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Abstract: This paper shows solicitude for the generalized projective synchronization of Caputo
fractional-order uncertain memristive neural networks (FOUMNNs) with multiple delays. By ex-
tending the constant scale factor to the time-varying function matrix, we establish an extraordinary
synchronization mode called time-varying function matrix projection synchronization (TFMPS),
which is a generalized version of traditional matrix projection synchronization, modified projection
synchronization, complete synchronization, and anti-synchronization. To achieve the goal of TFMPS,
we design a novel mixed controller including the open loop feedback control and impulsive control,
which employs the state information in the time-delayed interval and the sampling information at
the impulse instants. It has a prominent advantage that impulse intervals are not restricted by time
delays. To establish the connection between the error system and the auxiliary system, a generalized
fractional-order comparison theorem with time-varying coefficients and impulses is established.
Applying the stability theory, the comparison theorem, and the Laplace transform, new synchro-
nization criteria of FOUMNNs are acquired under the mixed impulsive control schemes, and the
derived synchronization theorem and corollary can effectively expand the correlative synchronization
achievements of fractional-order systems.

Keywords: fractional-order; neural networks; mixed control; impulsive sampling; synchronization

1. Introduction

Neural networks can simulate the thinking process of the human brain and have
important application value in the field of artificial intelligence [1]. With the rise of intelli-
gent computing, various interdisciplinary fields such as machine learning, control theory,
computer science, and system stability require neural networks as important research
tools [2–9]. Memristors, as the fourth basic circuit component, have a monumental memory
function similar to the neuronal protrusions in the human brain [10]. They can be stored and
calculated in a cross-array form, with fast computing speed and low energy consumption
when processing analog signals. The research results have shown that using memristors
to replace neuronal protrusions can establish various memristive neural networks with
parallel computing capabilities [11]. Therefore, memristive neural networks (MNNs), as
a special type of state-dependent network model, naturally receive much attention from
scientific research personnel [12–14].
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Due to the nonlinear nature of memristor-based neural networks, MNNs are often rich
in dynamic states, such as equilibrium points, periodic solutions, traveling wave solutions,
synchronization, and chaos. Applying integer-order differential integral operators to model
the network dynamic behaviors, memristor-based neural networks have been widely
studied [15]. In particular, synchronization, as an important stable state in neural networks,
can be achieved through internal coupling or external force input [16]. For instance, utilizing
external non-delayed and delayed impulse effects, the authors in [17] deliberated the global
synchronization task of stochastic MNNs with Wiener distribution and coupling delays.
Based on the differential inclusions, Li et al. [18] paid attention to the synchronization
within a settling time for master-slave MNNs involving nonlinear driving functions and
variable system delays using adaptive feedback schemes. In [19], the authors solved
the fixed-time driver-response synchronization challenge of MNNs including complex-
valued parameters. In [20], Alsaedi et al. deliberated the complete synchronization of
fuzzy MNNs with external perturbation by using fuzzy rules and adaptive rules. In [21],
Fu et al. dealt with the weak projective synchronization task for Takagi-Sugeno fuzzy
MNNs with parameter mismatch based on Liapunov-Krasovsky functions and variable
parameter formulas.

The synchronization research results of MNNs mentioned above mainly focused on
mathematical modeling based on integer-order calculus operators. Fractional calculus,
as a promotional version of integer order differentiation and integration, adds a degree
of freedom parameter, and more importantly, includes all the communication from the
initial moment to the current one [22]. Therefore, it has special memory and heritability,
which can characterize various phenomena and processes that cannot be described by
integer calculus [23]. As a simple example, in neural cell tissues, the application of frac-
tional calculus can break the inherent complexity of a single molecular membrane, thereby
comprehensively understanding the memory capability and behavior of biological sys-
tems. Researchers replaced ordinary capacitors with fractional capacitors and established
the fractional-order memristive neural network model, which can better characterize the
function and behavior of neurons. In [24], using the nature of the proportional deriva-
tive, a class of generalized Caputo and Riemann-Liouville fractional derivatives including
exponential kernels was studied. In [25], utilizing stability theory and immovable point
techniques, the solution of proportional Liouville-Caputo fractional stochastic equations
was discussed. By introducing the Riemann-Liouville fractional derivative, Gu et al. [26]
established fractional-order MNNs with unsuspected parameters, and further implemented
parameter adaptive discrimination and identification. With the help of the Caputo frac-
tional derivative, Chen et al. [27] constructed fractional-order Caputo MNNs and analyzed
the global stability conditions of the system in detail. Li et al. [28] studied the nonlocal anti-
synchronization challenge for fractional-order neural networks involving mixed variable
delays utilizing state information feedback. Yang et al. [29] deliberated the complete syn-
chronization for fractional-order delayed MNNs with unidentified parameters by feedback
control schemes. More synchronization results, such as robust synchronization [30] and
pinning multi-synchronization [31] for fractional-order MNNs were investigated based on
fractional-order Lyapunov function methods.

In particular, two complex systems are known to achieve projective synchroniza-
tion if the corresponding state variables of master neural networks and slave neural net-
works reach identical dynamical behavior under certain scaling factors [32]. Projection
synchronization can be regarded as a generalized class of synchronization modes since
it can be converted into synchronization modes such as complete synchronization and
anti-synchronization by adjusting the projection scaling factor. Note that projection syn-
chronization can be relied upon for faster communication with its scaling properties [33].
Consequently, it has important theoretical and practical significance to investigate the
projection synchronization of fractional-order neural networks. Latterly, researchers used
different control strategies to solve the projective synchronization goal for fractional-order
MNNs, and many worthwhile works have been achieved [34–40]. For instance, in [34],
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Velmurugan et al. dealt with the hybrid projection synchronization of fractional-order
MNNs with delays based on a simple state feedback control scheme. Gu et al. [35] dis-
cussed the projection synchronization of fractional-order delayed MNNs by applying
open-loop control and continuous feedback control. Considering the sliding mode control
and adaptive control techniques, researchers in [36] investigated the passive projective
synchronization of uncertain MNNs and derived the stability conditions for error systems.
In [37,38], the projection synchronization and the modified projection synchronization
of fractional-order MNNs in finite time were explored based on feedback control meth-
ods. Ding et al. [40] were concerned about the complex projection synchronization for
fractional-order complex-valued MNNs utilizing hybrid feedback controllers.

As everyone knows, the scale factor in projection synchronization as a key param-
eter increases the safety of signal transmission between the drive and response systems.
However, as mentioned above in the literature [34–40], the projected scale factors between
fractional-order master-slave networks are generally constant matrices or fixed diagonal
forms. If the scale factor is adjusted to be a time-varying function matrix including multiple
variable elements, it undoubtedly increases the communication security letter. Until now,
no works have considered projective synchronization with scaling factors of time-varying
function matrices for FOUMNNs by mixed impulsive feedback control. This is also the
main motivation of this study. The main reasons include three points. First, scaling factors
that vary with time t are more complex to predict than constant matrices or fixed diagonal
forms. Second, the delays or uncertainties caused by limited information processing speed
or external disturbances can make the dynamic behaviors of the system more complex and
disrupt the stability of nonlinear systems. Third, the primary objective of this study is to
develop a broader projection synchronization model and to overcome the previously men-
tioned difficulties with a new mixed impulsive feedback control technique. This requires
us to establish a more generalized impulse comparison theorem first.

Motivated by what has been considered above, this article deliberates the TFMPS of
Caputo FOUMNNs with multiple delays. The worthwhile contributions of this study include
three aspects. First, we extend the traditional projective scaling factor to a time-dependent
function matrix and define a generalized synchronization mode, i.e., TFMPS. This synchro-
nization mode can degenerate into matrix projective synchronization (PS) [41], modified
PS [38], and anti-synchronization under specific restrictive requirements. The adjustability
of fractional orders and the time-varying unpredictability of elements in function matrices
can improve the safety of secret communication, providing better application prospects for
communication encryption systems. Second, an important impulsive comparison theorem
that considers delays and time-varying coefficients is provided as an analytical tool. In
addition to the memristive neural network model considered in this article, the comparison
theorem can be applied to more neural networks, such as pantograph neural networks or
Cohen-Grossberg neural networks. Finally, different from the feedback control or sliding
mode control schemes in [34–40], novel mixed impulsive feedback control schemes, includ-
ing open-loop feedback control and impulsive sampling control, have been designed to
achieve the TFMPS in FOUMNNs. Both the state information in the time-delayed interval
and the sampling information at the impulse moments are comprehensively utilized in our
controller. Theoretical analysis and numerical experiments show that the derived synchro-
nization conditions rely on impulsive strengths, feedback strengths, uncertain boundaries,
and fractional order.

2. Theoretical Foundation and Model Establishment

In this section, some fundamental knowledge closely related to this study is first reviewed.
Then, an important impulsive comparison theorem involving various delays is given, and
drive-response network models concerning the Caputo derivative are established.
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Definition 1 ([34]). Fractional integral for an integral function F (t) is given as

Iη
t F (t) =

1
Γ(η)

∫ t

t0

(t − ς)η−1F (ς)dς, (1)

where t ≥ t0, η > 0, and Γ(η) =
∫ +∞

0 tη−1e−tdt.

Definition 2 ([34]). η-order Caputo derivative for a function F (t) is given by

cDη
t F (t) =

1
Γ(m − η)

∫ t

t0

(t − ς)m−η−1F (m)(ς)dς, (2)

where t ≥ t0, and 0 ≤ m − 1 < η < m. Especially, when 0 < η < 1, cDη
t F (t) =

1
Γ(1−η)

∫ t
t0
(t − ς)−ηF ′(ς)dς; when η = 1, the fractional derivative cDη

t F (t) can convert to
the one-order derivative.

Consider fractional-order uncertain memristive neural networks involving multiple
delays as below:

cDη
t pk(t) =− wk pk(t) +

n

∑
j=1

(
ukj(pj(t)) + ∆ukj(t)

)
ϕj(pj(t)) +

n

∑
j=1

(
vkj(pj(t))

+ ∆vkj(t)
)

φj(pj(t − τj)) + Ik(t), k = 1, 2, · · · , n, t ≥ 0, (3)

where η ∈ (0, 1) and wk is a positive parameter signifying the decay rate coefficient. τj
denotes the jth transmission delay satisfying 0 ≤ τj ≤ τ. Ik(t) represents the bounded con-
trol input. p(t) = (p1(t), p2(t), · · · , pn(t))T stands for the state vector at point t. ϕj(pj(t))
and φj(pj(t − τj)) mean nonlinear activation functions at points t and t − τj, respectively.
∆ukj(t) and ∆vkj(t) express the uncertain deviation of ukj(pj(t)) and vkj(pj(t)), which sat-
isfying |∆ukj(t)| ≤ ρkj and |∆vkj(t)| ≤ ϱkj. The initial conditions of memristive system
(3) are p(s) = ς(s) = (ς1(s), ς2(s), · · · , ςn(s))T ∈ C([−τ, 0],Rn). ukj(pj(t)) and vkj(pj(t))
represent the connection weights, where

ukj(pj(t)) =
Wkj

Ck
× SIGNkj, vkj(pj(t)) =

Mkj

Ck
× SIGNkj, SIGNkj =

{
1, k ̸= j,
−1, k = j.

(4)

Wkj and Mkj describe the memductances of resistors W̃kj and M̃kj. W̃kj displays the resistor
between ϕj(pj(t)) and pk(t). M̃kj displays the resistor between φj(pj(t − τj)) and pk(t). Ck
represents the voltage of the capacitor. Considering the distinctions of the memristor and
the nature of current-voltage, ukj(pj(t)) and vkj(pj(t)) satisfy two constraints as follows:

ukj(pj(t)) =

{
u∗

kj, |pj(t)| < Xj,

u∗∗
kj , |pj(t)| > Xj,

vkj(pj(t)) =

{
v∗kj, |pj(t)| < Xj,

v∗∗kj , |pj(t)| > Xj,
(5)

where k, j = 1, 2, · · · , n, ukj(±Xj) = u∗
kj or u∗∗

kj , vkj(±Xj) = v∗kj or v∗∗kj , and the switching
jumps Xj > 0. u∗

kj, u∗∗
kj , v∗kj, and v∗∗kj are scalars regarding memristances.

By manipulating the differential inclusion theory, uncertain memristive dynamical
networks (3) are reformulated as

cDη
t pk(t) ∈− wk pk(t) +

n

∑
j=1

(
co(ukj, ukj) + ∆ukj(t)

)
ϕj(pj(t)) +

n

∑
j=1

(
co(vkj, vkj)

+ ∆vkj(t)
)

φj(pj(t − τj)) + Ik(t), k = 1, 2, · · · , n, t ≥ 0, (6)



Fractal Fract. 2024, 8, 301 5 of 24

where ukj = min{u∗
kj, u∗∗

kj }, ukj = max{u∗
kj, u∗∗

kj }, vkj = min{v∗kj, v∗∗kj }, vkj = max{v∗kj, v∗∗kj },
u+

kj = max{|ukj|, |ukj|}, v+kj = max{|vkj|, |vkj|},

co(ukj, ukj) =


u∗

kj, |pj(t)| < Xj,

co(ukj, ukj), |pj(t)| = Xj,
u∗∗

kj , |pj(t)| > Xj,

co(vkj, vkj) =


v∗kj, |pj(t)| < Xj,

co(vkj, vkj), |pj(t)| = Xj,
v∗∗kj , |pj(t)| > Xj,

then, there exist functions ξkj(t) ∈ co(ukj, ukj), ζkj(t) ∈ co(vkj, vkj), for k, j = 1, 2, · · · , n,
such that

cDη
t pk(t) =− wk pk(t) +

n

∑
j=1

(
ξkj(t) + ∆ukj(t)

)
ϕj(pj(t)) +

n

∑
j=1

(
ζkj(t)

+ ∆vkj(t)
)

φj(pj(t − τj)) + Ik(t), k = 1, 2, · · · , n, t ≥ 0. (7)

Based on neural networks (3), one can obtain the corresponding response networks
as below:

cDη
t qk(t) =− wkqk(t) +

n

∑
j=1

(
ukj(qj(t)) + ∆ukj(t)

)
ϕj(qj(t)) +

n

∑
j=1

(
vkj(qj(t))

+ ∆vkj(t)
)

φj(qj(t − τj)) + Ik(t) + Uk(t), k = 1, 2, · · · , n, t ≥ 0, (8)

where Uk(t) is the mixed impulsive feedback controller. The initial conditions of response
memristive networks (8) are q(s) = ς̃(s) = (ς̃1(s), ς̃2(s), · · · , ς̃n(s))T ∈ C([−τ, 0],Rn).
ukj(qj(t)) and vkj(qj(t)) represent the connection weights and can be defined by

ukj(qj(t)) =

{
u∗

kj, |qj(t)| < Xj,

u∗∗
kj , |qj(t)| > Xj,

vkj(qj(t)) =

{
v∗kj, |qj(t)| < Xj,

v∗∗kj , |qj(t)| > Xj,

where k, j = 1, 2, · · · , n, and the switching jumps Xj > 0. u∗
kj, u∗∗

kj , v∗kj, and v∗∗kj are constants.
Then, memristive networks (8) can be rewritten by

cDη
t qk(t) ∈− wkqk(t) +

n

∑
j=1

(
co(ukj, ukj) + ∆ukj(t)

)
ϕj(qj(t)) +

n

∑
j=1

(
co(vkj, vkj)

+ ∆vkj(t)
)

φj(qj(t − τj)) + Ik(t) + Uk(t), k = 1, 2, · · · , n, t ≥ 0, (9)

where

co(ukj, ukj) =


u∗

kj, |qj(t)| < Xj,

co(ukj, ukj), |qj(t)| = Xj,
u∗∗

kj , |qj(t)| > Xj,

co(vkj, vkj) =


v∗kj, |qj(t)| < Xj,

co(vkj, vkj), |qj(t)| = Xj,
v∗∗kj , |qj(t)| > Xj.

Similarly , there exist ξkj(t) ∈ co(ukj, ukj), ζkj(t) ∈ co(vkj, vkj), k, j = 1, 2, · · · , n, such that

cDη
t qk(t) =− wkqk(t) +

n

∑
j=1

(
ξkj(t) + ∆ukj(t)

)
ϕj(qj(t)) +

n

∑
j=1

(
ζkj(t)

+ ∆vkj(t)
)

φj(qj(t − τj)) + Ik(t) + Uk(t), k = 1, 2, · · · , n, t ≥ 0. (10)
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To establish the error system between memristive neural networks (3) and (8), the
definition of the error vector is first given by

z(t) = q(t)− Ξ(t)p(t), (11)

where z(t) = (z1(t), z2(t), · · · , zn(t))T, q(t) = (q1(t), q2(t), · · · , qn(t))T, p(t) = (p1(t), p2(t),
· · · , pn(t))T and Ξ(t) = (Ξkj)n×n(t) (k, j = 1, 2, · · · , n) represents a variable and bounded
projective matrix. Applying Caputo derivatives for component function zk(t) = qk(t)−

n
∑

j=1
Ξkj(t)pj(t), and combining deduced networks (7) and (10), we can obtain the fractional

derivative of the error function below.

cDη
t zk(t) =cDη

t qk(t)− cDη
t

( n

∑
j=1

Ξkj(t)pj(t)
)

=− wkqk(t) +
n

∑
j=1

(
ξkj(t) + ∆ukj(t)

)
ϕj(qj(t)) +

n

∑
j=1

(
ζkj(t)

+ ∆vkj(t)
)

φj(qj(t − τj)) + Ik(t) + Uk(t)− cDη
t

n

∑
j=1

Ξkj(t)pj(t). (12)

Based on the above error system, a mixed impulsive feedback controller including three
items is designed as below:



Uk(t) = UO
k (t) + UF

k (t) + U I
k(t),

UO
k (t) = wk

n
∑

j=1
Ξkj(t)pj(t)−

n
∑

j=1

(
ξkj(t) + ∆ukj(t)

)
ϕj

( n
∑

i=1
Ξji(t)pi(t)

)
−

n
∑

j=1

(
ζkj(t)

+∆vkj(t)
)

φj

( n
∑

i=1
Ξji(t − τi)pi(t − τi)

)
+ cDη

t

n
∑

j=1
Ξkj(t)pj(t)− Ik(t),

UF
k (t) = −dkzk(t)− dτ

k zk(t − τk),

U I
k(t) =

∞
∑

σ=1
ϖkzk(t)δ(t − tσ),

(13)

where dk, dτ
k (k = 1, 2, · · · , n) are feedback control strengths and ϖk(k = 1, 2, · · · , n) shows

the impulsive control strength. δ(·) represents the Dirac delta function. Combining error
system (12) and mixed impulsive controller (13), one can obtain

cDη
t zk(t)

= −wk

(
qk(t)−

n
∑

j=1
Ξkj(t)pj(t)

)
+

n
∑

j=1

(
ξkj(t) + ∆ukj(t)

)[
ϕj(qj(t))− ϕj

( n
∑

i=1
Ξji(t)pi(t)

)]
+

n
∑

j=1

(
ζkj(t) + ∆vkj(t)

)[
φj(qj(t − τj))− φj

( n
∑

i=1
Ξji(t − τi)pi(t − τi)

)]
−dkzk(t)− dτ

k zk(t − τk), t ̸= tσ,
∆zk(tσ) = zk(t+σ )− zk(t−σ ) = ϖkzk(t−σ ), t = tσ,

(14)

where zk(t+σ ) = limt→t+σ
zk(t) and zk(t−σ ) = limt→t−σ

zk(t).

Remark 1. The mixed control schemes in equation (13) comprise three significant parts. UO
k (t)

and UF
k (t) represent the open loop and feedback controllers, while considering historical status

information in time-delayed intervals. U I
k(t) denotes the impulsive sampling controller, which plays

a motivating role at the impulse instants. Compared to the memoryless continuous feedback input,
we comprehensively utilize the state information in the time-delayed interval and the sampling
information at the impulse moments, making it easier to quickly obtain good synchronization results.
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Assumption 1. For the nonlinear mappings ϕj and φj, there are nonnegative scalars ϕ̃j and
φ̃j satisfying

|ϕj(q)− ϕj(p)| ≤ ϕ̃j|q − p|, |φj(q)− φj(p)| ≤ φ̃j|q − p|, j = 1, 2, · · · , n, (15)

for ∀q, p ∈ R.

Assumption 2. All elements in projective scaling matrix Ξ(t) are continuously differentiable, and
each row of the matrix has at least one non-zero element.

Definition 3. Master system (3) and slave system (8) can accomplish the TFMPS, if the error
vector conforms to limt→+∞ ∥z(t)∥ = limt→+∞ ∥q(t)− Ξ(t)p(t)∥ = 0.

Remark 2. By selecting predigested forms of projection matrix Ξ(t), we can obtain different
projection synchronization modes as below:
(1) Choosing matrix Ξ(t) = (Ξkj)n×n, the TFMPS could degenerate into the matrix PS [41].
(2) Choosing matrix Ξ(t) = diag(C1, C2, · · · , Cn), the TFMPS could degenerate into the modified
PS [38].
(3) Choosing matrix Ξ(t) = −I, the TFMPS could degenerate into the anti-synchronization [42].
(4) Choosing matrix Ξ(t) = I, the TFMPS could degenerate into the complete synchronization [29].
The synchronization mode in this article can be seen as a generalized form of the aforementioned
synchronization modes, as the elements of the projection matrix in this study can be time-varying
functions rather than constants or diagonal forms.

Lemma 1 ([43]). Consider a fractional multi-delayed system as below:

cDη
t Y(t) = AY(t) + ĀY(t − τ), 0 < η < 1, (16)

where Y(t) = (Y1(t), Y2(t), · · · , Yn(t))T , Y(t − τ) = (Y1(t − τ1), Y2(t − τ2), · · · , Yn(t −
τn))T , A = (akj)n×n, and Ā = (ākj)n×n. Assuming the eigenvalues of multi-delayed Equa-
tion (16) meet the constraint |arg(λ)| > π

2 and the equation det(∆(s)) = 0 does not have pure
imaginary solutions for ∀ τj > 0, one can attain that the zero solution of (16) can be globally
asymptotically stable.

Lemma 2 ([7]). Suppose that 0 < η < 1, u(t) ∈ C([t0,+∞),R) is differentiable. If one can find
a point t′ > t0 satisfying u(t′) = 0 and u(t) < 0 for t0 ≤ t < t′, then cDη

t′u(t
′) > 0.

Lemma 3 ([44]). Assume that w(t) ∈ Rn is a differentiable function, we have

cDη
t wT(t)w(t) ≤ 2wT(t)cDη

t w(t), 0 < η < 1. (17)

Lemma 4 ([45]). The following matrix inequality[
N11 N12
N T

12 N22

]
< 0 (18)

is equivalent to condition (I) or condition (II) as below:

(I) N11 < 0,N22 −N T
12N−1

11 N12 < 0;

(II) N22 < 0,N11 −N12N−1
22 N T

12 < 0,

where N T
11 = N11 and N T

22 = N22.
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Lemma 5. Let nonnegative functions f (t) and g(t) satisfying
cDη

t f (t) ≤ −ϵ f (t) +
n
∑

j=1
ϵj(t) f (t − τj(t)) + ϵ(t)

∫ t
t−τ f (s)ds, t ̸= tσ,

f (tσ) ≤ πσ f (t−σ ), σ ∈ Z+,
f (t) = f0(t), t ∈ [t0 − τ, t0],

(19)

and 
cDη

t g(t) = −ϵg(t) +
n
∑

j=1
ϵj(t)g(t − τj(t)) + ϵ(t)

∫ t
t−τ g(s)ds, t ̸= tσ,

g(t) = g0(t), t ∈ [t0 − τ, t0],
(20)

where 0 < η < 1, 0 < πσ ≤ 1, ϵ ∈ R, and 0 ≤ τj(t) ≤ τ(j = 1, 2, · · · , n). ϵ(t) and ϵj(t) are
continuous and nonnegative real-valued functions. Then f0(t) ≤ g0(t) for t0 − τ ≤ t ≤ t0 yields
f (t) ≤ g(t) for t ≥ t0.

Proof. Confirm this conclusion using the mathematical induction method. First, we shall
validate that f (t) ≤ g(t), t ∈ [t0, t1). Evidently, f (t) ≤ g(t) means f (t) < εg(t) if ε > 1
denotes any constant. Assume the result f (t) ≤ g(t) for t ∈ [t0, t1) is wrong. Considering
that f0(t) ≤ g0(t) for t ∈ [t0 − τ, t0] and the continuity of f (t) and g(t) in [t0, t1), there
exists t′ ∈ [t0, t1) satisfying

f (t) < εg(t) for ∀t ∈ [t0 − τ, t′), and f (t′) = εg(t′), (21)

where ε > 1 represents any constant. By utilizing Lemma 2, one can obtain

cDη
t′ f (t′) > εcDη

t′ g(t
′). (22)

From another perspective, it derives from (19)–(21) that

cDη
t′ f (t′)

≤− ϵ f (t′) + ϵ1(t′) f (t′ − τ1(t′)) + ϵ2(t′) f (t′ − τ2(t′)) + · · ·+ ϵn(t′) f (t′ − τn(t′))

+ ϵ(t′)
∫ t′

t′−τ
f (s)ds

≤− ϵεg(t′) + ϵ1(t′)εg(t′ − τ1(t′)) + ϵ2(t′)εg(t′ − τ2(t′)) + · · ·+ ϵn(t′)εg(t′ − τn(t′))

+ ϵ(t′)ε
∫ t′

t′−τ
g(s)ds

=ε
[
− ϵg(t′) + ϵ1(t′)g(t′ − τ1(t′)) + ϵ2(t′)g(t′ − τ2(t′)) + · · ·+ ϵn(t′)g(t′ − τn(t′))

+ ϵ(t′)
∫ t′

t′−τ
g(s)ds

]
=εcDη

t′ g(t
′), (23)

which contradicts with (22). Consequently, by using the reduction to absurdity, we can
acquire

f (t) < εg(t), t ∈ [t0, t1). (24)

Let ε → 1, one obtains f (t) ≤ g(t) for t ∈ [t0, t1). Suppose there exists m ∈ Z+ satisfying
f (t) ≤ g(t), t ∈ [tσ−1, tσ), σ = 2, 3, · · · , m, then we obtain f (t) ≤ g(t) for t0 − τ ≤ t < tm
and f (tm) ≤ πm f (t−m) ≤ πmg(t−m) ≤ g(t−m) = g(tm). Note that g(t) is continuous on
[t0 − τ, ∞), utilizing the analogous stages as the proof of f (t) ≤ g(t) in [t0, t1), we can
derive f (t) ≤ g(t) for t ∈ [tm, tm+1). Accordingly, mathematical induction indicates that
the comparison principle is correct.
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Remark 3. MNNs constructed by integer-order calculus operators have been extensively inves-
tigated and many meaningful synchronization results have been obtained in [16–21]. However,
the comparison theorem and impulsive control schemes for neural networks with integer differen-
tial operators cannot be directly applied to fractional-order neural networks since fractional-order
memristive systems possess special memory and hereditary properties. Therefore, synchronization
of fractional-order delayed MNNs with uncertainties using impulse feedback control remains a
challenging problem since the fractional-order impulse comparison theorem with delays is rare.

Remark 4. To overcome the influence of delays on network stability, some kinds of literature have
established useful fractional-order time-delay comparison theorems for continuous systems, such
as [15,23,43]. Different from these results, the fractional-order time-delay comparison theorem
established in this paper considers impulse effects and time-varying coefficients. Consequently, the
comparison theorem contemplated in this paper is not only applicable to continuous network models
but also can be used for discontinuous impulse networks.

3. Synchronization Analysis Results

Before giving the principal theorem and corollary in this article, we first bring in a
significant matrix symbol. Denote Ξn = diag{1 + ϖ1, 1 + ϖ2, · · · , 1 + ϖn}, then the second
impulsive expression in (14) can be simply rewritten as z(t+σ ) = Ξnz(t−σ ) for σ ∈ Z+.

Theorem 1. Under Assumptions 1–2 and mixed impulsive feedback controller (13), the global
TFMPS between memristive neural networks (3) and (8) can be achieved, if there exist suitable
parameters dτ

k , dk > 0, 0 < γ ≤ 1, and −2 < ϖk < 0, such that

(i)
[

−γIn ΞT
n

Ξn −In

]
≤ 0,

(ii)
n

∑
j=1

β j < βsin
ηπ

2
,

where β = min1≤k≤n

[
2(wk + dk) − |dτ

k | −
n
∑

j=1
ϕ̃j(u+

kj + ρkj) −
n
∑

j=1
ϕ̃k(u+

jk + ρjk) −
n
∑

j=1
φ̃j(v+kj

+ϱkj)

]
> 0, and β j =

n
∑

k=1
φ̃j(v+kj + ϱkj) + |dτ

j |.

Proof. Consider an auxiliary function as below:

V(t) =
1
2

n

∑
k=1

z2
k(t). (25)

When t ∈ [tσ−1, tσ), calculating the Caputo derivative of V(t) and applying Lemma 3
yields that
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cDη
t V(t)

≤
n

∑
k=1

zk(t)cDη
t zk(t)

=
n

∑
k=1

zk(t)

{
− wk

(
qk(t)−

n

∑
j=1

Ξkj(t)pj(t)
)
+

n

∑
j=1

(
ξkj(t) + ∆ukj(t)

)[
ϕj(qj(t))

− ϕj

( n

∑
i=1

Ξji(t)pi(t)
)]

+
n

∑
j=1

(
ζkj(t) + ∆vkj(t)

)[
φj(qj(t − τj))

− φj

( n

∑
i=1

Ξji(t − τi)pi(t − τi)
)]

− dkzk(t)− dτ
k zk(t − τk)

}

≤
n

∑
k=1

{
− wkz2

k(t) +
n

∑
j=1

∣∣∣∣zk(t)
(

ξkj(t) + ∆ukj(t)
)[

ϕj(qj(t))− ϕj

( n

∑
i=1

Ξji(t)pi(t)
)]∣∣∣∣

+
n

∑
j=1

∣∣∣∣zk(t)
(

ζkj(t) + ∆vkj(t)
)[

φj(qj(t − τj))− φj

( n

∑
i=1

Ξji(t − τi)pi(t − τi)
)]∣∣∣∣

− dkz2
k(t) +

∣∣∣zk(t)dτ
k zk(t − τk)

∣∣∣}. (26)

According to Assumption 1, one can obtain

∣∣∣ϕj(qj(t))− ϕj

( n

∑
i=1

Ξji(t)pi(t)
)∣∣∣ ≤ϕ̃j

∣∣∣qj(t)−
n

∑
i=1

Ξji(t)pi(t)
∣∣∣

=ϕ̃j|zj(t)|, (27)

∣∣∣φj(qj(t − τj))− φj

( n

∑
i=1

Ξji(t − τi)pi(t − τi)
)∣∣∣ ≤φ̃j

∣∣∣qj(t − τj)−
n

∑
i=1

Ξji(t − τi)pi(t − τi)
∣∣∣

=φ̃j|zj(t − τj)|. (28)

From (27), we can obtain∣∣∣zk(t)
(

ξkj(t) + ∆ukj(t)
)[

ϕj(qj(t))− ϕj

( n

∑
i=1

Ξji(t)pi(t)
)]∣∣∣

≤ ϕ̃j

∣∣∣zk(t)
(

ξkj(t) + ∆ukj(t)
)

zj(t)
∣∣∣

≤
ϕ̃j(u+

kj + ρkj)

2
(
z2

k(t) + z2
j (t)

)
. (29)

From (28), we can obtain∣∣∣zk(t)
(

ζkj(t) + ∆vkj(t)
)[

φj(qj(t − τj))− φj

( n

∑
i=1

Ξji(t − τi)pi(t − τi)
)]∣∣∣

≤ φ̃j

∣∣∣zk(t)
(

ζkj(t) + ∆vkj(t)
)

zj(t − τj)
∣∣∣

≤
φ̃j(v+kj + ϱkj)

2
(
z2

k(t) + z2
j (t − τj)

)
. (30)
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Utilizing the inequality 2xTy ≤ xTx + yTy, one can obtain∣∣∣zk(t)dτ
k zk(t − τk)

∣∣∣ ≤ |dτ
k |

2
(
z2

k(t) + z2
k(t − τk)

)
. (31)

Substituting inequalities (29)–(31) into (26), we have

cDη
t V(t) ≤

n

∑
k=1

[
− wkz2

k(t) +
n

∑
j=1

ϕ̃j(u+
kj + ρkj)

2
(
z2

k(t) + z2
j (t)

)
+

n

∑
j=1

φ̃j(v+kj + ϱkj)

2
(
z2

k(t)

+ z2
j (t − τj)

)
+

|dτ
k |

2
(
z2

k(t) + z2
k(t − τk)

)
− dkz2

k(t)

]

=
n

∑
k=1

[
−
(

wk + dk −
|dτ

k |
2

−
n

∑
j=1

ϕ̃j(u+
kj + ρkj)

2
−

n

∑
j=1

ϕ̃k(u+
jk + ρjk)

2

−
n

∑
j=1

φ̃j(v+kj + ϱkj)

2

)
z2

k(t) +
n

∑
j=1

φ̃j(v+kj + ϱkj)

2
z2

j (t − τj) +
|dτ

k |
2

z2
k(t − τk)

]
. (32)

Note that 1
2 z2

j (t − τj) ≤ 1
2(z1(t − τj), z2(t − τj), · · · , zn(t − τj))(z1(t − τj), z2(t − τj), · · · ,

zn(t − τj))
T = V(t − τj).

Take β j =
n
∑

k=1
φ̃j(v+kj + ϱkj) + |dτ

j |, then one can obtain

cDη
t V(t) ≤− min

1≤k≤n

(
2(wk + dk)− |dτ

k | −
n

∑
j=1

ϕ̃j(u+
kj + ρkj)−

n

∑
j=1

ϕ̃k(u+
jk + ρjk)

−
n

∑
j=1

φ̃j(v+kj + ϱkj)

)
V(t) +

n

∑
j=1

(
n

∑
k=1

φ̃j(v+kj + ϱkj) + |dτ
j |
)

V(t − τj)

=− βV(t) +
n

∑
j=1

β jV(t − τj), (33)

where

β = min
1≤k≤n

[
2(wk + dk)− |dτ

k | −
n

∑
j=1

ϕ̃j(u+
kj + ρkj)−

n

∑
j=1

ϕ̃k(u+
jk + ρjk)−

n

∑
j=1

φ̃j(v+kj + ϱkj)

]
,

β j =
n

∑
k=1

φ̃j(v+kj + ϱkj) + |dτ
j |.

Based on condition (i) of Theorem 1, we have

[
−γzT(t−σ )z(t−σ ) zT(t−σ )ΞT

n
Ξnz(t−σ ) −In

]
=

[
zT(t−σ ) 0

0 In

][
−γIn ΞT

n
Ξn −In

][
z(t−σ ) 0

0 In

]
≤ 0. (34)

It follows from Lemma 4 and inequality (33) that

−γzT(t−σ )z(t
−
σ ) + zT(t−σ )Ξ

T
n Ξnz(t−σ ) ≤ 0. (35)

Combining the mathematical expression of V(t) and inequality (34), when t = tσ, we have
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V(t+σ ) =
1
2

zT(t+σ )z(t
+
σ ) =

1
2

zT(t−σ )Ξ
T
n Ξnz(t−σ )

≤ γV(t−σ ), (36)

where 0 < γ ≤ 1. From inequalities (33) and (36), one has
cDη

t V(t) ≤ −βV(t) +
n
∑

j=1
β jV(t − τj), t ∈ [tσ−1, tσ),

V(t+σ ) ≤ γV(t−σ ), σ ∈ Z+.
(37)

Contemplate a Caputo fractional-order differential system as below:

cDη
t µ(t) = −βµ(t) +

n

∑
j=1

β jµ(t − τj), (38)

where µ(t) is continuous in the interval [t0 − τ, ∞) and it owns identical starting values
with V(t). Taking into consideration the condition 0 < γ ≤ 1 and utilizing Lemma 5,
we acquire

0 ≤ V(t) ≤ µ(t). (39)

Applying the Laplace transform tool for differential system (38) gives that

sηµ(s)− sη−1µ(t0) =− βµ(s) +
n

∑
j=1

β j

∫ +∞

t0

e−stµ(t − τj)dt

=− βµ(s) +
n

∑
j=1

β j

∫ +∞

t0−τj

e−s(t+τj)µ(t)dt

=− βµ(s) +
n

∑
j=1

β je
−sτj

( ∫ t0

t0−τj

e−stµ(t)dt +
∫ +∞

t0

e−stµ(t)dt
)

=− βµ(s) +
n

∑
j=1

β je
−sτj µ(s) +

n

∑
j=1

β je
−sτj

∫ t0

t0−τj

e−stµ(t)dt. (40)

Combining transformed expression (40) and Lemma 1, we can derive

det(∆(s))µ(s) = sη−1µ(t0) +
n

∑
j=1

β je
−sτj

∫ t0

t0−τj

e−stµ(t)dt, (41)

where characteristic polynomial det(∆(s)) = sη + β −
n
∑

j=1
β je

−sτj . Next, contemplate the ap-

proach of the proof by contradiction to illustrate that the equation det(∆(s)) = 0 has no pure
imaginary solutions. Suppose a pure imaginary number s = ℜi = |ℜ|(cos π

2 + i sin(±π
2 )),

where ℜ ∈ R. If ℜ > 0, choose i sin(π
2 ); otherwise, choose i sin(−π

2 ). Substituting
s = ℜi = |ℜ|(cos π

2 + i sin(±π
2 )) into det(∆(s)) = 0 and utilizing the well-known Euler

formula, we can obtain

|ℜ|η
(

cos
ηπ

2
+ isin(

±ηπ

2
)
)
+ β −

n

∑
j=1

β j(cosℜτj − isinℜτj) = 0. (42)

Note that the equal of two complex numbers is equivalent to the corresponding equal of the
real part and imaginary part separately. Separating real and imaginary parts in (42) gives
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
|ℜ|ηcos ηπ

2 + β =
n
∑

j=1
β jcosℜτj,

|ℜ|ηsin (±ηπ)
2 =

n
∑

j=1
β jsinℜτj.

(43)

Squaring the above two equations first and then adding them together yields

|ℜ|2η + 2β cos
ηπ

2
|ℜ|η + β2 =

( n

∑
j=1

β j cosℜτj

)2
+
( n

∑
j=1

β j sinℜτj

)2
. (44)

Note the following trigonometric equality

( n

∑
j=1

β j cosℜτj

)2
+
( n

∑
j=1

β j sinℜτj

)2
=

n

∑
i=1

n

∑
j=1

βiβ jcosℜτjcosℜτj +
n

∑
i=1

n

∑
j=1

βiβ jsinℜτjsinℜτj

=
n

∑
i=1

n

∑
j=1

βiβ jcosℜ(τi − τj). (45)

Substituting equation (45) into equation (44), we have

|ℜ|2η + 2β cos
ηπ

2
|ℜ|η + β2 =

n

∑
i=1

n

∑
j=1

βiβ jcosℜ(τi − τj). (46)

Considering a two-order polynomial functionL(x) = x2 +2β cos ηπ
2 x+ β2 −

n
∑

i=1

n
∑
j=1

βiβjcosℜ(τi −

τj). One can obtain L(0) = β2 −
n
∑

i=1

n
∑

j=1
βiβ jcosℜ(τi − τj) > 0, since

n
∑

j=1
β j < βsin ηπ

2 , 0 <

η < 1, β j > 0(j = 1, 2, · · · , n). Moreover, L(x) represents a two-order polynomial function
with a strictly monotonically increasing interval [−βcos ηπ

2 ,+∞), we can obtain L(|ℜ|η) >

L(0) > 0. Hence, |ℜ|2η + 2β cos ηπ
2 |ℜ|η + β2 −

n
∑

i=1

n
∑

j=1
βiβ jcosℜ(τi − τj) > 0, which shows

equation (46) has no solution, namely, we cannot find a pure imaginary solution that

meets the mathematical Equation det(∆(s)) = 0. In addition, when
n
∑

j=1
β j < βsin ηπ

2 , one

can gain |arg(−β +
n
∑

j=1
β j)| > π

2 . Based on Lemma 1, the zero solution of system (38)

is asymptotically stable and limt→+∞ µ(t) = 0. According to inequality (39) and the
Sandwich theorem, one can derive that limt→+∞ V(t) = 0, and the time-varying function
matrix projection synchronization of memristive systems can be achieved.

Remark 5. The feedback control part mainly utilizes the current error information zk(t) and assists
the delayed error information zk(t− τk) as a supplement. To accelerate the synchronization efficiency
of the driver network and the response network, selecting the relatively large adjustable parameter dk

and the relatively small parameter dτ
k can ensure that the condition β = min1≤k≤n

[
2(wk + dk)−

|dτ
k | −

n
∑

j=1
ϕ̃j(u+

kj + ρkj)−
n
∑

j=1
ϕ̃k(u+

jk + ρjk)−
n
∑

j=1
φ̃j(v+kj + ϱkj)

]
> 0 in Theorem 1 is more easily

met. To minimize control costs, we generally choose the minimum dk that satisfies condition (ii).

Remark 6. Different from continuous feedback control, mixed impulse feedback control considered
in this paper is a discontinuous control strategy with the merit of high transmission security. If we
replace the mixed impulse control with pure impulse control, the parameter β in condition (ii) of



Fractal Fract. 2024, 8, 301 14 of 24

Theorem 1 may become negative. Since β j(j = 1, 2, · · · , m) is positive, this will make condition (ii)
not hold. Accordingly, the feedback parts of our controller are indispensable.

Remark 7. The impulsive control part U I
k(t) and condition (i) in Theorem 1 ensure that condition

V(t+σ ) ≤ γV(t−σ ) in (37) is satisfied. This lays the important foundation for utilizing the proposed
comparison theorem and Laplace transforms to complete the stability analysis of error systems.

Especially, with time-varying uncertainties ∆ukj(t) = 0 and ∆vkj(t) = 0, memristive
neural networks (3) with the Caputo derivative can be simplified as

cDη
t pk(t) =− wk pk(t) +

n

∑
j=1

ukj(pj(t))ϕj(pj(t)) +
n

∑
j=1

vkj(pj(t))φj(pj(t − τj))

+ Ik(t), k = 1, 2, · · · , n, t ≥ 0. (47)

Correspondingly, response memristive neural networks are simplified by

cDη
t qk(t) =− wkqk(t) +

n

∑
j=1

ukj(qj(t))ϕj(qj(t)) +
n

∑
j=1

vkj(qj(t))φj(qj(t − τj))

+ Ik(t) + Uk(t), k = 1, 2, · · · , n, t ≥ 0. (48)

Construct the external control input Uk(t) as

Uk(t) = UO
k (t) + UF

k (t) + U I
k(t),

UO
k (t) = wk

n
∑

j=1
Ξkj(t)pj(t)−

n
∑

j=1
ξkj(t)ϕj

( n
∑

i=1
Ξji(t)pi(t)

)
−

n
∑

j=1
ζkj(t)φj

( n
∑

i=1
Ξji(t − τi)pi(t − τi)

)
+ cDη

t

n
∑

j=1
Ξkj(t)pj(t)− Ik(t),

UF
k (t) = −dkzk(t)− dτ

k zk(t − τk),

U I
k(t) =

∞
∑

σ=1
ϖkzk(t)δ(t − tσ).

(49)

Employing the similar proof approach in Theorem 1, one can acquire the following
Corollary.

Corollary 1. Under Assumptions 1 and 2 and mixed impulsive feedback controller (49), the global
TFMPS between memristive neural networks (47) and (48) can be achieved, if there exist suitable
parameters dτ

k , dk > 0, 0 < γ ≤ 1 and −2 < ϖk < 0, such that

(i)
[

−γIn ΞT
n

Ξn −In

]
≤ 0,

(ii)
n

∑
j=1

β j < βsin
ηπ

2
,

where β = min1≤k≤n

[
2(wk + dk) − |dτ

k | −
n
∑

j=1
ϕ̃ju+

kj −
n
∑

j=1
ϕ̃ku+

jk −
n
∑

j=1
φ̃jv+kj

]
> 0, and

β j =
n
∑

k=1
φ̃jv+kj + |dτ

j |.

Remark 8. Based on the system environment and control requirements, when the impulsive
strength satisfies −2 < ϖk < 0 and ∑n

j=1 β j < βsin ηπ
2 , impulsive intervals tk − tk−1 are not

tightly constrained by time delays.
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4. Illustrative Experiments

In this section, we will present simulation experiments with different dimensions to
verify the applicability of Theorem 1.

Example 1. Take the following two-dimensional fractional-order delayed memristive networks with
bounded uncertainties as the drive system.

cDη
t p1(t) = −w1 p1(t) +

2
∑

j=1

(
u1j(pj) + ∆u1j

)
tanh(pj(t)) +

2
∑

j=1

(
v1j(pj) + ∆v1j

)
×tanh(pj(t − τj)) + I1(t),

cDη
t p2(t) = −w2 p2(t) +

2
∑

j=1

(
u2j(pj) + ∆u2j

)
tanh(pj(t)) +

2
∑

j=1

(
v2j(pj) + ∆v2j

)
×tanh(pj(t − τj)) + I2(t),

(50)

where

u11(p1) =

{
2.25, |p1(t)| < 1,
2.15, |p1(t)| > 1,

u12(p2) =

{
−2.15, |p2(t)| < 1,
−2.25, |p2(t)| > 1,

u21(p1) =

{
−0.45, |p1(t)| < 1,
−0.4, |p1(t)| > 1,

u22(p2) =

{
2.65, |p2(t)| < 1,
2.7, |p2(t)| > 1,

v11(p1) =

{
−3.85, |p1(t)| < 1,
−3.75, |p1(t)| > 1,

v12(p2) =

{
−2.5, |p2(t)| < 1,
−2.6, |p2(t)| > 1,

v21(p1) =

{
−1.85, |p1(t)| < 1,
−1.75, |p1(t)| > 1,

v22(p2) =

{
−3.65, |p2(t)| < 1,
−3.55, |p2(t)| > 1,

η = 0.98, τ1 = 0.1, τ2 = 0.2, w1 = 2.5, w2 = 1.5, I1(t) =−0.1 sint, I2(t) = 0.02 cost,

∆ukj =

[
0.3 sint 0.2 cost
0.2 sint 0.1 cost

]
and ∆vkj =

[
−0.6 cost 0.2 sint
0.1 cost −0.1 sint

]
.

According to drive neural networks (50), the response neural networks can be given as

cDη
t q1(t) = −w1q1(t) +

2
∑

j=1

(
u1j(qj) + ∆u1j

)
tanh(qj(t)) +

2
∑

j=1

(
v1j(qj) + ∆v1j

)
×tanh(qj(t − τj)) + I1(t) + U1(t),

cDη
t q2(t) = −w2q2(t) +

2
∑

j=1

(
u2j(qj) + ∆u2j

)
tanh(qj(t)) +

2
∑

j=1

(
v2j(qj) + ∆v2j

)
×tanh(qj(t − τj)) + I2(t) + U2(t),

(51)

where

u11(q1) =

{
2.25, |q1(t)| < 1,
2.15, |q1(t)| > 1,

u12(q2) =

{
−2.15, |q2(t)| < 1,
−2.25, |q2(t)| > 1,

u21(q1) =

{
−0.45, |q1(t)| < 1,
−0.4, |q1(t)| > 1,

u22(q2) =

{
2.65, |q2(t)| < 1,
2.7, |q2(t)| > 1,
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v11(q1) =

{
−3.85, |q1(t)| < 1,
−3.75, |q1(t)| > 1,

v12(q2) =

{
−2.5, |q2(t)| < 1,
−2.6, |q2(t)| > 1,

v21(q1) =

{
−1.85, |q1(t)| < 1,
−1.75, |q1(t)| > 1,

v22(q2) =

{
−3.65, |q2(t)| < 1,
−3.55, |q2(t)| > 1,

and other network parameters have the same values as system (50). Based on the syn-
chronization Definition and Assumption 2, choosing the time-varying projective scaling

matrix as Ξ(t) =
[

1 − sint 0.4 sint
−cost −1.1 sint

]
, then one can obtain the error functions of TFMPS

as z1 = q1 − [p1(1 − sint) + 0.4p2sint] and z2 = q2 − [−p1cost − 1.1p2sint].
To achieve the TFMPS between Caputo FOUMNNs (50) and (51), feedback control

strengths dk and dτ
k in (13) can be selected as d1 = d2 = 15, dτ

1 = dτ
2 = 1. The impulsive

control strength and impulsive intervals can be chosen as ϖk = −0.2 and tσ − tσ−1 = 0.1,
respectively. The Lipschitz constants are set as ϕ̃j = φ̃j = 1, j = 1, 2., which shows
that Assumption 1 is valid. Let parameter γ = 0.78, and then simple calculation shows

that β1 =
2
∑

k=1
φ̃1(v+k1 + ϱk1) + |dτ

1 | = 7.4, β2 =
2
∑

k=1
φ̃2(v+k2 + ϱk2) + |dτ

2 | = 7.55, β =

min1≤k≤n

[
2(wk + dk) − |dτ

k | −
2
∑

j=1
ϕ̃j(u+

kj + ρkj) −
2
∑

j=1
ϕ̃k(u+

jk + ρjk) −
2
∑

j=1
φ̃j(v+kj + ϱkj)

]
=

17.6,
2
∑

j=1
β j − βsin ηπ

2 = −2.6412 < 0, and
[
−0.78I2 ΞT

2
Ξ2 −I2

]
≤ 0. Thereupon, the calcu-

lation results indicate that all parameters above meet the conditions of Theorem 1.
The initial values of memristive network systems (50) and (51) are generated randomly

in the interval [0, 1]. By utilizing prediction-correction methods with Matlab software, the
state trajectories and error functions for (50) and (51) are displayed in Figure 1. As one
can see in Figure 1a,b, under the influence of scale factors, the red and blue curves in the
controlled drive-response networks gradually overlap. Moreover, as shown in Figure 1c,d,
the two error curves of different dimensions gradually approach zero, indicating the
effectiveness of the control scheme utilized in this study. To further observe the effect of
the feedback control intensity dk on the synchronization speed, we enhance the control
intensity as dk = 20 and keep the remaining control intensities unchanged. Comparing
Figures 1 and 2, one can easily observe that a larger non-delay feedback control intensity dk
can improve synchronization speed. Therefore, for the synchronization speed requirements
of actual systems, we can flexibly choose the control intensity.
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Figure 1. The state trajectories and error functions in FOUMNNs (50) and (51) with control intensities
dk = 15 in Example 1. (a) q1(t)&[p1(1 − sint) + 0.4p2sint]; (b) q2(t)&[−p1cost − 1.1p2sint]; (c) z1(t);
(d) z2(t).
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Figure 2. The state trajectories and error functions in FOUMNNs (50) and (51) with control intensities
dk = 20 in Example 1. (a) q1(t)&p1(1 − sint) + 0.4p2sint; (b) q2(t)& − p1cost − 1.1p2sint; (c) z1(t);
(d) z2(t).



Fractal Fract. 2024, 8, 301 18 of 24

Remark 9. Considering that the fractional-order system in this article has multiple time delays, a
modified prediction-correction algorithm called Adams–Bashforth–Moulton [46] is used to solve the
fractional-order equations in numerical simulations based on the Matlab software. The algorithm
consists of two main steps: Adams-Bashforth prediction and Adams-Moulton correction. The
product trapezoidal product rule is applied to the corrector part and the product rectangular rule is
used to assess the predictor part. Therefore, the whole numerical method is easily implemented by
applying these two rules, and detailed algorithm steps can be seen in [46].

Example 2. As the drive system, a three-dimensional fractional-order delayed memristive network
with uncertainties is denoted as

cDη
t p1(t) = −w1 p1(t) +

3
∑

j=1

(
u1j(pj) + ∆u1j

)
tanh(pj(t)) +

3
∑

j=1

(
v1j(pj) + ∆v1j

)
×tanh(pj(t − τj)) + I1(t),

cDη
t p2(t) = −w2 p2(t) +

3
∑

j=1

(
u2j(pj) + ∆u2j

)
tanh(pj(t)) +

3
∑

j=1

(
v2j(pj) + ∆v2j

)
×tanh(pj(t − τj)) + I2(t),

cDη
t p3(t) = −w3 p3(t) +

3
∑

j=1

(
u3j(pj) + ∆u3j

)
tanh(pj(t)) +

3
∑

j=1

(
v3j(pj) + ∆v3j

)
×tanh(pj(t − τj)) + I3(t),

(52)

where

u11(p1) =

{
3.2, |p1(t)| < 1,
3.1, |p1(t)| > 1,

u12(p2) =

{
−2.0, |p2(t)| < 1,
−1.1, |p2(t)| > 1,

u13(p3) =

{
−3.1, |p3(t)| < 1,
−4.1, |p3(t)| > 1,

u21(p1) =

{
1, |p1(t)| < 1,
0.9, |p1(t)| > 1,

u22(p2) =

{
2.0, |p2(t)| < 1,
1.9 + π

4 , |p2(t)| > 1,
u23(p3) =

{
−0.9, |p3(t)| < 1,
−5, |p3(t)| > 1,

u31(p1) =

{
3.5, |p1(t)| < 1,
6.1, |p1(t)| > 1,

u32(p2) =

{
−1.2, |p2(t)| < 1,
−1.6, |p2(t)| > 1,

u33(p3) =

{
−2, |p3(t)| < 1,
−1.1, |p3(t)| > 1,

v11(p1) =

{
−2.2, |p1(t)| < 1,
−2.2, |p1(t)| > 1,

v12(p2) =

{
0.15, |p2(t)| < 1,
0.23, |p2(t)| > 1,

v13(p3) =

{
−0.85, |p3(t)| < 1,
0.9, |p3(t)| > 1,

v21(p1) =

{
−1.8, |p1(t)| < 1,
−1.4, |p1(t)| > 1,

v22(p2) =

{
−1.5, |p2(t)| < 1,
−1.6, |p2(t)| > 1,

v23(p3) =

{
0.2, |p3(t)| < 1,
0.3, |p3(t)| > 1,

v31(p1) =

{
−2.3, |p1(t)| < 1,
−2.1, |p1(t)| > 1,
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v32(p2) =

{
3, |p2(t)| < 1,
2, |p2(t)| > 1,

v33(p3) =

{
−1.1, |p3(t)| < 1,
−1.3, |p3(t)| > 1,

η = 0.98, τ1 = 0.2, τ2 = 0.3, τ3 = 0.4, wk = 1, I1(t) = 0.15 sint, I2(t) = 0.2 cost,
I3(t) = 0.3 cost,

∆ukj =

−0.2 sint 0.3 cost 0.3 sint
0 0.2 sint 0

0.06 cost 0.3 sint 0.1 sint

 and ∆vkj =

0.03 cost −0.1 sint 0.2 sint
0.04 cost 0.3 cost 0.2 cost

0 −0.1 sint 0.5 cost

.

According to drive neural networks (52), the response neural networks can be given as

cDη
t q1(t) = −w1q1(t) +

3
∑

j=1

(
u1j(qj) + ∆u1j

)
tanh(qj(t)) +

3
∑

j=1

(
v1j(qj) + ∆v1j

)
×tanh(qj(t − τj)) + I1(t) + U1(t),

cDη
t q2(t) = −w2q2(t) +

3
∑

j=1

(
u2j(qj) + ∆u2j

)
tanh(qj(t)) +

3
∑

j=1

(
v2j(qj) + ∆v2j

)
×tanh(qj(t − τj)) + I2(t) + U2(t),

cDη
t q3(t) = −w3q3(t) +

3
∑

j=1

(
u3j(qj) + ∆u3j

)
tanh(qj(t)) +

3
∑

j=1

(
v3j(qj) + ∆v3j

)
×tanh(qj(t − τj)) + I3(t) + U3(t),

(53)

where

u11(q1) =

{
3.2, |q1(t)| < 1,
3.1, |q1(t)| > 1,

u12(q2) =

{
−2, |q2(t)| < 1,
−1.1, |q2(t)| > 1,

u13(q3) =

{
−3.1, |q3(t)| < 1,
−4.1, |q3(t)| > 1,

u21(q1) =

{
1, |q1(t)| < 1,
0.9, |q1(t)| > 1,

u22(q2) =

{
2, |q2(t)| < 1,
1.9 + π

4 , |q2(t)| > 1,
u23(q3) =

{
−0.9, |q3(t)| < 1,
−5, |q3(t)| > 1,

u31(q1) =

{
3.5, |q1(t)| < 1,
6.1, |q1(t)| > 1,

u32(q2) =

{
−1.2, |q2(t)| < 1,
−1.6, |q2(t)| > 1,

u33(q3) =

{
−2, |q3(t)| < 1,
−1.1, |q3(t)| > 1,

v11(q1) =

{
−2.2, |q1(t)| < 1,
−2.2, |q1(t)| > 1,

v12(q2) =

{
0.15, |q2(t)| < 1,
0.23, |q2(t)| > 1,

v13(q3) =

{
−0.85, |q3(t)| < 1,
0.9, |q3(t)| > 1,

v21(q1) =

{
−1.8, |q1(t)| < 1,
−1.4, |q1(t)| > 1,

v22(q2) =

{
−1.5, |q2(t)| < 1,
−1.6, |q2(t)| > 1,
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v23(q3) =

{
0.2, |q3(t)| < 1,
0.3, |q3(t)| > 1,

v31(q1) =

{
−2.3, |q1(t)| < 1,
−2.1, |q1(t)| > 1,

v32(q2) =

{
3, |q2(t)| < 1,
2, |q2(t)| > 1,

v33(q3) =

{
−1.1, |q3(t)| < 1,
−1.3, |q3(t)| > 1,

and other network parameters have the same values as system (52). Based on Defini-
tion 3 and Assumption 2, choosing the time-varying projective scaling matrix as Ξ(t) = 1 − 0.02 sint 0.5 sint −sint

−cost −0.03 cost −0.01 cost
1.2 − 0.07 cost 2 cost −sin3t

, then one can obtain the error functions of

TFMPS as z1 = q1 − [p1(1 − 0.02 sint) + 0.5p2 sint − p3sint], z2 = q2 − [−p1cost −
0.03p2 cost − 0.01p3 cost], and z3 = q3 − [p1(1.2 − 0.07 cost) + 2p2 cost − p3sin3t].

To achieve the TFMPS between Caputo FOUMNNs (52) and (53), feedback control
strengths dk and dτ

k in (13) can be selected as d1 = d2 = d3 = 25, dτ
1 = dτ

2 = dτ
3 = 1.

The impulsive control strength and impulsive intervals can be chosen as ϖk = −0.21 and
tσ − tσ−1 = 0.15, respectively. The Lipschitz constants are set as ϕ̃j = φ̃j = 1, j = 1, 2, 3,
and one can verify that Assumption 1 is valid. Chose parameter γ = 0.8, and then simple

calculation shows that β1 =
3
∑

k=1
φ̃1(v+k1 + ϱk1) + |dτ

1 | = 7.37, β2 =
3
∑

k=1
φ̃2(v+k2 + ϱk2) +

|dτ
2 | = 6.33, β3 =

3
∑

k=1
φ̃3(v+k3 + ϱk3) + |dτ

3 | = 4.4, β = min1≤k≤n

[
2(wk + dk) − |dτ

k | −
3
∑

j=1
ϕ̃j(u+

kj + ρkj)−
3
∑

j=1
ϕ̃k(u+

jk + ρjk)−
3
∑

j=1
φ̃j(v+kj + ϱkj)

]
= 22.14,

3
∑

j=1
β j − βsin ηπ

2 = −5.04 <

0, and
[
−0.8I3 ΞT

3
Ξ3 −I3

]
≤ 0. Consequently, the calculation results indicate that all parameters

meet the requirements of Theorem 1.
The initial values of memristive network systems (52) and (53) are generated ran-

domly in the interval [−5, 5]. By utilizing Matlab software, the state trajectories and error
functions for systems (52) and (53) are shown in Figure 3. As one can see in Figure 3a–c,
under the influence of scale factors, the red, blue, and pink curves representing state trajec-
tories in the controlled drive-response memristive systems gradually overlap with time
evolution. Furthermore, as shown in Figure 3d,f, three colored error curves of different
dimensions gradually approach zero, indicating the correctness of the obtained theorem
and the effectiveness of the mixed control scheme proposed in this article.

Remark 10. Our control techniques and synchronization results are still effective when uncertainty
factors are not considered, as shown in Corollary 1. Under this case, our network model degenerates
into [30–32]. Therefore, the results of this article are more generalized than existing results [30–32].

Remark 11. The derived results in our theorem and corollary are also applicable for parameter
η = 1, i.e., the mixed impulsive feedback control method is still suitable for the corresponding
integer-order memristor-based systems, such as [18,20].
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Figure 3. The state trajectories and error functions in systems (52) and (53) with control intensities
dk = 25 in Example 2. (a) q1(t)&p1(1 − 0.02sint) + 0.5p2sint − p3sint; (b) q2(t)& − p1cost −
0.03p2cost − 0.01p3cost; (c) q3(t)&p1(1.2 − 0.07cost) + 2p2cost − p3sin3t; (d) z1(t); (e) z2(t); (f) z3(t).

5. Conclusions

In this article, the nontraditional TFMPS pattern for FOUMNNs with multiple delays
is investigated by utilizing mixed impulsive feedback control. The control scheme takes
into account both the open-loop feedback term and the impulse term, utilizing not only
the state information of the delayed intervals but also the sampling information of the
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impulse moments. Unlike the pure impulse control method, the impulse interval in
this paper cannot be restricted by time delays. The adjustability of fractional order and
time-varying unpredictability of elements in function projective matrices can improve
communication security and provide better application prospects for network confidential
communication. Based on the proposed impulsive comparison theorem, stability theory,
and linear matrix inequality technique, novel synchronization criteria relying on impulsive
strengths, feedback strengths, uncertain boundaries, and fractional order are derived for
considering FOUMNNs. Using event-triggering strategies to select impulse instants, we
will study the TFMPS pattern for the variable-order memristive systems in the future.
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