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Abstract: This article presents a non-linear deterministic mathematical model that captures the evolv-
ing dynamics of HIV disease spread, considering three levels of infection in a population. The model
integrates fractal-fractional order derivatives using the Caputo operator and undergoes qualitative
analysis to establish the existence and uniqueness of solutions via fixed-point theory. Ulam-Hyer
stability is confirmed through nonlinear functional analysis, accounting for small perturbations.
Numerical solutions are obtained using the fractional Adam-Bashforth iterative scheme and corrobo-
rated through MATLAB simulations. The results, plotted across various fractional orders and fractal
dimensions, are compared with integer orders, revealing trends towards HIV disease-free equilibrium
points for infective and recovered populations. Meanwhile, susceptible individuals decrease towards
this equilibrium state, indicating stability in HIV exposure. The study emphasizes the critical role of
controlling transmission rates to mitigate fatalities, curb HIV transmission, and enhance recovery
rates. This proposed strategy offers a competitive advantage, enhancing comprehension of the
model’s intricate dynamics.

Keywords: HIV model; fractal-fractional derivative; existence and uniqueness; Ulam-Hyers stability;
fractional Adams-Bashforth method; numerical simulation

1. Introduction

HIV, the human immunodeficiency virus, gradually weakens the immune system,
leading to Acquired Immune Deficiency Syndrome (AIDS), where the immune system
is compromised [1]. Transmission occurs through various modes such as sexual contact,
needle sharing among drug users, vertical transmission from mother to child, and contami-
nated blood transfusions [2,3]. Understanding the dynamics of HIV transmission is crucial
for developing effective prevention and treatment strategies. Mathematical modeling plays
a key role in providing insights into virus epidemiology, forecasting trends, evaluating inter-
ventions, and addressing critical social issues. While traditional epidemiological compart-
mental models demonstrate regularity, global challenges often show quasi-linear character-
istics, necessitating non-linear mathematical models for precise explanations [4,5]. Studies
on HIV transmission dynamics have explored factors like viral load, transmission routes,
and demographics, integrating pre-exposure prophylaxis and treatment strategies [6,7].
Mathematical methods also inform clinical guidelines for HIV/AIDS diagnosis, monitor-
ing, and treatment [8]. Furthermore, research has focused on modeling and controlling
HIV/AIDS transmission in China using real data from 2004 to 2016 [9], analyzing the sta-
bility of infection-age structured HIV-1 models that connect within-host and between-host
dynamics [10], developing peptide inhibitors for HIV transmission [11], creating mathemat-
ical models of HIV transmission and infection dynamics [12], understanding the dynamics
of HIV/AIDS transmission concerning protection awareness and fluctuations [13], con-
ducting numerical investigations of stochastic HIV/AIDS infection models [14], exploring
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global dynamics of age-infection HIV models with a nonlinear infection rate [15], and
modeling epidemic dynamics of HIV/AIDS transmission with different latent stages based
on treatment [16]. Additionally, [17] developed an epidemic model for HBV infection,
incorporating vaccination and medication administered through hospitalization.

Recent studies have introduced fractional calculus as a powerful tool for dealing
with derivatives and integrals of any positive real order, enhancing models with non-
local characteristics and memory dependencies [18]. Fractional techniques like Riemann-
Liouville, Hadamard, Katugampola, and Caputo derivatives have significantly improved
the accuracy of simulating real-world phenomena. The concept of fractional derivatives
was first introduced by Riemann-Liouville in 1832, with Caputo later refining it in 1967
to incorporate boundary and initial conditions for more practical problem-solving in real-
world contexts [19,20]. Numerical, computational, and iterative methods have been used
to investigate fractional-order mathematical models. Caputo and Fabrizio invented the
Caputo-Fabrizio (CF) derivative to overcome the limitations of the classic Caputo operator.
This derivative increases exactness under specific situations and resolves problems with
singular kernels [21–23]. Caputo further extended Atangana-Baleanu fractional derivatives
and incorporated the Mittag-Leffler function from the Caputo-Fabrizio derivative [24]. They
developed a fractional mathematical model for Atangana-Baleanu Caputo derivatives based
on the Caputo-Fabrizio operator. Conversely, [25] explored the mathematical modeling of
COVID-19 with the Caputo-Fabrizio operator. Each operator is tailored to specific systems
based on their features and the desired degree of flexibility.

Atangana’s recent research delves into the intricate relationship between fractional
and fractal mathematics, introducing a novel fractal-fractional operator characterized by
both self-similarity and fractional calculus properties [24]. An operator with a degree of self-
similarity or fractal-like behavior combined with operations exhibiting fractional calculus
qualities is called a fractal-fractional operator. These operators find utility in mathematical
models aimed at describing complex and non-linear phenomena characterized by memory
effects or patterns that repeat at varying scales. This field of research holds great potential
for addressing a variety of challenging issues in diverse settings. Interestingly, this operator
offers a more efficient method for extracting fractal fractions compared to conventional
techniques, as it captures both the fractional order and the fractal dimension [26,27]. Fractal-
fractional derivatives offer a unique approach to exploring fractional operators and fractal
dimensions concurrently, enabling the development of models that effectively capture
memory effects in dynamic systems. Moreover, researchers have leveraged alternative
kernels and fractal-fractional differential equations to address challenges within the domain
of fractal-fractional differential equations [28]. Fractional calculus has garnered significant
attention from the global scientific community, thanks to its diverse features and practical
applications across physics and engineering. It is essential to use a fractional-order system
model to observe memory, crossover behavior, and hereditary features in systems [29]. This
operator enables more effective modeling of complex systems with memory-dependent
dynamics, finding applications in health surveillance and COVID-19 modeling. Studies
by Qureshi [30], Li [31], Owolabi [32], Ahmad [33], Anjam [34], Liu [35], and Ahmad [36]
demonstrate the utility of fractal-fractional operators across diverse fields. Qureshi and
Atangana [37] have investigated models of nonlinear diarrhea transmission dynamics
employing fractal-fractional operators. Furthermore, novel fractal-fractional operators
have been applied to study the propagation of COVID-19, examining the effectiveness of
lockdowns and vaccination strategies in controlling disease transmission [38]. Farman [39]
suggests a compound-fractal methodology for modeling plant virus dynamics.

The choice of a fractional operator, coupled with its specific kernel type, plays a
critical role in accurately portraying the memory effects, crossover behavior, and long-term
dynamics inherent in models of HIV disease transmission. Selecting the Caputo operator
with a power law kernel is particularly essential due to its capacity to effectively capture
these memory effects and long-range dependencies within the system. These attributes
are vital for modeling the intricate transmission dynamics of HIV disease, as they allow
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for a detailed depiction of the multifaceted interactions among various factors influencing
the virus’s spread. These factors encompass healthcare policies, societal perceptions,
individual behaviors, and the efficacy of interventions, all of which significantly contribute
to understanding and managing HIV transmission dynamics. These insights have guided
the research in highlighting the broad significance of its discoveries.

This study explores the dynamics of HIV disease transmission, focusing on three infec-
tion levels within a population. The developed model incorporates a fractal-fractional order
derivative with a power law kernel and conducts stability analysis through a nonlinear
deterministic HIV transmission model. The model classifies the population into five mutu-
ally inclusive classes: susceptible individuals, different stages of infection, and recovered
individuals. The analysis includes a thorough examination to validate the model’s relia-
bility, confirming the existence and uniqueness of solutions within the fixed-point theory
framework. Subsequently, Ulam-Hyres stability is applied using nonlinear functional anal-
ysis to verify solution stability. Recognizing the significance of the topic, a novel fractional
Adam-Bashforth iterative numerical scheme is employed for numerical simulations, with
results validated through MATLAB simulations. The numerical results are graphically
represented for various fractional orders and fractal dimensions, facilitating comparisons
with integer orders. The study highlights the sensitivity of adjusting the fractional order
and fractal dimension, emphasizing the practicality of the fractional approach.

The structure of the work is delineated as follows: Section 2 provides an overview
of the model’s development and rationale. Section 3 delves into the analytical founda-
tions of the techniques employed. The fractional representation of the developed model
is expounded upon in Section 4. Section 5 is dedicated to establishing the existence and
uniqueness within the fixed-point theory framework, alongside addressing stability analy-
sis. Details of the numerical simulations conducted using the fractional Adams-Bashforth
method to validate the theoretical findings are presented in Section 6. MATLAB (ver. 2023b)
is also leveraged for numerical simulations to visually represent the results. Lastly, the
concluding section encapsulates the key findings of the proposed model.

2. Development of the Model
Model Description

Mathematical models are essential for comprehending the dynamics of HIV transmis-
sion and for crafting efficient prevention and treatment strategies. Employing epidemi-
ological methods in constructing these models is crucial to illuminating the underlying
mechanisms of HIV transmission. Identifying key determinants is essential for controlling
the spread of HIV. Various HIV transmission models, grounded in infectious mechanisms,
have been developed and documented, significantly contributing to the design of preven-
tion and treatment strategies. These models play a pivotal role in addressing the HIV
epidemic [7,8].

This study is centered on investigating a mathematical model to understand the
transmission dynamics of HIV disease within a population, encompassing three levels of
infection. The mathematical model divides the whole population N (ξ) into five subsets:
susceptible individuals S(ξ), individuals at infective stage 1 I1(ξ), individuals at infective
stage 2 I2(ξ), individuals under treatment Q(ξ), and recovered individuals R(ξ). Thus,
the total human population at any time ξ is represented as:

N (ξ) = S(ξ) + I1(ξ) + I2(ξ) +Q(ξ) +R(ξ).

This arrangement enables us to capture the dynamics of the HIV model by integrating
three levels of infection. This is achieved by monitoring the transitions between these
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distinct states within the population over time. Thus, the fundamental transmission
dynamic model of HIV spread in the human population can be summarized as follows:

dS
dξ

= Λ − µS − (β1I1 + β2I2)S ,

dI1

dξ
= β1I1S + δ2I2 − δ1I1 − γ1I1 − µI1 − σ1I1,

dI2

dξ
= β2I2S + δ4Q+ δ1I1 − γ2I2 − δ2I2 − δ3I2 − µI2 − σ2I2,

dQ
dξ

= δ3I2 − γ3Q− δ4Q− µQ− σ3Q,

dR
dξ

= σ1I1 + σ2I2 + σ3Q− µR,

(1)

regarding the initial data set:

S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0.

The system (1) comprises several dependent parameters, each with detailed descrip-
tions as follows: Λ denotes the recruitment rate of the population, β1 represents the
transmission coefficient from susceptible individuals to infected individuals in stage 1, β2 is
the transmission coefficient from susceptible individuals to infected individuals in stage 2,
µ is the natural death rate for each compartment, δ1 measures the rate of transmission from
infected individuals in stage 1 to those in stage 2, δ2 denotes the rate of transmission from
infected individuals in stage 2 to those in stage 1, δ3 represents the rate of transmission from
infected individuals in stage 2 to those hospitalized, and δ4 is the rate at which hospitalized
patients transition to infected individuals in stage 2. Additionally, σ1, σ2 and σ3 are the
coefficients of transmission for infected individuals in stage 1, stage 2, and hospitalized
cases transitioning to recovered cases, respectively. Finally, γ1, γ2, and γ3 indicate the death
rate of infected individuals in stage 1, stage 2, and hospitalized cases, respectively.

3. Basic Preliminaries

In this section, our objective is to explore our proposed model further by revisiting
various essential concepts, definitions, and lemmas.

Definition 1 ([24]). Suppose η(ξ) is a function that is differentiable. The expression for the
fractal-fractional derivative with fractional order 0 < α ≤ 1 and fractal dimension 0 < β ≤ 1 can
be formulated as follows:

FFDα, β
ξ (η(ξ)) =

1
(q − α)

d
dξβ

∫ ξ

0
(ξ − x)q−α−1η(x)dx,

including q − 1 < α, β ≤ q, where q ∈ N and dη(x)
dxβ = limξ→0

η(ξ)−η(x)
ξβ−xβ .

Definition 2 ([24]). If η(ξ) is a continuous function, the integral of fractal-fractional order
incorporating the function η(ξ) with order α can be represented as follows:

FF Iαη(ξ) =
β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1η(x)dx.

Definition 3. The integral with a fractional order, specifically the Caputo derivative, associated
with the function η, can be described as follows:

Iα
ξ η(ξ) =

1
Γ(α)

∫ ξ

0
(ξ − x)1−αη(x)dx, ξ > 0.
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Definition 4 ([40] Contraction Mapping). Suppose B is a Banach space. The operator P , which
maps from X to X, is a contraction if and only if:

∥P (x)− P (y)∥ ≤ W∥x − y∥, ∀x, y,∈ X, 0 < W < 1.

Lemma 1 ([40] Banach’s Fixed Point Theorem). In a Banach space B, when considering a
non-empty open subset Ω, a contraction mapping q onto Ω has a unique fixed point.

Lemma 2 ([40] Krasnoselskii’s Fixed Points Theorem). Within the Banach space B, there is
a non-empty, closed, convex subset Ω. Let’s consider two operators, denoted as P1 and P2 , which
satisfy the following conditions:

(i) P1x + P2y ∈ Ω, ∀x, y ∈ Ω,
(ii) There is a compact and continuous operator P1,
(iii) A contraction mapping is defined by P2 .

Then, there exists z ∈ Ω which is equal to P1z + P2z = z.

Corollary 1 ([41]). Suppose Y (ξ) ∈ C(r1, r2) and FFDα
ξ (η(ξ)) ∈ C(r1, r2) where α ∈ (0, 1]. If:

(i) FFDα
ξ (η(ξ)) ≥ 0 for all ξ ∈ (r1, r2), hence, Y (ξ) does not decrease.

(ii) FFDα
ξ (η(ξ)) ≤ 0 for all ξ ∈ (r1, r2), hence Y (ξ) does not increase.

Theorem 1 ([42]). In a metric space that is complete, every sequence that contracts converges as a
Cauchy sequence within that space.

Theorem 2 ([42]). Suppose A ⊆ R and ς : A → Rn are mappings that are continuously
differentiable, with s belonging to A. For every compact subset A of A, the mapping ς obeys a
Lipschitz condition with a Lipschitz constant denoted as L, where L > 0 signifies the supremum of
the derivative of ς over A, expressed as:

L = sup
s∈A

∣∣∣∣dς

ds

∣∣∣∣.
4. Fractional Formulation of the Proposed Model

Traditional models using integer-order derivatives often struggle to capture the in-
tricate and dynamic behavior of disease propagation with the robustness and efficiency
required for accurate analysis. In contrast, fractional-order models offer a more suitable
framework for analyzing real-world data and providing a detailed description of complex
occurrences. In the modeling of HIV spread as outlined in system (1), we opted to replace
the traditional integer-order time derivative Dt with the fractal-fractional order derivative
FF D. This choice of fractional order allows us to capture memory effects and gain a more
profound understanding of the disease dynamics.

Additionally, the integer-order model (1) for HIV transmission dynamics is inher-
ently complex and nonlinear, lacking memory effects common in many complex biological
systems. This memory effect is crucial for capturing the lasting impact of past infections
on the current spread of the virus. To address this limitation, we employ the concept
of general fractional operators (as discussed in Section 3) in the HIV spreading model.
Fractional derivatives inherently possess a hereditary property, making them suitable for
modeling a wider range of real-world phenomena beyond classical integer-order systems
with derivatives ranging between 0 and 1. In this study, we employ a system of nonlinear
fractional-order equations utilizing the fractal-fractional derivative in the Caputo sense.
Previous research indicates that the Caputo derivative, utilizing the power-law kernel,
is adept at modeling power-law processes encountered in real-world scenarios. By re-
placing the time derivative with the Caputo derivative and utilizing a numerical scheme,
we incorporate the power law effect inherent in fractional calculus. This methodology
enables the model to generate numerical results for different fractional values, depicting the
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system’s dynamics near the steady-state condition. Integrating fractional-order derivatives
ensures that the resulting model accurately reflects the underlying dynamics of HIV trans-
mission, including both short-term and long-term infection rate effects. This adaptability
enables a closer alignment with observed data and a more nuanced understanding of the
fundamental mechanisms driving HIV transmission. Therefore, these modifications and
extensions are applied to the deterministic mathematical model (1) for the HIV epidemic,
incorporating various infection stages. Consequently, the revised fractional HIV epidemic
model is expressed as follows:

FF Dα, βS = Λ − µS − (β1I1 + β2I2)S ,
FF Dα, βI1 = β1I1S + δ2I2 − δ1I1 − γ1I1 − µI1 − σ1I1,
FF Dα, βI2 = β2I2S + δ4Q+ δ1I1 − γ2I2 − δ2I2 − δ3I2 − µI2 − σ2I2,
FF Dα, βQ = δ3I2 − γ3Q− δ4Q− µQ− σ3Q,
FF Dα, βR = σ1I1 + σ2I2 + σ3Q− µR,

(2)

with the initial condition

S(0) = S0 ≥ 0, I1(0) = I10 ≥ 0, I2(0) = I20 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0.

5. Exploring Theoretical Aspects of the Proposed Model

In this section, we conduct a comprehensive examination of the formulated model,
delving into its fundamental characteristics and confirming its appropriateness for nu-
merical approximations. To ensure the model’s reliability, we validate the existence and
uniqueness of its solution using the definitions and theorems referenced in [24]. This
rigorous theoretical analysis provides insights into the model’s behavior and confirms the
feasibility of conducting rigorous numerical experiments.

Let’s consider the existence of model (1). We define a Banach space B = X × X ×
X × X × X, where X = (C [0, T],R), with a norm defined as a set of values representing a
function space. The function space is denoted by ∥Ξ∥ = maxξ∈[0,T]

∣∣Ξ(ξ)∣∣. Specifically,

∥Ξ∥ = ∥S , I1, I2,Q,R∥ = max
ξ∈[0,T]

{
|S(ξ)|+ |I1(ξ)|+ |I2(ξ)|+ |Q(ξ)|+ |R(ξ)|

}
.

Next, it is essential to compute the specified integral. This leads to the following
expression for the right-hand side of model (1):

RL DαS(ξ) = βξβ−1G1(S , I1, I2,Q,R, ξ) = Λ − µS − (β1I1 + β2I2)S ,
RL DαI1(ξ) = βξβ−1G2(S , I1, I2,Q,R, ξ) = β1I1S + δ2I2 − δ1I1 − γ1I1 − µI1 − σ1I1,
RL DαI2(ξ) = βξβ−1G3(S , I1, I2,Q,R, ξ) = β2I2S + δ4Q+ δ1I1 − γ2I2 − δ2I2 − δ3I2 − µI2 − σ2I2,
RL DαQ(ξ) = βξβ−1G4(S , I1, I2,Q,R, ξ) = δ3I2 − γ3Q− δ4Q− µQ− σ3Q,
RL DαR(ξ) = βξβ−1G5 (S , I1, I2,Q,R, ξ) = σ1I1 + σ2I2 + σ3Q− µR.

(3)

The self-contained system (3) can be condensed into a compact framework as follows:{
RL DαΞ(ξ) = βξβ−1χ(ξ, Ξ(ξ)), 0 < α, β ≤ 1,
Ξ(0) = Ξ0.

(4)

By substituting RL Dα,β with C Dα,β and utilizing the Riemann-Liouville integral, the
solution to Equation (4) will take on the following form:

Ξ(ξ) = Ξ0(ξ) +
β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Ξ(x))dx, (5)
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where

Ξ(ξ) =


S(ξ)
I1(ξ)
I2(ξ)
Q(ξ)
R(ξ)

, Ξ0(ξ) =


S0
I10
I20
Q0
R0

, χ(ξ, Ξ(ξ)) =


G5(S , I1 , I2 ,Q ,R, ξ)
G5(S , I1 , I2 ,Q ,R, ξ)
G5(S , I1 , I2 ,Q ,R, ξ)
G5(S , I1 , I2 ,Q ,R, ξ)
G5(S , I1 , I2 ,Q ,R, ξ)

.

To transform system (1) into a fixed-point problem, we define the operator P : B → B as
follows:

P (Ξ)(ξ) = Ξ0(ξ) +
β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1χ(x, Ξ(x))dx. (6)

5.1. Existence and Uniqueness Results

Using the theorems derived from the referenced source, we establish the existence
results derived from the devised model [40].

Theorem 3. A mapping that is completely continuous can be defined as P : B → B

υ(P ) =
{

Ξ ∈ B : Ξ = ζP (Ξ), ζ ∈ [0, 1]
}

.

The boundedness of the operator P implies the existence of at least one fixed point in B.

To verify the existence and stability analysis of the solution for the formulated model,
we will examine the resulting propositions:

(C)For any Ξ and Ξ in B, there exists a positive constant Mχ such that the following
condition holds: ∣∣χ(ξ, Ξ)− χ(ξ, Ξ)

∣∣ ≤ Mχ|Ξ − Ξ|.

The representation described below can be utilized in several ways to achieve the desired
results:

∆ =
βPα+β−1B(α, β)

Γ(α)
.

In this scenario, the symbol B(α, β) denotes the beta function.

Theorem 4. If the operator χ, defined as χ : C[0, T]×B → R, is continuous and condition (C)
can be satisfied, then there must be at least one solution to problem (2) for the system.

Proof. Our initial objective is to show that the operator P : B → B defined in (6) is
completely continuous. Let’s take a sequence Ξn such that Ξn converges to Ξ in B, where
ξ ∈ [0, T]. This sequence can be represented as:

∥P (Ξn)− P (Ξ)∥ ≤ β

Γ(α)
max

ξ∈[0,T]

∫ ξ

0
xβ−1(ξ − x)α−1|χ(x, Ξn(x))− χ(x, Ξ(x))|dx,

≤
βKχ

Γ(α)
∥Ξn − Ξ∥ max

ξ∈[0,T]

∫ ξ

0
xα−1(1 − x)β−1ξα+β−1dx,

≤ ∆Kχ ∥ Ξn − Ξ∥.

(7)

Consequently, since Ξn converges to Ξ, it follows that ∥P (Ξn)− P (Ξ)∥ tends to zero as n
approaches zero. Therefore, the operator is continuous.
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Suppose T is a bounded set in B. Then, there exists a constant Cχ > 0 such that
|χ(ξ, Ξ(ξ))| ≤ Cχ holds for all Ξ ∈ B, and for any Ξ ∈ T, we can express this as:

∥P (Ξ)∥ ≤ βCχ

Γ(α)
max

ξ∈[0,T]

∣∣∣∣∫ ξ

0
(ξ − x)α−1xβ−1dx

∣∣∣∣,
≤

βCχ

Γ(α)
max

ξ∈[0,T]

∫ ξ

0
(1 − x)β−1xα−1ξα+β−1dx,

≤ ∆Cχ.

(8)

Thus, Equation (8) signifies that the operator P is uniformly bounded.
Additionally, to confirm the equi-continuity of the operator P , let’s consider 0 ≤ ξ2 ≤

ξ1 ≤ T. We deduce the following outcome:

∥P (Ξ(ξ1))− P (Ξ(ξ2))∥ ≤
βCχ

Γ(α)
max

ξ∈[0,T]

∣∣∣∣∫ ξ1

0
(ξ1 − x)α−1xβ−1dx −

∫ ξ2

0
(ξ2 − x)α−1xβ−1dx

∣∣∣∣,
≤

βCχB(α, β)

Γ(α)
(ξ

α+β−1
1 − ξ

α+β−1
2 ) → 0 as ξ1 → ξ2.

(9)

Hence, the operator P exhibits equi-continuity, boundedness, and continuity simultane-
ously. Therefore, by invoking the Arzela-Ascoli theorem, we can demonstrate that the
operator P is relatively compact and completely continuous.

Consider the set υ, defined as υ =
{

Ξ ∈ B : Ξ = ζ, P (Ξ), ζ ∈ [0, 1]
}

. Let’s now confirm
the boundedness of υ. Take Ξ ∈ υ; for ξ ∈ [0, T], we find ∥Ξ∥ = ∆Cχ.

Thus, υ is bounded. By Theorem (3), system (2) has at least one solution.

We will utilize the fixed-point technique outlined in [40] to establish the uniqueness of
the solution for model (2).

Theorem 5. Given proposition (C) and under the condition Hχ ≤ 1, problem (2) can be uniquely
resolved as follows:

Hχ = ∆Mχ. (10)

Proof. Let’s define maxξ∈[0,T] |χ(ξ, 0)| = Kχ < ∞, such that ϱ ≥ ∆Kχ
1−∆Mχ . Our objective is

to prove that P (Bϱ) ⊂ Bϱ, where Bϱ = {Ξ ∈ B : ∥Ξ∥ ≤ ϱ} and Ξ ∈ Bϱ. We have:

∥P (Ξ)∥ ≤ β

Γ(α)
max

ξ∈[0,T]

∫ ξ

0
(ξ − x)α−1xβ−1

(
|χ(ξ, Ξ(ξ))− χ(ξ, 0)|+ |χ(ξ, 0)|

)
dx,

≤
βPα+β−1B(α, β)(Mχ∥Ξ∥+ Kχ)

Γ(α)
,

≤ ∆(Mχϱ + Kχ),

≤ ϱ.

(11)

The operator P : B → B described in (6) is subject to proposition (C), which asserts the
following condition for all ξ ∈ [0, T], Ξ, and Ξ ∈ B:

∥P (Ξ)− P (Ξ)∥ ≤ β

Γ(α)
max

ξ∈[0,T]

∣∣∣∣ ∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Ξ(x))dx −

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Ξ(x))dx

∣∣∣∣,
≤ Hχ∥Ξ − Ξ∥.

(12)

Thus, due to the contraction property of the operator P , the formulated model (2) has a
unique solution.
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5.2. Ulam-Hyers Stability Analysis

This section is dedicated to conducting Ulam-Hyers (UH) stability analysis to confirm
the stability of the formulated model (2).

Definition 5. For the formulated model to be considered Ulam-Hyers (UH) stable, it must satisfy a
condition where there exists a ℜα,β > 0 such that for any ρ > 0 and every Ξ ∈ C([0, T],R), the
subsequent condition holds:∣∣FF Dα, β

ξ Ξ(ξ)− χ(ξ, Ξ(ξ))
∣∣ ≤ ρ, ξ ∈ [0, T], (13)

and there exists a unique solution Φ ∈ C([0, T],R) such that∣∣Ξ(ξ)− Φ(ξ)
∣∣ ≤ ℜα,β ρ, ξ ∈ [0, T]. (14)

Suppose there exists a small perturbation χ ∈ C([0, T],R) such that χ(0) = 0. We will
observe:

• |χ(ξ)| ≤ ρ, for ρ > 0;

• FF Dα, β
ξ Ξ(ξ) = χ(ξ, Ξ(ξ)) + χ(ξ).

Lemma 3. The solution to the perturbed equation

FF Dα, β
ξ Ξ(ξ) = χ(ξ, Ξ(ξ)) + χ(ξ),

Ξ(0) = Ξ0,
(15)

fulfills the following relation:∣∣∣∣Ξ(ξ)−(
Ξ0(ξ) +

β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1χ(x, Ξ(x))dx

) ∣∣∣∣ ≤ Cα, β ρ, (16)

where
( β

Γ(α)P
α+β−1B(α, β)

)
= Cα, β ρ.

Proof. For simplicity, we will refrain from delving into the proof.

Theorem 6. Given Proposition (C) and Lemma 3, the solution to integral Equation (2) is deemed
Ulam-Hyers stable, provided that the condition Hχ < 1 is satisfied.

Proof. Let Z ∈ B denote the unique solution to the proposed model, and consider Ξ ∈ B
as any solution that satisfies Equation (5). By employing fractal-fractional integration, we
derive the following expression:

|Ξ(ξ)− Z(ξ)| =
∣∣∣∣Ξ(ξ)−(

Z0(ξ) +
β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Z(x))dx

) ∣∣∣∣,
≤

∣∣∣∣Ξ(ξ)−(
Ξ0(ξ) +

β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Ξ(x))dx

) ∣∣∣∣
+

∣∣∣∣(Ξ0(ξ) +
β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Ξ(x))dx

)
−

(
Z0(ξ) +

β

Γ(α)

∫ ξ

0
(ξ − x)α−1xβ−1χ(x, Z(x))dx

) ∣∣∣∣,
≤ Cα,β ρ +

β

Γ(α)
Pα+β−1MχB(α, β)∥Ξ(ξ)− Z(ξ)∥,

≤ Cα, βρ + Hχ∥Ξ(ξ)− Z(ξ)∥.

(17)

Hence, we can state:

∥Ξ − Z∥ ≤ Cα, βρ + Hχ∥Ξ − Z∥. (18)
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The Equation (18) can be expressed as follows:

∥Ξ − Z∥ ≤ ℜα, β ρ. (19)

Therefore, ℜα,β =

(
Cα,β

1−Hχ

)
. This indicates that the solution to Equation (5) demonstrates

UH stability, thus confirming the Ulam-Hyers stability of the solution to the proposed
model (2).

6. Numerical Method for Fractal-Fractional Model

In this section, our goal is to delineate a numerical method for simulating the formu-
lated model using computational techniques. To achieve this, we will employ the Caputo
derivative and its corresponding integral to convert the model (5) into the following format:

S(ξ) = S(0) + β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1G1(S , I1, I2,Q,R, x)dx,

I1(ξ) = I1(0) +
β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1G2(S , I1, I2,Q,R, x)dx,

I2(ξ) = I2(0) +
β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1G3(S , I1, I2,Q,R, x)dx,

Q(ξ) = Q(0) +
β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1G4(S , I1, I2,Q,R, x)dx,

R(ξ) = R(0) +
β

Γ(α)

∫ ξ

0
xβ−1(ξ − x)α−1G5(S , I1, I2,Q,R, x)dx.

(20)

Next, we will demonstrate the numerical solution of Equation (20) at discrete-time instances
ξ = ξm+1 for m = 0, 1, 2, . . . using the new approach. This enables us to illustrate the first
equation of the system outlined above.

Sm+1(ξ) = S(0) + β

Γ(α)

∫ ξm+1

0
xβ−1(ξm+1 − x)α−1G1(S , I1, I2,Q,R, x) dx, (21)

and

Sm(ξ) = S(0) + β

Γ(α)

∫ ξm

0
xβ−1(ξm − x)α−1G1(S , I1, I2,Q,R, x) dx. (22)

Additionally, it’s important to note that the approximate integral form obtained from the
equation above can be succinctly summarized as follows:

Sm+1(ξ) = S(0) + β

Γ(α)

m

∑
i=0

∫ ξi+1

ξi

xβ−1(ξm+1 − x)α−1G1(S , I1, I2,Q,R, x) dx. (23)

In the infinite interval [ξi, ξi+1], the function G1(S , I1, I2,Q,R, x) approximates the step
size of the interpolation by employing Lagrange interpolation with h = [ξi − ξi−1]. This is
expressed as:

S∗
m(ξ) ≈

1
h

[
(ξ − ξi−1)ξ

β−1
i G1(Si, I1(i), I2(i),Qi,Ri, ξi)− (ξ − ξi)ξ

β−1
i−1 G1(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)

]
. (24)

Replacing Equation (24) with Equation (23) results in the following expression:

Sm+1(ξ) = S(0) + β

Γ(α)

m

∑
i=0

∫ ξi+1

ξi

xβ−1(ξm+1 − x)α−1G1(S , I1, I2,Q,R, x) S∗
m(ξ) dx. (25)
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The numerical iterative solution for the S class of the formulated model using the Caputo
operator with fractal-fractional derivative requires evaluating the integral on the right-hand
side of Equation (25) as follows:

Sm+1 =


S0 +

βhα

Γ(α+2)

m
∑

i=0

[
(ξ

β−1
i )G1(Si, I1(i), I2(i),Qi,Ri, ξi)×

(
(m + 1 − i)β(m − i + 2 + β)− (m − i)β(m − i + 2 + 2β)

)
−ξ

β−1
i−1 G1(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)×

(
(m + 1 − i)β + 1 − (m − i)β(m − i + 1 + β)

)]
.

(26)

Consequently, the remaining terms in the formulated model concerning the respective
compartments can be articulated as follows:

I1(m+1) =


I1(0) +

βhα

Γ(α+2)

m
∑

i=0

[
(ξ

β−1
i )G2(Si, I1(i), I2(i),Qi,Ri, ξi)×

(
(m + 1 − i)β(m − i + 2 + β)− (m − i)β(m − i + 2 + 2β)

)
−ξ

β−1
i−1 G2(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)×

(
(m + 1 − i)β + 1 − (m − i)β(m − i + 1 + β)

)]
.

(27)

I2(m+1) =


I2(0) +

βhα

Γ(α+2)

m
∑

i=0

[
(ξ

β−1
i )G3(Si, I1(i), I2(i),Qi,Ri, ξi)×

(
(m + 1 − i)β(m − i + 2 + β)− (m − i)β(m − i + 2 + 2β)

)
−ξ

β−1
i−1 G3(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)×

(
(m + 1 − i)β + 1 − (m − i)β(m − i + 1 + β)

)]
.

(28)

Qm+1 =


Q0 +

βhα

Γ(α+2)

m
∑

i=0

[
(ξ

β−1
i )G4(Si, I1(i), I2(i),Qi,Ri, ξi)×

(
(m + 1 − i)β(m − i + 2 + β)− (m − i)β(m − i + 2 + 2β)

)
−ξ

β−1
i−1 G4(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)×

(
(m + 1 − i)β + 1 − (m − i)β(m − i + 1 + β)

)]
.

(29)

Rm+1 =


R0 +

βhα

Γ(α+2)

m
∑

i=0

[
(ξ

β−1
i )G5(Si, I1(i), I2(i),Qi,Ri, ξi)×

(
(m + 1 − i)β(m − i + 2 + β)− (m − i)β(m − i + 2 + 2β)

)
−ξ

β−1
i−1 G5(Si−1, I1(i−1), I2(i−1),Qi−1,Ri−1, ξi−1)×

(
(m + 1 − i)β + 1 − (m − i)β(m − i + 1 + β)

)]
.

(30)

Numerical Experimentation and Discussion

In this section, we delve into the numerical simulation of our proposed scheme using
a fractal-fractional approach to model HIV disease dynamics. We emphasize the intricate
relationships among model parameters and their combined impact on HIV transmission
across three infection levels within the community. Our HIV fractional-order model is
designed to analyze disease transmission through simulations, employing fractal-fractional
derivatives with a power-law representation. The initial compartmental conditions, as
detailed in [2], are set as follows: S(0) = 5726, I1(0) = 70, I2(0) = 40, Q(0) = 10, and
R(0) = 0. Fractional values are instrumental in discerning outcomes within this nonlinear
system. To ensure the study’s robustness, we adopt parameter values from Table 1 based
on established literature. Our model yields compelling results by incorporating non-integer
parameter values. Adjusting fractional values with precision enables us to derive solutions
for variables S , I1, I2, Q, and R, as depicted in Figures 1–5. We utilize MATLAB for
numerical simulations spanning 500 days with a time step of h = 0.03. Our exploration
encompasses five distinct cases where we vary the fractional orders (α) and dimensions (β)
of the independent variable ξ, aiming to deepen our understanding of the model’s behavior.

Moreover, by employing the fractal-fractional derivative with the Caputo operator, our
model generates numerical outputs for various fractional values, focusing on the steady-state
point. The graphical representation of the HIV transmission model using our proposed
numerical method and the comparison between fractal-fractional and integer orders are
illustrated in Figures 1–5. All trajectories demonstrate a consistent pattern, converging to the
true endemic equilibrium point. Initially, we maintain a proportional relationship between
the fractal order (α) and fractional dimension (β) of the independent variable ξ, ensuring
α = β. We then explore variations in these values, setting α = 0.80, 0.85, 0.90, 0.95, 1.00 and
β = 0.80, 0.85, 0.90, 0.95, 1.00, over a time span of ξ ∈ [0, 500] units (days) with a time step
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of h = 0.03. This exploration elucidates the impact of different fractal orders and dimen-
sions on the trajectories of compartmental classes in the HIV transmission model. Each
combination of α and β unveils distinct patterns and behaviors, as depicted in Figure 1a–e.
Each trajectory, corresponding to a specific fractional order α and fractal dimension β, rep-
resents the disease dynamics within the modeled population. Notably, each graph exhibits
varying rates of convergence based on fractal order and dimension, while all converge to a
steady state.

Table 1. Parameters and its values.

Parameters Values Source Parameters Values Source

Λ 200.88 day−1 [43] β1 0.0000405 day−1 [44]
β2 0.0000483 day−1 [44] γ1 0.01 day−1 [45]
γ2 0.02 day−1 [45] γ3 0.04 day−1 [46]
δ1 9.2274 × 10−3 day−1 [47] and estimate δ2 8.0037 × 10−3 day−1 [47] and estimate
δ3 2.8595 × 10−3 day−1 [47] and estimate δ4 1.8595 × 10−3 day−1 [47] and estimate
σ1 0.1 day−1 [2] and estimate σ2 0.2 day−1 [2] and estimate
σ3 0.2 day−1 [2] and estimate µ 0.01 day−1 [45]

Figure 1a illustrates the evolution of the susceptible class S over time, considering
constant fractional orders and dimensions. Different fractional orders exhibit varying slopes,
impacting the dynamics of susceptibility in HIV transmission. Initially, the susceptible
population experiences a rapid reduction at lower fractional orders but stabilizes to a
steady state over time. This demonstrates how varying levels of memory and complexity
influence the rate of change in susceptibility over time. Fractal dimensions remain stable,
indicating a consistent transmission pattern, while varying slopes for the same fractional
orders highlight the nuanced effects of memory. The initial decline followed by stabilization
reflects a balance between exposure and immunity, akin to real-world scenarios where
populations reach a stable risk level due to HIV exposure. Higher fractional orders suggest
a more intricate interplay of factors affecting susceptibility, implying a more efficient
utilization of historical data or long-term memory in the transmission process.

In Figure 1b, we present the dynamic behavior of the infective population at stage 1,
denoted as I1(ξ). The infected population demonstrates rapid growth as the fractional
order α increases. Subsequently, decreasing the fractional order leads to a decline in the
infected population. This trend stabilizes over time, indicating a more established state of
infection within the population. The initial rapid increase followed by a gradual decrease
in the infective population mirrors the dynamic nature of HIV transmission, as observed
in real-world scenarios. This pattern reflects the early surge in infections as the virus
spreads, followed by a period during which interventions, immunity, or other factors
contribute to a reduction in new infections. Figure 1c illustrates the dynamics of the
HIV-infected population at stage 2, denoted as I2(ξ). The initial increase in the infected
population is observed for higher fractional orders, followed by a decrease for lower
fractional orders. These dynamics are influenced by various factors, including intervention
strategies, transmission rates, and the interaction between different stages of infection.

Figure 1d illustrates the dynamic behavior of populations undergoing treatment,
denoted as Q(ξ). This figure illustrates an increasing number of individuals recovering
from HIV infection, reflecting the dynamic response of infective populations to treatment
interventions. The decline in infected individuals is gradual as fractional orders increase,
highlighting the sensitivity of dynamics to different parameter settings. Such dynamics
mirror real-world scenarios where treatment plays a critical role in reducing infection rates
and improving outcomes for individuals affected by HIV.

On the other hand, Figure 1e delves into the behavior of the recovered population,
R(ξ). It depicts how HIV-recovered populations engage in treatment-seeking behavior,
initially surging and then gradually declining. Notably, the recovered population increases
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quickly with lower fractional orders, with the decline being more pronounced for higher
fractional orders. These findings underscore the significant influence of fractional orders
and fractal dimensions on HIV transmission dynamics and treatment decisions, providing
valuable insights into the complex interplay between these parameters and HIV dynamics.
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(a) Dynamical simulation of S(ξ)
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(c) Dynamical simulation of I2(ξ)
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(d) Dynamical simulation of Q(ξ)
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(e) Dynamical simulation of R(ξ)

Figure 1. The numerical simulation results show the behaviors of all compartments in the devised
model under uniform fractional orders and fractal dimensions, specifically when α = β.

In the second case, the analysis focuses solely on the fractional order α while keeping
the fractal dimension β fixed at β = 1. The study examines a range of α values, specifically
(α = 0.80, 0.85, 0.90, 0.95, and 1.00), to explore how variations in fractional orders impact the
dynamics of the HIV model across different infection levels, recovery stages, and treatment
decisions. Figure 2a–e depict each trajectory against a specific value of fractional order α at
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fractal dimension β = 1, illustrating the disease dynamics of the HIV model population.
It is evident that each graph exhibits a different rate of convergence (based on fractional
order α), but each curve ultimately reaches a steady state.
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(a) Dynamical simulation of S(ξ)
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(b) Dynamical simulation of I1(ξ)
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(c) Dynamical simulation of I2(ξ)
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(d) Dynamical simulation of Q(ξ)
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(e) Dynamical simulation of R(ξ)

Figure 2. The numerical simulations illustrate the behaviors of all compartments in the devised model,
specifically by varying the fractional order α while keeping β constant at a value of 1.

In the third exploration case, the model dynamics are analyzed by varying the fractal
dimension (β = 0.80, 0.85, 0.90, 0.95, and 1.00), while keeping the fractional order fixed
at α = 1. By examining the impact of changing fractal dimensions on HIV transmission
dynamics, the study aims to isolate the effects of β while holding α constant. Results
depicted in Figure 3a–e illustrate how altering β influences the number of HIV cases
across different compartments of the model (S , I1, I2, Q, and R), providing insights into
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the intricate dynamics of HIV spread. The curves resulting from fractional differential
equations (2) clearly demonstrate a notably slower rise or decay over prolonged periods
compared to those derived from a classical model with α = 1. Across all figures, the
dynamics tend toward a stable state as the fractional order decreases from 1 to 0.80 or lower.
This indicates that a smaller fractional value leads to a more effective solution.
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(a) Dynamical simulation of S(ξ)
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(c) Dynamical simulation of I2(ξ)
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(d) Dynamical simulation of Q(ξ)
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(e) Dynamical simulation of R(ξ)

Figure 3. The numerical simulations showcase the behaviors of all compartments in the devised
model by varying the fractal dimensions while keeping the fractional order α fixed at 1.

In Figure 4a–e, we plot approximate solutions against different fractional orders at
a fractional dimension of β = 0.7, covering fractional orders of α = 0.80, 0.85, 0.90, 0.95,
and 1.00. In Figure 5a–e, we investigate model dynamics by varying the fractional order
(β = 0.80, 0.85, 0.90, 0.95, and 1.00) while maintaining a constant fractal dimension of
β = 0.9. This case uniquely explores the influence of changing fractional orders on HIV
model dynamics, impacting the reduction in deaths and HIV transmission. Additionally, we
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derive significant insights from the model’s compartments (S , I1, I2, Q, and R), revealing
the intricate dynamics of HIV spread. Observing Figures 4 and 5, we note that at a large
value of fractal dimension, the graphs tend to reach a steady state more rapidly compared
to a small value.
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(d) Dynamical simulation of Q(ξ)
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Figure 4. The numerical simulations display how the compartments in the model respond over time,
varying the fractional order α while maintaining a fixed dimension β = 0.7.
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Figure 5. The simulations show how the model’s compartments respond over time, changing the
fractional order α while holding the dimension β = 0.9 constant.

The newly generated fractal-fractional derivative model with the power-law kernel
allows for the consideration of anomalous spread, similar to infection biological models.
This new model avoids the inclusion of artificial singularities seen in the Riemann-Liouville-
Caputo case, providing a more accurate description of the biological process’s history.
Non-local operators, a powerful mathematical tool for describing non-local phenomena
following the power-law, have been utilized in this context. Numerical simulations depicted
in the figures show significant differences from those generated by the standard HIV/AIDS
model proposed by [2,48] for classical derivatives. Across all figures, dynamics reach
a steady state as the fractional order decreases from 1 to 0.80 or lower, indicating that
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smaller fractional values lead to more efficient solutions. The study’s numerical scheme
accurately captures the system’s dynamics, with each solution approaching a steady-state
boundary. These variables exhibit relationships with fluctuating fractional order α and
fractal dimension β, demonstrating the influence of fractal features on the dynamics. Such
features are absent in integer-order derivatives, highlighting the impact of utilizing fractal-
fractional approaches for epidemic models. The findings suggest that slight changes in
fractal dimensions and fractional orders only manifest in numerical simulations, with
solutions for all compartments achieving the required accuracy and reliability as fractional
values decrease. This underscores the effectiveness of fractal-fractional systems, compared
to fractional systems [49], in investigating epidemic models and predicting asymptotic
behavior around endemic equilibrium.

The fractional operator utilized in the study satisfies all the required theoretical condi-
tions for the considered model, with the parameters demonstrating a substantial influence
on the ecological system’s stability. Even a slight variation in fractal-fractional orders
causes a minor change in the model’s behavior, highlighting the importance of fractional
derivatives in capturing complex HIV transmission dynamics and enhancing the valid-
ity and applicability of the findings compared to classical derivatives. Furthermore, the
study emphasizes the system’s long-term memory effect, as fractional derivatives exhibit
a decrease when the fractional order α approaches 1, further enhancing the accuracy and
realism of the suggested HIV disease model. In summary, our considered fractal-fractional
order HIV epidemic model offers significant advantages, being more realistic, effective,
and efficient than the classical model by improving precision through increased flexibility,
resulting in better outcomes. By considering long-term dependencies, non-local impacts,
persistence, and recurrence, the model provides valuable insights into HIV transmission
dynamics, aiding the public health sector in curbing the disease’s spread. Simulations also
offer relevant data on how infected patients’ circumstances evolve over time, supporting
informed decision-making. The study also proposes effective strategies to reduce HIV
spread and anticipates future developments in this critical field.

7. Conclusions

Mathematical modeling is instrumental in understanding and managing infectious
diseases like HIV. In contrast to classical models, nonlinear compartmental models offer a
more nuanced view of disease spread. Our study presents a nonlinear deterministic mathe-
matical model incorporating fractal-fractional order derivatives, specifically in the Caputo
sense, to capture HIV infection dynamics. This model integrates three infection levels and
delineates transitions between various stages for infected individuals, dividing the popu-
lation into five compartments. We highlight the model’s memory effect, which enriches
the understanding of disease spread by incorporating fractional derivatives. To validate
the model, we conducted a thorough analysis establishing the existence and uniqueness of
solutions using fixed-point methods. Ulam-Hyer’s stability was assessed through nonlinear
functional analysis, affirming the stability of the model’s solutions. Numerical solutions
were obtained using the fractal-fractional Adam Bashforth iterative scheme in fractional
order, validated through MATLAB simulations. Our numerical simulations explored a
range of fractional orders and fractal dimensions, revealing how these parameters influence
the model’s dynamics. Comparisons with integer-order models were made to evaluate
stability and convergence, showing the impact of arbitrary order parameters on model
dynamics. Overall, utilizing fractal-fractional derivatives enhances the realism of modeling
complex events like HIV spread.

The graphical results further illustrate how variations in fractional orders and fractal
dimensions impact the dynamics of HIV spread. The analysis reveals that susceptibility
dynamics exhibit an initial decline followed by stabilization, with all compartments of
the model converging to the true endemic equilibrium point. Higher fractional orders
suggest a more intricate interplay of factors affecting susceptibility, indicating a more
efficient utilization of historical data or long-term memory in the transmission process. The
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infected populations at stages 1 and 2 show rapid growth as the fractional order α increases,
followed by a decline as the fractional order decreases, leading each solution towards a
steady-state boundary. Conversely, populations under treatment exhibit a gradual decline
as fractional orders increase, emphasizing the sensitivity of dynamics to parameter settings.
Additionally, the recovered population increases rapidly with lower fractional orders and
declines more noticeably with higher fractional orders. In all figures, the dynamics reach a
steady state as the fractional order decreases from 1 to 0.80 or lower, suggesting that smaller
fractional values lead to more efficient solutions. Reducing fractional values enhances the
accuracy and reliability of solutions across all compartments. This observation highlights
the importance of fractal-fractional derivatives in capturing the complex dynamics of HIV
transmission, providing more valid and applicable findings compared to fractional and
integer order derivatives. The results emphasize the significance of regulating the effective
transmission rate to mitigate fatalities, contain HIV transmission, and increase the number
of recoveries. Overall, the proposed novel fractal-fractional derivative technique offers
more precise measures and may be better suited for deciphering complex phenomena
compared to fractional and integer-order operators.

Our research yields invaluable insights for future scientific endeavors. The use of
fractal-fractional derivatives uncovers intricate dynamics in viral disease models, surpass-
ing the capabilities of integer-order derivatives. Mathematical modeling encapsulates
certain physical phenomena where the classical derivative only captures dynamics in one
direction, whereas the fractional operator enables continuous monitoring of infectious
diseases. The fractional order allows analysis of infection from its initial point when in-
fected individuals first carry the infection and begin spreading it, until its culmination.
This comprehensive approach aids in understanding the complete behavior of infection
and the impact of control strategies through modeling. It enhances our comprehension
of the disease’s complexities and improves predictions of its behavior over time. This
analytical approach is instrumental in future research and control plans aimed at mitigating
the effects of the disease. It contributes significantly to HIV transmission management and
community-level understanding. Future directions include optimizing control strategies,
integrating behavioral dynamics into the model with real-world data validation, exploring
the application of fractal-fractional derivatives in neural networks, and enhancing the
numerical framework by incorporating fractional dimensions into the independent variable
ξ. These efforts hold promise in improving the model’s applicability and robustness in
capturing the dynamics of HIV transmission.
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