of two dimensional time fractional cable equation. Compusoft 2019, 8, 3453–3461. [Google Scholar]
- Nikan, O.; Golbabai, A.; Machado, J.; Nikazad, T. Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng. Comput. 2022, 38, 155–173. [Google Scholar] [CrossRef]
- Oruç, Ö. A local hybrid kernel meshless method for numerical solutions of two-dimensional fractional cable equation in neuronal dynamics. Numer. Methods Partial Differ. Equ. 2020, 36, 1699–1717. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, F.; Jiang, X.; Turner, I.W. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation. Comput. Math. Appl. 2020, 80, 1523–1537. [Google Scholar] [CrossRef]
- Kumar, S.; Baleanu, D. Numerical solution of two-dimensional time fractional cable equation with Mittag-Leffler kernel. Math. Methods Appl. Sci. 2020, 43, 8348–8362. [Google Scholar] [CrossRef]
- Li, X.; Rui, H. Stability and convergence based on the finite difference method for the nonlinear fractional cable equation on non-uniform staggered grids. Appl. Numer. Math. 2020, 152, 403–421. [Google Scholar] [CrossRef]
- Mohebbi, A.; Saffarian, M. Implicit rbf meshless method for the solution of two-dimensional variable order fractional cable equation. J. Appl. Comput. Mech. 2020, 6, 235–247. [Google Scholar]
- Yin, B.; Liu, Y.; Li, H.; Zhang, Z. Finite element methods based on two families of second-order numerical formulas for the fractional cable model with smooth solutions. J. Sci. Comput. 2020, 84, 2. [Google Scholar] [CrossRef]
- Yin, B.; Liu, Y.; Li, H.; Zhang, Z. Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations. arXiv 2019, arXiv:1906.01242. [Google Scholar]
- Sweilam, N.; Ahmed, S.; Adel, M. A simple numerical method for two-dimensional nonlinear fractional anomalous sub-diffusion equations. Math. Methods Appl. Sci. 2021, 44, 2914–2933. [Google Scholar] [CrossRef]
- Moshtaghi, N.; Saadatmandi, A. Numerical solution of time fractional cable equation via the sinc-Bernoulli collocation method. J. Appl. Comput. Mech. 2021, 7, 1916–1924. [Google Scholar]
- Li, X.; Li, S. A finite point method for the fractional cable equation using meshless smoothed gradients. Eng. Anal. Bound. Elem. 2022, 134, 453–465. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, A.; Li, X. A fast-high order compact difference method for the fractional cable equation. Numer. Methods Partial Differ. Equ. 2018, 34, 2237–2266. [Google Scholar] [CrossRef]
- Salama, F.M.; Ali, N.H.M.; Abd Hamid, N.N. Efficient hybrid group iterative methods in the solution of two-dimensional time fractional cable equation. Adv. Differ. Equ. 2020, 2020, 257. [Google Scholar] [CrossRef]
- Khan, M.A.; Alias, N.; Khan, I.; Salama, F.M.; Eldin, S.M. A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional cable equation. Sci. Rep. 2023, 13, 1549. [Google Scholar] [CrossRef]
- Ali, U.; Naeem, M.; Ganie, A.H.; Fathima, D.; Salama, F.M. Numerical approach for the fractional order cable model with theoretical analyses. Front. Phys. 2023, 11, 1160767. [Google Scholar] [CrossRef]
- Salama, F.M.; Balasim, A.T.; Ali, U.; Khan, M.A. Efficient numerical simulations based on an explicit group approach for the time fractional advection–diffusion reaction equation. Comput. Appl. Math. 2023, 42, 157. [Google Scholar] [CrossRef]
- Abdi, N.; Aminikhah, H.; Sheikhani, A. High-order rotated grid point iterative method for solving 2D time fractional telegraph equation and its convergence analysis. Comput. Appl. Math. 2021, 40, 54. [Google Scholar] [CrossRef]
- Salama, F.M.; Ali, U.; Ali, A. Numerical solution of two-dimensional time fractional mobile/immobile equation using explicit group methods. Int. J. Appl. Comput. Math. 2022, 8, 188. [Google Scholar] [CrossRef]
- Salama, F.M.; Hamid, N.N.A.; Ali, N.H.M.; Ali, U. An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions. AIMS Math. 2022, 7, 2370–2392. [Google Scholar] [CrossRef]
- Salama, F.M.; Hamid, N.N.A.; Ali, U.; Ali, N.H.M. Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation. AIMS Math. 2022, 7, 15854–15880. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, N.H.M.; Hamid, N.N.A. A new fourth-order explicit group method in the solution of two-dimensional fractional Rayleigh–Stokes problem for a heated generalized second-grade fluid. Adv. Differ. Equ. 2020, 2020, 598. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X. A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation. J. Appl. Math. Comput. 2018, 56, 391–410. [Google Scholar] [CrossRef]
CN–FDM | EDGM | ||||||
---|---|---|---|---|---|---|---|
6 | 3.2214 | 24 | 2.4354 × 10−2 | 1.5446 | 11 | 2.5830 × 10−2 | |
12 | 57.0982 | 75 | 6.0448 × 10−3 | 14.1272 | 34 | 6.1778 × 10−3 | |
18 | 250.0227 | 145 | 2.5440 × 10−3 | 51.5105 | 66 | 2.6716 × 10−3 | |
24 | 623.4341 | 230 | 1.2371 × 10−3 | 148.0147 | 106 | 1.4167 × 10−3 | |
6 | 4.3391 | 24 | 2.4449 × 10−2 | 1.6299 | 12 | 2.5933 × 10−2 | |
12 | 63.6731 | 78 | 6.0859 × 10−3 | 17.5187 | 35 | 6.2206 × 10−3 | |
18 | 296.8552 | 150 | 2.5441 × 10−3 | 72.8325 | 68 | 2.6855 × 10−3 | |
24 | 765.8251 | 237 | 1.2493 × 10−3 | 212.8129 | 109 | 1.4199 × 10−3 | |
6 | 3.2722 | 24 | 2.4449 × 10−2 | 1.3767 | 12 | 2.5934 × 10−2 | |
12 | 58.3578 | 78 | 6.0862 × 10−3 | 16.7624 | 35 | 6.2144 × 10−3 | |
18 | 250.1333 | 150 | 2.5414 × 10−3 | 67.1791 | 68 | 2.6880 × 10−3 | |
24 | 723.0534 | 237 | 1.2615 × 10−3 | 169.6976 | 109 | 1.4235 × 10−3 | |
6 | 1.3651 | 9 | 2.3432 × 10−2 | 0.8389 | 5 | 2.4777 × 10−2 | |
12 | 14.9717 | 21 | 5.7997 × 10−3 | 4.4889 | 11 | 5.9192 × 10−3 | |
18 | 64.7063 | 39 | 2.4295 × 10−3 | 17.991 | 18 | 2.5349 × 10−3 | |
24 | 226.331 | 61 | 1.1482 × 10−3 | 63.1113 | 28 | 1.3300 × 10−3 | |
6 | 3.2977 | 25 | 2.4525 × 10−2 | 1.3007 | 12 | 2.6012 × 10−2 | |
12 | 44.7645 | 79 | 6.1073 × 10−3 | 12.388 | 36 | 6.2598 × 10−3 | |
18 | 215.872 | 152 | 2.5741 × 10−3 | 54.5599 | 69 | 2.7378 × 10−3 | |
24 | 671.5466 | 240 | 1.3141 × 10−3 | 157.9549 | 111 | 1.4666 × 10−3 | |
6 | 3.7105 | 24 | 2.4446 × 10−2 | 2.1392 | 12 | 2.5927 × 10−2 | |
12 | 48.9569 | 77 | 6.0763 × 10−3 | 14.094 | 35 | 6.2183 × 10−3 | |
18 | 247.4537 | 150 | 2.5423 × 10−3 | 51.0625 | 68 | 2.6972 × 10−3 | |
24 | 658.7823 | 236 | 1.2699 × 10−3 | 153.9475 | 109 | 1.4156 × 10−3 |
CN–FDM | EDGM | ||||||
---|---|---|---|---|---|---|---|
4 | 7.6451 | 493 | 3.3805 × 10−2 | 2.3588 | 211 | 3.3457 × 10−2 | |
8 | 22.1864 | 388 | 7.9937 × 10−3 | 5.0926 | 167 | 7.6691 × 10−3 | |
16 | 49.5047 | 283 | 2.0338 × 10−3 | 12.9866 | 123 | 1.7656 × 10−3 | |
32 | 123.0862 | 191 | 8.4239 × 10−4 | 31.4933 | 84 | 5.8782 × 10−4 | |
4 | 13.3397 | 599 | 4.1630 × 10−2 | 3.6625 | 257 | 4.1215 × 10−2 | |
8 | 33.5994 | 546 | 1.1022 × 10−2 | 7.8271 | 236 | 1.0530 × 10−2 | |
16 | 101.0359 | 491 | 3.3731 × 10−3 | 24.7500 | 216 | 2.8573 × 10−3 | |
32 | 307.0350 | 435 | 1.5878 × 10−3 | 77.1075 | 194 | 9.8333 × 10−4 | |
4 | 9.2405 | 483 | 3.2694 × 10−2 | 2.4086 | 206 | 3.2342 × 10−2 | |
8 | 20.9804 | 371 | 7.5679 × 10−3 | 5.6095 | 160 | 7.2467 × 10−3 | |
16 | 48.5232 | 260 | 1.9174 × 10−3 | 12.4909 | 113 | 1.6750 × 10−3 | |
32 | 111.5133 | 168 | 8.2150 × 10−4 | 28.1021 | 74 | 5.6681 × 10−4 |
CN–FDM | EDGM | ||||||
---|---|---|---|---|---|---|---|
6 | 1.1107 | 7 | 3.6260 × 10−3 | 0.8549 | 4 | 6.3340 × 10−3 | |
12 | 9.8215 | 14 | 9.1115 × 10−4 | 3.5592 | 8 | 1.4611 × 10−3 | |
18 | 41.471 | 26 | 3.1795 × 10−4 | 11.7159 | 13 | 6.2110 × 10−4 | |
24 | 109.8017 | 40 | 1.7590 × 10−4 | 32.605 | 19 | 2.9598 × 10−4 | |
6 | 2.8476 | 19 | 3.9242 × 10−3 | 1.2287 | 10 | 6.7795 × 10−3 | |
12 | 34.0943 | 58 | 1.0029 × 10−3 | 9.621 | 28 | 1.5797 × 10−3 | |
18 | 148.4631 | 109 | 3.1527 × 10−4 | 41.7843 | 53 | 6.7007 × 10−4 | |
24 | 398.0526 | 168 | 2.3551 × 10−4 | 110.8827 | 83 | 3.2448 × 10−4 | |
6 | 1.0247 | 6 | 3.6211 × 10−3 | 0.7978 | 4 | 6.3249 × 10−3 | |
12 | 8.1283 | 14 | 9.2666 × 10−4 | 2.9754 | 7 | 1.4593 × 10−3 | |
18 | 32.5322 | 24 | 3.2975 × 10−4 | 9.9754 | 12 | 6.2310 × 10−4 | |
24 | 90.0535 | 38 | 1.7051 × 10−4 | 24.3636 | 18 | 3.0412 × 10−4 | |
6 | 1.0972 | 7 | 3.6316 × 10−3 | 0.7846 | 4 | 6.3415 × 10−3 | |
12 | 8.8651 | 15 | 9.1747 × 10−4 | 3.3896 | 8 | 1.4587 × 10−3 | |
18 | 38.1758 | 27 | 3.2260 × 10−4 | 11.0987 | 13 | 6.1325 × 10−4 | |
24 | 107.0003 | 42 | 1.8170 × 10−4 | 28.3911 | 20 | 2.9483 × 10−4 | |
6 | 2.9888 | 19 | 3.9502 × 10−3 | 1.4219 | 10 | 6.8113 × 10−3 | |
12 | 41.7307 | 59 | 1.0089 × 10−3 | 10.3176 | 29 | 1.5737 × 10−3 | |
18 | 180.8514 | 111 | 3.2972 × 10−4 | 51.3228 | 54 | 6.6835 × 10−4 | |
24 | 496.4411 | 170 | 2.3834 × 10−4 | 134.1644 | 85 | 3.4322 × 10−4 | |
6 | 2.3473 | 19 | 3.9200 × 10−3 | 1.0168 | 9 | 6.7680 × 10−3 | |
12 | 37.1117 | 57 | 9.6831 × 10−4 | 10.5125 | 28 | 1.5614 × 10−3 | |
18 | 166.6839 | 108 | 3.2475 × 10−4 | 43.7882 | 52 | 6.7173 × 10−4 | |
24 | 462.7543 | 165 | 2.4535 × 10−4 | 130.107 | 82 | 3.1735 × 10−4 |
CPU Timing | Iteration Counting | |
---|---|---|
52.01–79.40% | 3.91–54.67% | |
62.44–75.47% | 50.00–55.13% | |
57.93–76.53% | 50.00–55.13% | |
38.55–72.20% | 44.44–54.10% | |
60.56–76.48% | 52.00–54.61% | |
42.35–79.36% | 50.00–54.67% |
CPU Timing | Iteration Counting | |
---|---|---|
23.03–71.75% | 42.86–52.50% | |
56.85–72.14% | 47.37–51.72% | |
22.14–72.95% | 33.33–52.63% | |
28.49–73.47% | 42.85–52.38% | |
49.41–75.28% | 47.36–51.35% | |
56.68–73.73% | 50.30–52.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, F.M. On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics. Fractal Fract. 2024, 8, 282. https://doi.org/10.3390/fractalfract8050282
Salama FM. On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics. Fractal and Fractional. 2024; 8(5):282. https://doi.org/10.3390/fractalfract8050282
Chicago/Turabian StyleSalama, Fouad Mohammad. 2024. "On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics" Fractal and Fractional 8, no. 5: 282. https://doi.org/10.3390/fractalfract8050282
APA StyleSalama, F. M. (2024). On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics. Fractal and Fractional, 8(5), 282. https://doi.org/10.3390/fractalfract8050282