Existence Results Related to a Singular Fractional Double-Phase Problem in the Whole Space
Abstract
:1. Introduction
2. Notations and Variational Setting
- (1)
- . Moreover, the last equivalence holds true if we replace < with > or with =.
- (2)
- In the case when , we have the following inequality:Moreover, in the case when , then we have the following inequality
- (1)
- In the case when , we have
- (2)
- In the case when , we have
- (i)
- We have a compact embedding from Λ into
- (ii)
- If for all , we have
3. Existence Result for and Its Proof
- (M1)
- The function is measurable such that for all , we have
- (M2)
- For each , and for each z in some bounded domain , we have .
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1784. [Google Scholar]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izv. 1987, 29, 33–66. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Chammem, R.; Ghanmi, A.; Sahbani, A. Existence of solution for a singular fractional Laplacian problem with variable exponents indefinite weights. Complex Var. Elliptic Equ. 2021, 66, 1320–1332. [Google Scholar] [CrossRef]
- Chammem, R.; Ghanmi, A.; Sahbani, A. Nehari manifold for singular fractional p(x,.)-Laplacian problem. Complex Var. Elliptic Equ. 2022, 68, 1603–1625. [Google Scholar] [CrossRef]
- Azroul, E.; Benkirane, A.; Shimi, M. Eigenvalue problems involving the fractional p(z)-Laplacian operator. Adv. Oper. Theory 2019, 4, 539–555. [Google Scholar] [CrossRef]
- Bahrouni, A. Comparison and sub-supersolution principles for the fractional p(z)- Laplacian. J. Math. Anal. App. 2018, 458, 1363–1372. [Google Scholar] [CrossRef]
- Bahrouni, A.; Radulescu, V.D. On a New Fractional Sobolev Space and Application to Nonlocal Variational Problems With Variable Exponent. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [Google Scholar] [CrossRef]
- Fan, X.L. Remarks on eigenvalue problems involving the p(x)-Laplacian. J. Math. Anal. Appl. 2009, 352, 85–98. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Fan, X.L.; Q, Q.Z.; Zhao, D. Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 2005, 302, 306–317. [Google Scholar] [CrossRef]
- Ghanmi, A.; Saoudi, K. A multiplicity results for a singular problem involving the fractional p-Laplacian operator. Complex Var. Elliptic Equ. 2016, 61, 1199–1216. [Google Scholar] [CrossRef]
- Ghanmi, A.; Saoudi, K. The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 2016, 6, 201–217. [Google Scholar] [CrossRef]
- Rǎdulescu, V.D.; Repovs, D.D. Variational Methods and Qualitative Analysis. In Partial Differential Equations with Variable Exponents; Chapman and Hall/CRC: New York, NY, USA, 2015; Volume 9. [Google Scholar]
- Chammem, R.; Ghanmi, A.; Mechergui, M. Combined effects in nonlinear elliptic equations involving fractional operators. J. Pseudo-Differ. Oper. Appl. 2023, 14, 35. [Google Scholar] [CrossRef]
- Alsaedi, R. Variational Analysis for Fractional Equations with Variable Exponents, existence, multiplicity and nonexistence results. Fractals 2022, 30, 2240259. [Google Scholar] [CrossRef]
- Alsaedi, R.; Ali, K.B.; Ghanmi, A. Existence Results for Singular p(x)-Laplacian Equation. Adv. Pure Appl. Math. 2022, 13, 62–71. [Google Scholar] [CrossRef]
- Alsaedi, R.; Dhifli, A.; Ghanmi, A. Low perturbations of p-biharmonic equations with competing nonlinearities. Complex Var. Elliptic Equ. 2021, 66, 642–657. [Google Scholar] [CrossRef]
- Giacomoni, J.; Saoudi, K. Multiplicity of positive solutions for a singular and critical problem. Nonlinear Anal. 2009, 71, 4060–4077. [Google Scholar] [CrossRef]
- Kefi, K.; Saoudi, K. On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions. Adv. Nonlinear Anal. 2018, 8, 1171–1183. [Google Scholar] [CrossRef]
- Saoudi, K.; Ghanmi, A. A multiplicity results for a singular equation involving the p(x)-Laplace operator. Complex Var. Elliptic Equ. 2017, 62, 695–725. [Google Scholar] [CrossRef]
- Ge, B.; Gao, S.S. On a class of fractional p(.,.)-Laplacian equations in the whole space. Discrete Contin. Dyn. Syst. Ser. A 2023. [Google Scholar] [CrossRef]
- Ho, J.; Kim, Y.H. A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(·)-Laplacian. Nonlinear Anal. 2019, 188, 179–201. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Harjulehto, P.; Hästö, P.; Le, U.V.; Nuortio, M. Overview of differential equations with non-standard growth. Nonlinear Anal. 2010, 72, 4551–4574. [Google Scholar] [CrossRef]
- Mihǎilescu, M.; Rădulescu, V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Ser. A 2006, 462, 2625–2641. [Google Scholar] [CrossRef]
- Zang, A.B.; Fu, Y. Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 2008, 69, 3629–3636. [Google Scholar] [CrossRef]
- Sahbani, A. Infinitely many solutions for problems involving Laplacian and biharmonic operators. Complex Var. Equiptic Equ. 2023, 1–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaedi, R. Existence Results Related to a Singular Fractional Double-Phase Problem in the Whole Space. Fractal Fract. 2024, 8, 292. https://doi.org/10.3390/fractalfract8050292
Alsaedi R. Existence Results Related to a Singular Fractional Double-Phase Problem in the Whole Space. Fractal and Fractional. 2024; 8(5):292. https://doi.org/10.3390/fractalfract8050292
Chicago/Turabian StyleAlsaedi, Ramzi. 2024. "Existence Results Related to a Singular Fractional Double-Phase Problem in the Whole Space" Fractal and Fractional 8, no. 5: 292. https://doi.org/10.3390/fractalfract8050292
APA StyleAlsaedi, R. (2024). Existence Results Related to a Singular Fractional Double-Phase Problem in the Whole Space. Fractal and Fractional, 8(5), 292. https://doi.org/10.3390/fractalfract8050292