Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System
Abstract
:1. Introduction
2. Methodology
2.1. Monte Carlo Simulation
2.2. The Three-Dimensional Discrete Fracture–Matrix System
- (1)
- The convection, molecular diffusion, adsorption, and decay mechanisms of the nuclides in the fractured rock are considered.
- (2)
- The scenario assumes the failure of the containers and buffer materials within a disposal pit 1000 years post-closure of the disposal facility. Thus, the disposal pit is directly connected to the water-conducting fractures, causing nuclide leakage into the fractured granite barrier under groundwater flows.
- (3)
- The water-conducting fractures in the geological barrier exhibit a stochastic distribution owing to the difficulty of identifying all the fracture geometries at the disposal site. In the following simulation, the water-conducting fracture zones are represented by a discrete fracture–matrix system with scale of 100 m.
- (4)
- The distances of the disposal pits to the water-conducting fractures varied because the disposal pits were aligned with the disposal facility. For simplicity, we consider the nearest disposal pit, 20 m high and 2 m wide, as the pollution source.
2.3. Flow and Transport Equations
2.4. Simulation Settings
2.4.1. Boundary and Hydrogeological Conditions
2.4.2. Safety Assessment Considerations
- (1)
- When tc, max ≤ 100,0000 years, if Cmax ≤ 0.01 mSv/a, the barrier was deemed effective; otherwise, if Cmax > 0.01 mSv/a, the barrier was deemed failed.
- (2)
- When tc, max > 100,0000 years, the barrier exceeded the upper limit and was deemed effective. Owing to the high toxicity and radioactivity of nuclides, they pose a significant threat to human life and health once they enter the biosphere. Accordingly, we defined the arrival time of the nuclides in the biosphere, Tt, as the moment when the effective dose is equal to 1.0 × 10−10 mSv/a. Thus, Tt was used to reflect the nuclide migration speed in the geological barrier.
3. Simulation Results
3.1. Flow Field
3.2. Evolution of the Concentration Field
3.3. Breakthrough Curves
4. Discussion
4.1. Sensitivity Analysis of Breakthrough Time
4.2. Sensitivity Analysis of Breakthrough Concentration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Emam, R.S.; Ozcan, H.; Zamfirescu, C. Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. J. Clean. Prod. 2020, 262, 121424. [Google Scholar] [CrossRef]
- Azam, A.; Rafiq, M.; Shafique, M.; Zhang, H.; Yuan, J. Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis. Energy 2021, 219, 119592. [Google Scholar] [CrossRef]
- Tsang, C.; Neretnieks, I.; Tsang, Y. Hydrologic issues associated with nuclear waste repositories. Water Resour. Res. 2015, 51, 6923–6972. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Su, R.; Zhao, X. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests. J. Rock Mech. Geotech. Eng. 2018, 10, 411–435. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Ke, D.; Cao, S.; Xie, J.; Zhao, X.; Chen, L.; Zhang, P. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal. J. Rock Mech. Geotech. Eng. 2014, 6, 119–125. [Google Scholar] [CrossRef]
- Xu, W.; Hu, Y.; Chen, Y.; Zhan, L.; Chen, R.; Li, J.; Zhuang, D.; Li, Q.; Li, K. Hyper-gravity experiment of solute transport in fractured rock and evaluation method for long-term barrier performance. Rock Mech. Bull. 2023, 2, 100042. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, S.; Zhang, J.; Chen, J.; Wu, Y. In-situ tracer test in fractured rocks for nuclear waste repository. Earth-Sci. Rev. 2024, 250, 104683. [Google Scholar] [CrossRef]
- Andersson, P.; Wass, E.; Johansson, H.; Skarnemark, G.; Skålberg, M. Äspö Hard Rock Laboratory, TRUE 1st Tracer Test Programme, Tracer Tests with Sorbing Tracers, STT-1b, Experimental Description and Preliminary Evaluation; IPR-99-12; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1999. [Google Scholar]
- Lindquist, A. Forsmark Site Investigation: Confirmatory Hydraulic Interference Test and Tracer Test at Drill Site 2; Svensk Kärnbränslehantering (SKB): Stockholm, Sweden, 2008. [Google Scholar]
- Soler, J.M.; Landa, J.; Havlova, V.; Tachi, Y.; Ebina, T.; Sardini, P.; Siitari-Kauppi, M.; Eikenberg, J.; Martin, A.J. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site. J. Contam. Hydrol. 2015, 179, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kinashi, K.; Kono, K.; Sakai, W.; Tsutsumi, N. Electron spin resonance and photoelectron yield spectroscopic studies for photocarrier behavior in photorefractive polymeric composites. Org. Electron. 2019, 68, 248–255. [Google Scholar] [CrossRef]
- Dai, Z.; Wolfsberg, A.; Lu, Z.; Deng, H. Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophys Res. Lett. 2009, 36, 1. [Google Scholar] [CrossRef]
- Jia, S.; Dai, Z.; Yang, Z.; Du, Z.; Zhang, X.; Ershadnia, R.; Soltanian, M.R. Uncertainty quantification of radionuclide migration in fractured granite. J. Clean. Prod. 2022, 366, 132944. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, X.; Zhan, C.; Chen, W.; Qi, L.; Dai, Z. Upscaling of Se(IV) sorption coefficients with hierarchical mineral characterization in multi-scale fractured granite. Stoch. Environ. Res. Risk Assess. 2023, 37, 877–887. [Google Scholar] [CrossRef]
- Hyman, J.D.; Painter, S.L.; Viswanathan, H.; Makedonska, N.; Karra, S. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resour. Res. 2015, 51, 7289–7308. [Google Scholar] [CrossRef]
- Cao, X.; Hu, L.; Wang, J.; Wang, J. Radionuclide transport model for risk evaluation of high-level radioactive waste in Northwestern China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 2017–2032. [Google Scholar] [CrossRef]
- Wei, Y.; Dong, Y.; Yeh, T.J.; Li, X.; Wang, L.; Zha, Y. Assessment of uncertainty in discrete fracture network modeling using probabilistic distribution method. Water Sci. Technol. 2017, 76, 2802–2815. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Li, T.; Wang, Y.; Chen, Y. Numerical simulations of nuclide migration in highly fractured rock masses by the unified pipe-network method. Comput. Geotech. 2019, 111, 261–276. [Google Scholar] [CrossRef]
- Winberg, A.; Andersson, P.; Hermanson, J.; Byegaard, J.; Cvetkovic, V.; Birgersson, L. Äspö Hard Rock Laboratory. Final Report of the First Stage of the Tracer Retention Understanding Experiments; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2000. [Google Scholar]
- Elert, M.; Svensson, H. Evaluation of Modelling of the TRUE-1 Radially Converging Tests with Sorbing Tracers. The Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes. Tasks 4E and 4F; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2001. [Google Scholar]
- Lindquist, A.; Hjerne, C.; Nordqvist, R.; Wass, E. Forsmark Site Investigation: Large-Scale Confirmatory Multiple-Hole Tracer Test; Svensk kärnbränslehantering (SKB): Stockholm, Sweden, 2008. [Google Scholar]
- Ikonen, J.; Sardini, P.; Jokelainen, L.; Siitari-Kauppi, M.; Martin, A.; Eikenberg, J. The tritiated water and iodine migration in situ in Grimsel granodiorite. Part I: Determination of the diffusion profiles. J. Radioanal. Nucl. Chem. 2016, 310, 1041–1048. [Google Scholar] [CrossRef]
- Ling, H.; Wang, J.; Chen, W. Simulation study on retardation of nuclides by granite geological barriers. China Sciencepaper 2017, 12, p2507. [Google Scholar]
- Duan, X.; Niu, S.; Wang, C.; Wang, J.; Zhou, Z.; Ling, H.; Tang, Z.; Li, N. Safety evaluation study on the geological disposal of high-level radioactive waste: A case study of Beishan, Gansu province. China Min. Mag. 2021, 30, 56–63. [Google Scholar]
- Pavičić, I.; Duić, Ž.; Vrbaški, A.; Dragičević, I. Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs. Fractal Fract. 2023, 7, 676. [Google Scholar] [CrossRef]
- Huang, N.; Liu, R.; Jiang, Y.; Cheng, Y. Development and application of three-dimensional discrete fracture network modeling approach for fluid flow in fractured rock masses. J. Nat. Gas Sci. Eng. 2021, 91, 103957. [Google Scholar] [CrossRef]
- Zou, L.; Cvetkovic, V. Inference of Transmissivity in Crystalline Rock Using Flow Logs Under Steady-State Pumping: Impact of Multiscale Heterogeneity. Water Resour Res. 2020, 56, e2020WR027254. [Google Scholar] [CrossRef]
- Basirat, R.; Goshtasbi, K.; Ahmadi, M. Determination of the Fractal Dimension of the Fracture Network System Using Image Processing Technique. Fractal Fract. 2019, 3, 17. [Google Scholar] [CrossRef]
- Nykyri, M.; Nordman, H.; Marcos, N.; Löfman, J.; Poteri, A.; Hautojärvi, A. Radionuclide Release and Transport. RNT-2008. 2008. Available online: https://cris.vtt.fi/en/publications/radionuclide-release-and-transport-rnt-2008 (accessed on 1 April 2024).
- Hyman, J.D.; Karra, S.; Makedonska, N.; Gable, C.W.; Painter, S.L.; Viswanathan, H.S. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 2015, 84, 10–19. [Google Scholar] [CrossRef]
- Neretnieks, I. Diffusion in the rock matrix: An important factor in radionuclide retardation? J. Geophys. Res. 1980, 85, 4379–4397. [Google Scholar] [CrossRef]
- Tang, D.H.; Frind, E.O.; Sudicky, E.A. Contaminant transport in fractured porous media: Analytical solution for a single fracture. Water Resour. Res. 1981, 17, 555–564. [Google Scholar] [CrossRef]
- Sudicky, E.A.; Frind, E.O. Contaminant transport in fractured porous media: Analytical solutions for a system of parallel fractures. Water Resour. Res. 1982, 18, 1634–1642. [Google Scholar] [CrossRef]
- Rejeb, A.; Bruel, D. Hydromechanical effects of shaft sinking at the Sellafield site. Int. J. Rock Mech. Min. Sci. 2001, 38, 17–29. [Google Scholar] [CrossRef]
- Ahmed, R.; Edwards, M.G.; Lamine, S.; Huisman, B.A.H.; Pal, M. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J. Comput. Phys. 2015, 303, 470–497. [Google Scholar] [CrossRef]
- Keilegavlen, E.; Berge, R.; Fumagalli, A.; Starnoni, M.; Stefansson, I.; Varela, J.; Berre, I. PorePy: An open-source software for simulation of multiphysics processes in fractured porous media. Computat. Geosci. 2021, 25, 243–265. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, W.; Zhan, L.; Zou, L.; Chen, Y. Modeling of solute transport in a fracture-matrix system with a three-dimensional discrete fracture network. J. Hydrol. 2022, 605, 127333. [Google Scholar] [CrossRef]
- Ben Abdelghani, F.; Aubertin, M.; Simon, R.; Therrien, R. Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass. Int. J. Min. Sci. Technol. 2015, 25, 37–45. [Google Scholar] [CrossRef]
- Hyman, J.D.; Sweeney, M.R.; Gable, C.W.; Svyatsky, D.; Lipnikov, K.; David Moulton, J. Flow and transport in three-dimensional discrete fracture matrix models using mimetic finite difference on a conforming multi-dimensional mesh. J. Comput. Phys. 2022, 466, 111396. [Google Scholar] [CrossRef]
- Ma, L.; Gao, D.; Qian, J.; Han, D.; Xing, K.; Ma, H.; Deng, Y. Multiscale fractures integrated equivalent porous media method for simulating flow and solute transport in fracture-matrix system. J. Hydrol. 2023, 617, 128845. [Google Scholar] [CrossRef]
- Chen, W. Study of System Analysis Method for Geological Repository of High Level Radioactive Waste-Taking the Beishan Granite Site as an Example. Ph.D. Thesis, Beijing Research Institute of Uranium Geology, Bejing, China, 2008. [Google Scholar]
- Guo, L.; Li, X.; Zhou, Y.; Zhang, Y. Generation and verification of three-dimensional network of fractured rock masses stochastic discontinuities based on digitalization. Environ. Earth Sci. 2015, 73, 7075–7088. [Google Scholar] [CrossRef]
- Guo, L.; Wu, L.; Zhang, J.; Liao, M.; Ji, Y. Identification of homogeneous region boundaries of fractured rock masses in candidate sites for Chinese HLW repository. Bull. Eng. Geol. Environ. 2020, 79, 4221–4243. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Li, X.; Wang, X.; Ma, F.; Zhao, J.; Zhang, Y. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China. Eng. Geol. 2020, 269, 105553. [Google Scholar] [CrossRef]
- Bonnet, E.; Bour, O.; Odling, N.E.; Davy, P.; Main, I.; Cowie, P.; Berkowitz, B. Scaling of fracture systems in geological media. Rev. Geophys 2001, 39, 347–383. [Google Scholar] [CrossRef]
- Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J.R.; Munier, R. A likely universal model of fracture scaling and its consequence for crustal hydromechanics. J. Geophys. Res. Solid Earth 2010, 115, 2009JB007043. [Google Scholar] [CrossRef]
- Afshari Moein, M.J.; Valley, B.; Evans, K.F. Scaling of fracture patterns in three deep boreholes and implications for constraining fractal discrete fracture network models. Rock Mech. Rock Eng. 2019, 52, 1723–1743. [Google Scholar] [CrossRef]
- Lei, G. Study on Rockmass Joints Geometric Feature and Three-Dimension Network Simulation. Ph.D. Thesis, Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Li, M. Research and Application of Rock Mass Structure Plane Features of Xinchang Section in Beishan Preselected Area of Gansu. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2020. [Google Scholar]
- Zhan, L.; Hu, Y.; Zou, L.; Xu, W.; Ye, Z.; Chen, R.; Zhuang, D.; Li, J.; Chen, Y. Effects of multiscale heterogeneity on transport in three-dimensional fractured porous rock with a rough-walled fracture network. Comput. Geotech. 2022, 148, 104836. [Google Scholar] [CrossRef]
- Hyman, J.D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resour. Res. 2016, 52, 6472–6489. [Google Scholar] [CrossRef]
- Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.O.; Fischer, T.; Görke, U.J.; Kalbacher, T.; Kosakowski, G.; McDermott, C.I.; et al. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 2012, 67, 589–599. [Google Scholar] [CrossRef]
- Chen, C.; Binder, M.; Oppelt, L.; Hu, Y.; Engelmann, C.; Arab, A.; Xu, W.; Scheytt, T.; Nagel, T. Modeling of heat and solute transport in a fracture-matrix mine thermal energy storage system and energy storage performance evaluation. J. Hydrol. 2024, 636, 131335. [Google Scholar] [CrossRef]
- JNC-H. JNC-H12, 2000: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 3: Safety Assessment of the Geological Disposal System; Japan Nuclear Cycle Development Institute: Tōkai, Japan, 2000.
- Ling, H. Post-Closure Safety Assessment for High-level Radioactive Waste Repository in Beishan, China. Ph.D. Thesis, Beijing Research Institute of Uranium Geology, Beijing, China, 2018. [Google Scholar]
(a) | |||||
Set | Dip Direction (°) | Dip Angle (°) | k (Fisher Constant) | Number | Probability |
1 | 79.2 | 60.3 | 19.05 | 52 | 0.347 |
2 | 330.9 | 24.9 | 23.32 | 30 | 0.200 |
3 | 286.3 | 75.8 | 33.96 | 38 | 0.254 |
4 | 250.5 | 73.6 | 15.86 | 30 | 0.200 |
(b) | |||||
References | Lei [48] | Xu et al. [44] | Li [49] | ||
Mean fracture length/size | 17.08–22.20 | 2.798–5.883 | 0.345–1.178 |
(a) | |||
Symbol | Parameter | Value | Unit |
Storage coefficient of fractures | 1 | 1/Pa | |
Storage coefficient of rock matrix | 1 | 1/Pa | |
g | Gravitational acceleration | 9.8 | kg/m3 |
Water density | 1000 | kg/m3 | |
μ | Dynamic viscosity | 1 × 10−3 | Pa s |
(b) | |||
Symbol | Parameter | Fractures (π = f) | Matrix (π = m) |
Cπ | Concentration | Cf | Cm |
θπ | Porosity | 1 | θ |
τπ | Tortuosity | 1 | τ |
uπ | Velocity | uf | um |
Hydrodynamic dispersion coefficient | αLuf + | τ | |
Rπ | Retardation coefficient | 1 + 2Kf/b | 1 + Km/θ |
λ | Decay constant | ln2/t0.5 |
Nuclide | Parameters of the Nuclides | Parameters of the Granite Mass | ||||
---|---|---|---|---|---|---|
Half-Life t0.5 (Year) | Decay Coefficient λ (year−1) | Dose Coefficient (Sv/Bq) | Diffusion Coefficient D* (m2/s) | Effective Diffusion Coefficient Dd (m2/s) | Distribution Coefficient K (m3/kg) | |
Cs−135 | 2.30 × 106 | 9.56 × 10−15 | 2.69 × 10−14 | 1.5 × 10−9 | 3 × 10−12 | 0.05 |
Se−79 | 6.50 × 104 | 3.38 × 10−13 | 8.9 × 10−14 | 0.01 | ||
Zr−93 | 1.53 × 106 | 1.43 × 10−14 | 5.5 × 10−15 | 0.1 |
Symbol | Parameter | Value | Unit |
---|---|---|---|
J | Hydraulic gradient | 0.1%~1% | - |
K | Permeability coefficient of granite | 3.9 × 10−21~6.6 × 10−17 | m2 |
θ | Porosity of granite | 0.58 | - |
Density of granite | 2670 | kg/m3 | |
τ | Tortuosity of granite | 0.1 | - |
Country | Type of Geological Barrier | Safety Indicator | Limit Value (mSv/a) |
---|---|---|---|
Sweden | Granite | Dose | 0.014 |
Finland | 0.1 | ||
Japan | 0.01 | ||
Canada | 0.3 | ||
Switzerland | Claystone | Dose | 0.1 |
France | 0.25 | ||
Belgium | 0.1 | ||
United States | Tuff | Dose | 0.15 (10,000 years) 1.0 (1,000,000 years) |
Germany | Salt rock | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Xu, W.; Chen, R.; Zhan, L.; He, S.; Ding, Z. Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System. Fractal Fract. 2024, 8, 303. https://doi.org/10.3390/fractalfract8060303
Hu Y, Xu W, Chen R, Zhan L, He S, Ding Z. Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System. Fractal and Fractional. 2024; 8(6):303. https://doi.org/10.3390/fractalfract8060303
Chicago/Turabian StyleHu, Yingtao, Wenjie Xu, Ruiqi Chen, Liangtong Zhan, Shenbo He, and Zhi Ding. 2024. "Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System" Fractal and Fractional 8, no. 6: 303. https://doi.org/10.3390/fractalfract8060303
APA StyleHu, Y., Xu, W., Chen, R., Zhan, L., He, S., & Ding, Z. (2024). Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System. Fractal and Fractional, 8(6), 303. https://doi.org/10.3390/fractalfract8060303