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Abstract: This paper considers a nonlinear impulsive fractional boundary value problem, which
involves a ψ-Caputo-type fractional derivative and integral. Combining critical point theory and
fractional calculus properties, such as the semigroup laws, and relationships between the fractional
integration and differentiation, new multiplicity results of infinitely many solutions are established
depending on some simple algebraic conditions. Finally, examples are also presented, which show
that Caputo-type fractional models can be more accurate by selecting different kernels for the
fractional integral and derivative.
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1. Introduction

Fractional calculus is an old field in mathematic study fields and an expansion of
Newton Leibniz’s integral calculus; namely, it is the theory of integrals and derivatives
with arbitrary order. This subject dates back to 1695, when mathematician L’Hospital
asked Leibniz such a question: what d1/2/dx1/2 could mean. After that, fractional calculus
was developed only as a pure mathematical idea for a long time. In the most recent
decades, it has developed rapidly and shown versatility in different disciplines, such as
viscoelasticity [1], neural network [2,3], image processing [4], anomalous diffusion [5,6],
etc. Many scholars, like Fourier, Euler, Riemann, Liouville, and Hadamard, among others,
made great contributions by proposing new definitions and studying significant properties
for this subject. In 1993, Miller et al. established the fractional differential equations theory
and introduced several classical fractional operator definitions [7], such as the Hadamard,
Caputo, and Riemann–Liouville versions.

Fractional integrals: Define f (t) : [0, T] → R as an integrable function, γ > 0; we have

Riemann–Liouville : R−L Iγ
0+ f (t) =

1
Γ(γ)

∫ t

0
(t − s)γ−1 f (s)ds, t ∈ [0, T], (1)

Hadamard : H Iγ
0+ f (t) =

1
Γ(γ)

∫ t

0

(
ln

t
s

)γ−1 f (s)
s

ds, t ∈ [0, T]. (2)
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Fractional derivatives: Define f (t) : [0, T] → R, n ∈ N, n − 1 ≤ γ < n; we have

Riemann–Liouville : R−LDγ
0+ f (t) =

(
d
dt

)n
R−L In−γ

0+ f (t), (3)

Caputo : CDγ
0+ f (t) = R−L In−γ

0+ f (n)(t), (4)

Hadamard : H Dγ
0+ f (t) =

(
t

d
dt

)n
H In−γ

0+ f (t). (5)

Due to abundant forms of fractional operators [7–9], it is natural for people to put
forward new general fractional differentiations and integrations to unify such forms as a
single one. For this reason, the general type called thhe ψ-Caputo fractional operator is
proposed in some related works [10–12], whose definitions contain a nonsingular kernel
depending upon a function, and the classical fractional integrals and derivatives can be
acquired by choosing special kernels. This new form can more accurately describe practical
problems, for instance, ref. [13] analyzed a population growth model, which showed that
different kernels were chosen such that the ψ-Caputo fractional operator could model the
process of demographic change more accurately. Hence, this is a very rich topic, and the
theory of fractional differential equations with integrals and derivatives depending upon
kernels has broad prospects for further study.

Inspired by the groundwork mentioned above, we intend to study a new class of
impulsive fractional boundary value problems with a ψ-Caputo-type fractional derivative
and integral as follows:

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))− λDui f (t, u(t)) = 0, t ∈ [0, T], t ̸= tj,
∆(CDαi ,ψ

T− (I1−αi ,ψ
0+ ui))(tj) = Iij(ui(tj)),

ui(T) = ui(0) = 0,
(6)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, 0 = t0 < t1 < . . . < tm+1 = T, u(t) = (u1(t), . . . , un(t)),
0 < αi ≤ 1. The function ψ(t) is increasing and satisfies with ψ(t) ∈ C1([0, T]), ψ′(t) ̸= 0
for all t ∈ [0, T], f : [0, T]×Rn → R, with f (·, u(t)) ∈ C([0, T]) and f (t, ·, . . . , ·) ∈ C1([Rn]),
Iij ∈ C1([R]); I1−αi ,ψ

0+ is the ψ-Riemann–Liouville fractional integral with order 1− αi; CDαi ,ψ
T−

and CDαi ,ψ
0+ are right and left ψ-Caputo fractional derivatives with order αi, and Du f is the

partial derivative of f with respect to u. We define the notation ∆ by

∆(CDαi ,ψ
T− (I1−αi ,ψ

0+ ui))(tj) =
CDαi ,ψ

T− (I1−αi ,ψ
0+ ui)(t+j )−

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t−j ),

where

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t+j ) = lim
t→t+j

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t),

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t−j ) = lim
t→t−j

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t).

The goal of this work is to deal with a new class of ψ-Caputo-type impulsive fractional
boundary value problems. Combining critical point theory and properties of fractional
calculus of thee ψ-Caputo fractional integral and derivative, new multiplicity results of
infinitely many solutions are established for the problem (6). Recently, some achievements
available in the references discussed the existence and multiplicity results for ψ-Caputo-
type fractional boundary value problems via fixed point theorems [12,13], while few results
were based on variational methods, even though variational methods are effective ways for
studying the existence of solutions for fractional differential equations [14–18]. Moreover,
some simple algebraic conditions are applied in the paper instead of the conventional
asymptotic conditions used in previous articles because most nonlinear functions can
not adapted for these asymptotic conditions. It is noted that the ψ-Caputo fractional
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integral and derivative are able to reduce into some well-known fractional definitions by
changing the kernel function ψ(t), such as Hadamard, Riemann–Liouville, and Caputo,
etc., which implies that the existence results concentrating on classical fractional operators
are generalized.

2. Essential Lemmas and Theorems

Definition 1 ([7,13]). For any t ∈ [a, b], −∞ ≤ a < b ≤ +∞, α > 0, ψ(t) is increasing on [a, b]
with ψ(t) ∈ C1([a, b]) and ψ′(t) ̸= 0; f (t) is integrable on [a, b].

(i) Define

Iα,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(x)(ψ(t)− ψ(x))α−1 f (x)dx,

Iα,ψ
b− f (t) =

1
Γ(α)

∫ b

t
ψ′(x)(ψ(x)− ψ(t))α−1 f (x)dx,

where Iα,ψ
a+ f (t) and Iα,ψ

b− f (t), respectively, represent the left and right ψ-Riemann–Liouville (ψ-RL)
fractional integrals of a function f with respect to another function ψ.

Moreover, the ψ-RL fractional integrals satisfy the following semigroup properties:

Iα,ψ
a+ Iβ,ψ

a+ f (t) = Iα+β,ψ
a+ f (t), Iα,ψ

b− Iβ,ψ
b− f (t) = Iα+β,ψ

b− f (t), ∀α, β > 0.

(ii) For 0 < α < 1, define

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)
I1−α,ψ
a+ f (t)

=
1

Γ(1 − α)

(
1

ψ′(t)
d
dt

) ∫ t

a
(ψ(t)− ψ(x))−αψ′(x) f (x)dx,

Dα,ψ
b− f (t) =

(
−1

ψ′(t)
d
dt

)
I1−α,ψ
b− f (t)

=
−1

Γ(1 − α)

(
1

ψ′(t)
d
dt

) ∫ b

t
(ψ(x)− ψ(t))−αψ′(x) f (x)dx,

where Dα,ψ
a+ f (t) and Dα,ψ

b− f (t), respectively, represent the left and right ψ-RL fractional derivatives
of a function f with respect to another function ψ.

(iii) For 0 < α < 1, define

CDα,ψ
a+ f (t) = I1−α,ψ

a+

(
1

ψ′(t)
d
dt

)
f (t) =

1
Γ(1 − α)

∫ t

a
(ψ(t)− ψ(x))−α f ′(x)dx,

CDα,ψ
b− f (t) = I1−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)
f (t) =

−1
Γ(1 − α)

∫ b

t
(ψ(x)− ψ(t))−α f ′(x)dx,

where CDα,ψ
a+ f (t) and CDα,ψ

b− f (t), respectively, represent the left and right ψ-Caputo fractional
derivatives of f with respect to another function ψ.

(iv) For any α > 0, n = [α] + 1 for α /∈ N, n = α for α ∈ N, and f (t) ∈ Cn([a, b]); we have

CDα,ψ
a+ f (t) = Dα,ψ

a+

[
f (t)− Σn−1

k=0
1
k!
(ψ(t)− ψ(a))k

(
1

ψ′(t)
d
dt

)k

f (a)
]

, (7)

CDα,ψ
b− f (t) = Dα,ψ

b−

[
f (t)− Σn−1

k=0
(−1)k

k!
(ψ(b)− ψ(t))k

(
1

ψ′(t)
d
dt

)k

f (b)
]

. (8)

The ψ-Caputo-type fractional derivative and integral are mainly dealt with in this paper.
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Remark 1. Some classical fractional derivatives are special cases of the ψ-Riemann–Liouville and
ψ-Caputo fractional derivatives. For instance, take ψ(t) = t in the ψ-Caputo fractional derivative
and ψ-RL fractional derivative: we can obtain the well-known Caputo (4) fractional derivative
and RL (3) fractional derivative, respectively. And we can also obtain the Hadamard (5) fractional
derivative by choosing ψ(t) = ln t in the ψ-RL fractional derivative.

Definition 2. For any 1
2 < αi ≤ 1, i = 1, 2, . . . , n, t ∈ [0, T], we define the fractional derivative

space Xαi ,ψ by the closure of C∞
0 ([0, T],R) with the weighted norm

∥ui∥αi ,ψ :=
( ∫ T

0
| ui(t) |2 dt +

∫ T

0
| CDαi ,ψ

0+ ui(t) |2 dt
) 1

2

. (9)

Apparently, Xαi ,ψ is the space of ui(t) ∈ L2([0, T]) with an αi-order ψ-Caputo fractional derivative
CDαi ,ψ

0+ ui(t) ∈ L2([0, T]) and ui(T) = ui(0) = 0.

Remark 2. Based on (7), (8), and ui(0) = ui(T) = 0, we can obtain

CDαi ,ψ
0+ ui(t) = Dαi ,ψ

0+ ui(t), CDαi ,ψ
T− ui(t) = Dαi ,ψ

T− ui(t), i = 1, 2, . . . , n.

Lemma 1 ([19]). For any i = 1, 2, . . . , n, Xαi ,ψ is a separable and reflexive Banach space.

Lemma 2. Let 1
2 < αi ≤ 1; for all ui(t) ∈ Xαi ,ψ, we have

∥ui∥L2 ≤
maxt∈[0,T]{ψ′(t)}(ψ(T))αi

Γ(αi + 1)
∥CDαi ,ψ

0+ ui∥L2 , i = 1, 2, . . . , n, (10)

∥ui∥∞ ≤
maxt∈[0,T]{ψ′(t)}(ψ(T))αi− 1

2

Γ(αi)(2(αi − 1) + 1)
1
2

∥CDαi ,ψ
0+ ui∥L2 , i = 1, 2, . . . , n. (11)

Proof. From Proposition 2.2 in [19], the conclusions can be easily obtained.

For the sake of convenience, denote

Mi =
(ψ(T))αi maxt∈[0,T]{ψ′(t)}

Γ(αi + 1)
, M̂i =

(ψ(T))αi− 1
2 maxt∈[0,T]{ψ′(t)}

Γ(αi)(2(αi − 1) + 1)
1
2

, i = 1, 2, . . . , n. (12)

We can easily obtain that the norm defined as

∥ui∥αi ,ψ :=
( ∫ T

0
| CDαi ,ψ

0+ ui(t) |2 dt
) 1

2

, ∀ ui(t) ∈ Xαi ,ψ, i = 1, 2, . . . , n, (13)

is equivalent to norm (9). The norm (13) comes into effect hereinafter.

Lemma 3 ([19]). Suppose that any sequence {uki
} converges to ui in Xαi ,ψ weakly for 1

2 < αi ≤ 1.
Then, uki

→ ui in C([0, T]) as k → ∞, i.e., ∥uki
− ui∥∞ → 0 as k → ∞, i = 1, 2, . . . , n.

Now, define X = Πn
i=1Xαi ,ψ with the weighted norm

∥u∥X =
n

∑
i=1

∥ui∥αi ,ψ, ui ∈ Xαi ,ψ, u = (u1, . . . , un) ∈ X. (14)

Evidently, X is a separable and reflexive Banach space.
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Lemma 4. For any ui(t), vi(t) ∈ Xαi ,ψ, i = 1, 2, . . . , n, we have

∫ T

0

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))ψ′(t)vi(t)dt (15)

=
∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt −

m

∑
j=1

Iij(ui(tj))vi(tj).

Proof. Drawing upon the definition of the ψ-Caputo fractional derivative in Definition 1,
one has ∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt (16)

=
1

Γ(1 − αi)

m

∑
j=0

∫ tj+1

tj

∫ t

0
ψ′(t)CDαi ,ψ

0+ ui(t)(ψ(t)− ψ(x))−αi v′i(x)dxdt

=
1

Γ(1 − αi)

m

∑
j=0

∫ tj+1

tj

[ ∫ T

t
ψ′(x)CDαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

v′i(t)dt

=
1

Γ(1 − αi)

m

∑
j=0

[ ∫ T

t
ψ′(x)CDαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

vi(t) |
t=tj+1
t=tj

− 1
Γ(1 − αi)

m

∑
j=0

∫ tj+1

tj

d
dt

[ ∫ T

t
ψ′(x)CDαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

vi(t)dt.

Then, taking advantage of the ψ-RL fractional derivative and integral definitions, and based
on Remark 2, Equation (16) can be further written as:

1
Γ(1 − αi)

m

∑
j=0

[ ∫ T

t
ψ′(x)CDαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

vi(t) |
t=tj+1
t=tj

(17)

− 1
Γ(1 − αi)

m

∑
j=0

∫ tj+1

tj

d
dt

[ ∫ T

t
ψ′(x)CDαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

vi(t)dt

=
m

∑
j=0

[
1

Γ(1 − αi)

∫ T

t
ψ′(x)Dαi ,ψ

0+ ui(x)(ψ(x)− ψ(t))−αi dx
]

vi(t) |
t=tj+1
t=tj

+
∫ T

0

[
−1

Γ(1 − αi)
(

1
ψ′(t)

d
dt
)
∫ T

t
ψ′(x)(ψ(x)− ψ(t))−αi Dαi ,ψ

0+ ui(x)dx
]

ψ′(t)vi(t)dt

=
m

∑
j=0

[
1

Γ(1 − αi)

∫ T

t
ψ′(x)(ψ(x)− ψ(t))−αi (

1
ψ′(x)

d
dx

)I1−αi ,ψ
0+ ui(x)dx

]
vi(t) |

t=tj+1
t=tj

+
∫ T

0
Dαi ,ψ

T− (Dαi ,ψ
0+ ui(t))ψ′(t)vi(t)dt

=
m

∑
j=0

−CDαi ,ψ
T− (I1−αi ,ψ

0+ ui(t))vi(t) |
t=tj+1
t=tj

+
∫ T

0
Dαi ,ψ

T− (Dαi ,ψ
0+ ui(t))ψ′(t)vi(t)dt

=
m

∑
j=1

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui(t+j ))vi(t+j )−
CDαi ,ψ

T− (I1−αi ,ψ
0+ ui(t−j ))vi(t−j )

+
∫ T

0

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))ψ′(t)vi(t)dt

=
m

∑
j=1

Iij(ui(tj))vi(tj) +
∫ T

0

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))ψ′(t)vi(t)dt.
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Uniting (16) and (17), we obtain that∫ T

0

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))ψ′(t)vi(t)dt

=
∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt −

m

∑
j=1

Iij(ui(tj))vi(tj),

for any ui(t), vi(t) ∈ Xαi ,ψ, i = 1, 2, . . . , n.

Lemma 5. For any (v1(t), . . . , vn(t)) ∈ X, ψ(t) is increasing on [0, T] with ψ′(t) ̸= 0 and
ψ(t) ∈ C1([0, T]) if the following relationship holds:

n

∑
i=1

∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt −

n

∑
i=1

m

∑
j=1

Iij(ui(tj))vi(tj)

=
n

∑
i=1

λ
∫ T

0
Dui f (t, u(t))ψ′(t)vi(t)dt, (18)

then we say u(t) = (u1(t), . . . , un(t)) ∈ X is a weak solution of problem (6).

Proof. Firstly, multiplying both ends of the first equation of (6) with ψ′(t)vi(t) and integrat-
ing both ends from 0 to T simultaneously, then summing from i = 1 to i = n, we can obtain
an equivalent form for problem (6). Combining with (17), we can obtain Equation (18).

Consider the functional ϕ : X → R with

ϕ(u) :=
1
2

n

∑
i=1

∫ T

0
ψ′(t)|CDαi ,ψ

0+ ui(t)|2dt −
n

∑
i=1

m

∑
j=1

∫ ui(tj)

0
Iij(s)ds − λ

∫ T

0
ψ′(t) f (t, u(t))dt. (19)

Obviously, ϕ ∈ C1(X,R) and

ϕ′(u)(v) =
n

∑
i=1

∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt −

m

∑
j=1

n

∑
i=1

Iij(ui(tj))vi(tj)

− λ
n

∑
i=1

∫ T

0
Dui f (t, u(t))ψ′(t)vi(t)dt, ∀v(t), u(t) ∈ X. (20)

It is not difficult to observe that the critical points of ϕ are the solutions of problem (6).

Definition 3. A function

u ∈
{

u(t) = (u1(t), . . . , un(t) ∈ AC([0, T],Rn) :
∫ tj+1

tj

| ui(t) |2 + | CDαi ,ψ
0+ ui(t) |2 dt < +∞,

i = 1, 2, . . . , n, j = 0, 1, . . . , m
}

is a classical solution of problem (6) if u satisfies the first equation of (6) a.e. on [0, T] \ {t1, . . . , tm},
the boundary value conditions ui(T) = ui(0) = 0 hold, and the limits CDαi ,ψ

T− (I1−αi ,ψ
0+ ui)(t+j ) and

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t−j ) exist and satisfy the impulsive conditions of (6).

Lemma 6. The weak solution of problem (6) is also a classical solution of problem (6).

Proof. If u(t) = (u1(t), . . . , un(t)) ∈ X is a classical solution of problem (6), it satisfies
the first equation in (6). Owing to the proof of Lemma 5, we can easily see that u(t)
is also a weak solution of (6). Conversely, if u(t) ∈ X is a weak solution of (6), then
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ui(T) = ui(0) = 0 and (18) holds, i = 1, 2, . . . , n. Without losing generality, we choose
a test function v(t) = (v1(t), . . . , vn(t)) satisfying vi(t) ≡ 0 for t ∈ [0, tj]

⋃
[tj+1, T] and

vi(t) ∈ C∞
0 [tj, tj+1] , j = 1, 2, . . . , m, i = 1, 2, . . . , n. Substituting v(t) into (18) and using

Lemma 4, we have∫ tj+1

tj

ψ′(t)CDαi ,ψ
0+ ui(t)CDαi ,ψ

0+ vi(t)dt = λ
∫ tj+1

tj

Dui f (t, u(t))ψ′(t)vi(t)dt,

and ∫ tj+1

tj

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t))ψ′(t)vi(t)dt =
∫ tj+1

tj

ψ′(t)CDαi ,ψ
0+ ui(t)CDαi ,ψ

0+ vi(t)dt < ∞,

which implies

CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t)) = λDui f (t, u(t)), ∀t ∈ [tj, tj+1]. (21)

Since ui ∈ Xαi ,ψ ⊂ C([0, T]), one has

∫ tj+1

tj

| ui(t) |2 + | CDαi ,ψ
0+ ui(t) |2 dt < +∞.

From Definition 1, we can see

ψ′(t)CDαi ,ψ
T− (CDαi ,ψ

0+ ui(t)) =ψ′(t)Dαi ,ψ
T− (Dαi ,ψ

0+ ui(t))

=ψ′(t)Dαi ,ψ
T−

[
1

ψ′(t)
d
dt

I1−αi ,ψ
0+ ui(t)

]
=

d
dt

−1
Γ(1 − αi)

∫ T

t
(ψ(x)− ψ(t))−αi

d
dx

I1−αi ,ψ
0+ ui(x)dx

=
d
dt

[
CDαi ,ψ

T− I1−αi ,ψ
0+ ui(t)

]
.

Since ψ(t), f (t) ∈ C1([0, T]), from (21), we have CDαi ,ψ
T− I1−αi ,ψ

0+ ui(t) ∈ AC([tj, tj+1]), namely,
the following limits exist

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t+j ) = lim
t→t+j

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t),

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t−j ) = lim
t→t−j

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui)(t).

Substituting (21) into (18), one obtains

∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt −

∫ T

0
Dαi ,ψ

T− (Dαi ,ψ
0+ ui(t))ψ′(t)vi(t)dt =

m

∑
j=1

Iij(ui(tj))vi(tj), (22)

for i = 1, 2, . . . , n. Due to Lemma 4, we know∫ T

0
ψ′(t)CDαi ,ψ

0+ ui(t)CDαi ,ψ
0+ vi(t)dt

=
m

∑
j=1

CDαi ,ψ
T− (I1−αi ,ψ

0+ ui(t+j ))vi(t+j )−
CDαi ,ψ

T− (I1−αi ,ψ
0+ ui(t−j ))vi(t−j )

+
∫ T

0
Dαi ,ψ

T− (Dαi ,ψ
0+ ui(t))ψ′(t)vi(t)dt,
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that is,
∆(CDαi ,ψ

T− (I1−αi ,ψ
0+ ui))(tj) = Iij(ui(tj)),

for j = 1, 2, . . . , m, i = 1, 2, . . . , n. Consequently, ui(t) satisfies the first equation, impulsive
conditions, and boundary conditions of problem (6). Thus, u(t) is a classical solution
of (6).

Lemma 7 ([20]). Let X̂ be any finite dimensional subspace of X. There exists a constant η0 > 0
such that

meas{t ∈ [0, T] :| u(t) |≥ η0∥u∥} ≥ η0, ∀u(t) ∈ X̂ \ {0}.

Definition 4. X is a Banach space if functional ϕ ∈ C1(X,R) satisfies the Palais–Smale condition;
then, for each sequence, {uk}k∈N ⊂ X such that {ϕ(uk)} is bounded and lim

k→∞
ϕ′(uk) = 0 possesses

a strongly convergent subsequence in X.

Theorem 1 ([21]). Assume X is an infinite dimensional Banach space; ϕ ∈ C1(X,R) is an even
functional and satisfies the Palais–Smale condition and ϕ(0) = 0. Suppose that

(i) There exist r > 0 and θ > 0, such that Br ⊂ {u ∈ X | ϕ(u) ≥ 0} and ϕ(u) ≥ θ for all
u ∈ ∂Br, where Br = {u ∈ X | ∥u∥ < r};

(ii) For any finite dimensional subspace X̂ ⊂ X, the set X̂
⋂{u ∈ X | ϕ(u) ≥ 0} is a bounded set.

Then, ϕ possesses infinitely many critical points.

3. Multiplicity Results

In this sections, some multiplicity results of infinity many solutions are investigated
for a new class of impulsive fractional boundary value problems (6).

Firstly, we introduce some essential assumptions for use in the remaining discussions.

(H1) lim
∀i:|ui |→∞

f (t,u)
∑n

i=1|ui |2
= ∞ uniformly for t ∈ [0, T], u = (u1, . . . , un) ∈ Rn;

(H2)0 ≤ f (t, u) = o(∑n
i=1 | ui |2) as ∑n

i=1 | ui |→ 0 uniformly for t ∈ [0, T];

(H3) Iij(s) is odd and satisfies
∫ ui(tj)

0 Iij(s)ds ≤ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m;
(H4)There exist constants ai, bi > 0 and τi ∈ [0, 1) such that | Iij(s) |≤ ai + bi | s |τi , ∀s ∈ R,

i = 1, 2, . . . , n;
(H5)For any u = (u1, . . . , un) ∈ Rn, f (t, u) = ∑n

i=1
ζi
2 | ui |2 −G(t, u) with G(t, 0) ≡ 0, and

n

∑
i=1

(
ζi
2
) | ui |σi≤ G(t, u) ≤

n

∑
i=1

µi | ui |ωi ,

where σi ∈ [0, 2), ωi ∈ [0, 2), µi > 0, i = 1, 2, . . . , n.

Theorem 2. Assume f (t, u) = f (t,−u) and (H1)–(H4) hold. Then, the problem (6) possesses
infinitely many solutions in X.

Proof. Firstly, we prove that ϕ satisfies the Palais–Smale condition. Suppose sequence
{ϕ(uk)} is bounded and lim

k→∞
ϕ′(uk) = 0, uk(t) = (uk,1(t), . . . , uk,n(t)). We claim that {uk}

is bounded in X. Indeed, assume ∀i : ∥uk,i∥αi ,ψ → ∞(k → ∞), i = 1, 2, . . . , n. Based on
(H1), for any constant K > 0, there exists k0 ∈ N such that

f (t, uk(t)) ≥ K
n

∑
i=1

∥uk,i∥2
αi ,ψ, ∀ k > k0. (23)

Then, ∫ T

0
f (t, uk(t))ψ′(t)dt ≥ (ψ(T)− ψ(0))K

n

∑
i=1

∥uk,i∥2
αi ,ψ, ∀ k > k0, t ∈ [0, T]. (24)
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In view of (H4) and (12), we have

n

∑
i=1

m

∑
j=1

∫ ui(tj)

0
|Iij(s))|ds ≤

n

∑
i=1

m

∑
j=1

∫ ui(tj)

0
ai + bi | s |τi ds (25)

≤
n

∑
i=1

m

∑
j=1

[
ai|ui(tj)|+

bi
τi + 1

|ui(tj)|τi+1
]

≤ m
n

∑
i=1

[
ai∥ui∥∞ +

bi
τi + 1

∥ui∥
τi+1
∞

]
≤ m

n

∑
i=1

[
ai M̂i∥ui∥αi ,ψ +

bi
τi + 1

M̂τi+1
i ∥ui∥

τi+1
αi ,ψ

]
.

Combining (19), (24), and (25) yields

ϕ(uk(t)) ≤
1
2

max
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ +

n

∑
i=1

m
[

ai M̂i∥uk,i∥αi ,ψ +
bi

τi + 1
M̂τi+1

i ∥uk,i∥
τi+1
αi ,ψ

]
− λ(ψ(T)− ψ(0))K

n

∑
i=1

∥uk,i∥2
αi ,ψ,

which implies that

ϕ(uk(t))
∑n

i=1 ∥uk,i∥2
(αi ,ψ)

≤
[

1
2

max
t∈[0,T]

{ψ′(t)} − λ(ψ(T)− ψ(0))K
]

+

∑n
i=1 m

[
ai M̂i∥uk,i∥αi ,ψ + bi

τi+1 M̂τi+1
i ∥uk,i∥

τi+1
αi ,ψ

]
∑n

i=1 ∥uk,i∥2
αi ,ψ

. (26)

Since τi ∈ [0, 1), ∥uk,i∥(αi ,ψ) → ∞ as k → ∞, i = 1, 2, . . . , n, then

∑n
i=1 m

[
ai M̂i∥uk,i∥αi ,ψ + bi

τi+1 M̂τi+1
i ∥uk,i∥

τi+1
αi ,ψ

]
∑n

i=1 ∥uk,i∥2
αi ,ψ

→ 0, k → ∞. (27)

Choose K large enough such that

1
2

max
t∈[0,T]

{ψ′(t)} − λ(ψ(T)− ψ(0))K < −2, (28)

based on (26), (27), and (28), we see that ϕ(uk(t)) < −2 ∑n
i=1 ∥uk,i∥2

(αi ,ψ)
, i.e., ϕ(uk(t)) →

−∞ as ∥uk,i∥(αi ,ψ) → ∞, i = 1, 2, . . . , n, which contradicts that {ϕ(uk)} is bounded. Thus,
{uk} is bounded in X. Since X is a reflexive and separable Banach space, we can obtain
uk ⇀ u0 in X (up to subsequences); then, uk → u0 uniformly in C([0, T]) owing to Lemma 3.

Since ψ(t), f (t) ∈ C1([0, T]), Iij ∈ C([R]), and lim
k→∞

ϕ′(uk) = 0, we can obtain that
(ϕ′(uk)− ϕ′(u0))(uk − u0) ≤ ∥ϕ′(uk)∥X∥uk − u0∥X − ϕ′(u0)(uk − u0) → 0, k → ∞,
∑n

i=1 ∑m
j=1[Iij(u0

i (tj))− Iij(uk,i(tj))][uk,i(tj)− u0
i (tj)] → 0, k → ∞,

∑n
i=1 λ

∫ T
0 ψ′(t)(Dui f (t, uk(t))− Dui f (t, u0(t)))(uk,i(t)− u0

i (t))dt → 0, k → ∞.
(29)
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Concerning (20), one has

(ϕ′(uk)− ϕ′(u0))(uk − u0) (30)

=
n

∑
i=1

∫ T

0
ψ′(t)(CDαi ,ψ

0+ uk,i(t)− CDαi ,ψ
0+ u0

i (t))
CDαi ,ψ

0+ (uk,i(t)− u0
i (t))dt

+
m

∑
j=1

n

∑
i=1

[uk,i(tj)− u0
i (tj)][Iij(u0

i (tj))− Iij(uk,i(tj))]

− λ
n

∑
i=1

∫ T

0
ψ′(t)(Dui f (t, uk(t))− Dui f (t, u0(t)))(uk,i(t)− u0

i (t))dt.

Combining (29) with (30) yields

n

∑
i=1

∫ T

0
ψ′(t)(CDαi ,ψ

0+ uk,i(t)− CDαi ,ψ
0+ u0

i (t))
CDαi ,ψ

0+ (uk,i(t)− u0
i (t))dt → 0, k → ∞,

that is,

n

∑
i=1

∫ T

0
ψ′(t)(CDαi ,ψ

0+ uk,i(t)− CDαi ,ψ
0+ u0

i (t))
CDαi ,ψ

0+ (uk,i(t)− u0
i (t))dt

=
n

∑
i=1

∫ T

0
ψ′(t)

(
CDαi ,ψ

0+ (uk,i(t)− u0
i (t))

)2

dt

≥ min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i − u0
i ∥

2
αi ,ψ

≥ min
t∈[0,T]

{ψ′(t)} 1
n2 ∥uk − u0∥2

X ,

which means that ∥uk − u0∥X → 0, as k → ∞. Thus, the Palais–Smale condition holds.
By means of f (t, u) = f (t,−u) and (H3), we can see that ϕ is even. Next, we will

prove that the geometric structures of Theorem 1 are satisfied with ϕ.
Concerning (H2), for any ϵ > 0, there exists δ > 0 such that

f (t, u(t)) ≤ ϵ
n

∑
i=1

| ui(t) |2, ∀
n

∑
i=1

| ui(t) |≤ δ, t ∈ [0, T]. (31)

Choose r = δ
max1≤i≤n{M̂i}

. For any u = (u1, u2, . . . , un) ∈ Br, one has ∥u∥X = ∑n
i=1 ∥ui∥αi ,ψ ≤

r = δ
max1≤i≤n{M̂i}

. Then, from (12), it yields that

δ

max1≤i≤n{M̂i}
≥

n

∑
i=1

∥ui∥αi ,ψ ≥
n

∑
i=1

1
M̂i

∥ui∥∞ ≥ 1
max1≤i≤n{M̂i}

n

∑
i=1

∥ui∥∞, (32)

i.e., ∑n
i=1 ∥ui∥∞ ≤ δ. At this point, by using (19), (H3), (12), and (31), we obtain

ϕ(u(t)) ≥1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥ui∥2
αi ,ψ − λϵ

n

∑
i=1

∫ T

0
ψ′(t) | ui(t) |2 dt (33)

≥1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥ui∥2
αi ,ψ − λϵ(ψ(T)− ψ(0))

n

∑
i=1

M̂2
i ∥ui∥2

αi ,ψ

≥
[

1
2

min
t∈[0,T]

{ψ′(t)} − λϵ(ψ(T)− ψ(0)) max
1≤i≤n

{M̂2
i }

] n

∑
i=1

∥ui∥2
αi ,ψ, ∀u ∈ Br.
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Choosing ϵ =
mint∈[0,T]{ψ′(t)}

4λ(ψ(T)−ψ(0))max1≤i≤n{M̂2
i }

, from (33), we obtain

ϕ(u(t)) ≥ 1
4

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥ui∥2
αi ,ψ ≥1

4
min

t∈[0,T]
{ψ′(t)} 1

n2 (
n

∑
i=1

∥ui∥αi ,ψ)
2

=
1

4n2 min
t∈[0,T]

{ψ′(t)}∥u∥2
X ≥ 0, ∀u ∈ Br. (34)

Hence, Br ⊂ {u ∈ X | ϕ(u) ≥ 0} and ϕ(u) ≥ r2

4n2 mint∈[0,T]{ψ′(t)}, ∀u ∈ ∂Br.
In what follows, we claim that X̃ = X̂

⋂{u ∈ X | ϕ(u) ≥ 0} is bounded for any finite
dimensional space X̂ ⊂ X. Suppose that there exists at least one sequence {uk} ⊂ X̃ such
that ∥uk∥X → ∞ as k → ∞. Owing to ϕ(uk) ≥ 0 and (26), we have

0 ≤ ϕ(uk(t))
∑n

i=1 ∥uk,i∥2
(αi ,ψ)

≤
[

1
2

max
t∈[0,T]

{ψ′(t)} − λ(ψ(T)− ψ(0))K
]

+

∑n
i=1 m

[
ai M̂i∥uk,i∥αi ,ψ + bi

τi+1 M̂τi+1
i ∥uk,i∥

τi+1
αi ,ψ

]
∑n

i=1 ∥uk,i∥2
(αi ,ψ)

. (35)

Choose K large enough such that 1
2 maxt∈[0,T]{ψ′(t)} − λ(ψ(T)− ψ(0))K < −2; then, in

view of (27), we can see that 0 ≤ ϕ(uk(t))
∑n

i=1 ∥uk,i∥2
(αi ,ψ)

< −2—it is a contradiction. Therefore, X̃

is bounded. According to Theorem 1, the functional ϕ exists with infinitely many critical
points in X, which means that problem (6) exists with infinitely many solutions in X.

Theorem 3. Assume that (H3), (H5) hold and G(t, u) = G(t,−u). Then, problem (6) exists with

infinitely many solutions with λ ∈ [
1
2 maxt∈[0,T]{ψ′(t)}+1

mint∈[0,T]{ψ′(t)}min1≤i≤n{
ζi
2 η3

i }
,

mint∈[0,T]{ψ′(t)}

2(ψ(T)−ψ(0))max1≤i≤n{
ζi
2 M̂2

i }
).

Proof. Suppose {ϕ(uk)} is bounded and lim
k→∞

ϕ′(uk) = 0, uk(t) = (uk,1(t), . . . , uk,n(t)). We

claim that ϕ satisfies the Palais–Smale condition. Indeed, assume ∀i : ∥uk,i∥(αi ,ψ) → ∞(k →
∞), i = 1, 2, . . . , n. Combining (19), (H5), (H3), and (12), we have

ϕ(uk(t)) ≥
1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ − λ

∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| uk,i(t) |2 −G(t, uk(t))
)

dt

≥1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ − λ(ψ(T)− ψ(0))

n

∑
i=1

ζi
2
∥uk,i∥2

∞

+ λ
∫ T

0
ψ′(t)G(t, uk(t))dt

≥
[

1
2

min
t∈[0,T]

{ψ′(t)} − λ(ψ(T)− ψ(0)) max
1≤i≤n

{
ζi
2

M̂2
i

}] n

∑
i=1

∥uk,i∥2
αi ,ψ

+ λ
∫ T

0
ψ′(t)G(t, uk(t))dt. (36)

Recall that {ϕ(uk)} is bounded and λ <
mint∈[0,T]{ψ′(t)}

2(ψ(T)−ψ(0))max1≤i≤n{
ζi
2 M̂2

i }
; a contradiction is

generated. Namely, {uk} is bounded in X. The residual proof for the Palais–Smale condition
is similar to Theorem 2, so we do not repeat it here.
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Choose r̃ ∈ (0, 1
max1≤i≤n{M̂i}

). For any u = (u1, u2, . . . , un) ∈ Br̃, we have ∥u∥X =

∑n
i=1 ∥ui∥αi ,ψ ≤ r̃ < 1

max1≤i≤n{M̂i}
. A similar analysis with (32) results in ∑n

i=1 ∥ui∥∞ < 1.

From (36) and (H5), we obtain

ϕ(u(t)) ≥1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥ui∥2
αi ,ψ − λ

∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| ui(t) |2 − ζi
2

| ui(t) |σi

)
dt

≥1
2

min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥ui∥2
αi ,ψ − λ

∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| ui(t) |2 − ζi
2

| ui(t) |2
)

dt

≥ 1
2n2 min

t∈[0,T]
{ψ′(t)}

( n

∑
i=1

∥ui∥αi ,ψ

)2

=
1

2n2 min
t∈[0,T]

{ψ′(t)}∥u∥2
X ≥ 0, ∀ u ∈ Br̃.

Apparently, Br̃ ⊂ {u ∈ X | ϕ(u) ≥ 0} and ϕ(u) ≥ r̃2

2n2 mint∈[0,T]{ψ′(t)}, ∀u ∈ ∂Br̃.
We claim that X̃′ = X̂′ ⋂{u ∈ X | ϕ(u) ≥ 0} is bounded for any finite dimensional

space X̂′ ⊂ X. Suppose that there exists at least one sequence {uk} ⊂ X̃′ such that
∥uk∥X → ∞ as k → ∞. Due to (H5), we obtain

∫ T

0
ψ′(t) f (t, u(t))dt =

∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| ui |2 −G(t, u(t))
)

dt

≥
∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| ui |2 −
n

∑
i=1

µi | ui |ωi

)
dt. (37)

Hence, consider (19), (25), and (37) and Lemma 7 yields

0 ≤ ϕ(uk(t)) ≤
1
2

max
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ +

n

∑
i=1

m
[

ai M̂i∥uk,i∥αi ,ψ +
bi

τi + 1
M̂τi+1

i ∥uk,i∥
τi+1
αi ,ψ

]
− λ

∫ T

0
ψ′(t)

( n

∑
i=1

ζi
2

| uk,i |2 −
n

∑
i=1

µi | uk,i |ωi

)
dt

≤1
2

max
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ +

n

∑
i=1

m
[

ai M̂i∥uk,i∥αi ,ψ +
bi

τi + 1
M̂τi+1

i ∥uk,i∥
τi+1
αi ,ψ

]
+ (ψ(T)− ψ(0))λ

n

∑
i=1

µi M̂
ωi
i ∥uk,i∥

ωi
αi ,ψ

− λ
n

∑
i=1

ζi
2

∫
Ωuk,i

ψ′(t)η2
i ∥uk,i∥2

αi ,ψ

≤1
2

max
t∈[0,T]

{ψ′(t)}
n

∑
i=1

∥uk,i∥2
αi ,ψ +

n

∑
i=1

m
[

ai M̂i∥uk,i∥αi ,ψ +
bi

τi + 1
M̂τi+1

i ∥uk,i∥
τi+1
αi ,ψ

]
+ (ψ(T)− ψ(0))λ

n

∑
i=1

µi M̂
ωi
i ∥uk,i∥

ωi
αi ,ψ

− λ min
t∈[0,T]

{ψ′(t)}
n

∑
i=1

ζi
2

η3
i ∥uk,i∥2

αi ,ψ, (38)

where Ωuk,i = {t ∈ [0, T] :| uk,i(t) |≥ ηi∥uk,i∥αi ,ψ} with meas{Ωuk,i} ≥ ηi, which shows that

0 ≤ ϕ(uk(t))
∑n

i=1 ∥ui∥2
αi ,ψ

≤1
2

max
t∈[0,T]

{ψ′(t)}+
∑n

i=1 m
[

ai M̂i∥uk,i∥αi ,ψ + bi
τi+1 M̂τi+1

i ∥uk,i∥
τi+1
αi ,ψ

]
∑n

i=1 ∥ui∥2
αi ,ψ

+
(ψ(T)− ψ(0))λ ∑n

i=1 µi M̂
ωi
i ∥uk,i∥

ωi
αi ,ψ

∑n
i=1 ∥uk,i∥2

αi ,ψ
− λ min

t∈[0,T]
{ψ′(t)} min

1≤i≤n
{ ζi

2
η3

i }.
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Since τi ∈ [0, 1), ωi ∈ [0, 2), i = 1, 2, . . . , n and ∥uk∥X → ∞ as k → ∞, then

∑n
i=1 m

[
ai M̂i∥uk,i∥αi ,ψ + bi

τi+1 M̂τi+1
i ∥uk,i∥

τi+1
αi ,ψ

]
∑n

i=1 ∥ui∥2
αi ,ψ

→ 0, k → ∞, (39)

(ψ(T)− ψ(0))λ ∑n
i=1 µi M̂

ωi
i ∥uk,i∥

ωi
αi ,ψ

∑n
i=1 ∥uk,i∥2

αi ,ψ
→ 0, k → ∞. (40)

Recall that λ ≥
1
2 maxt∈[0,T]{ψ′(t)}+1

mint∈[0,T]{ψ′(t)}min1≤i≤n{
ζi
2 η3

i }
; then,

1
2

max
t∈[0,T]

{ψ′(t)} − λ min
t∈[0,T]

{ψ′(t)} min
1≤i≤n

{ ζi
2

η3
i } ≤ −1. (41)

Combining (39)–(41), we obtain

0 ≤ ϕ(uk(t))
∑n

i=1 ∥uk,i∥2
αi ,ψ

≤ −1,

as k → ∞; a contradiction is generated here. Namely, X̃′ is bounded. We can obtain that
the functional ϕ exists infinitely many critical points from Theorem 1, which shows that
problem (6) possesses infinitely many solutions in X.

4. Examples

Example 1. Consider the system

CD0.6,t
1− (CD0.6,t

0+ u1(t)) = λDu1 f (t, u1(t), u2(t)), t ∈ [0, 1], t ̸= t1,
CD0.8,t

1− (CD0.8,t
0+ u2(t)) = λDu2 f (t, u1(t), u2(t)), t ∈ [0, 1], t ̸= t1,

∆(CD0.6,t
1− (I0.4,t

0+ u1))(t1) = I11(u1(t1)),
∆(CD0.8,t

1− (I0.2,t
0+ u2))(t1) = I21(u2(t1)),

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0,

(42)

where α1 = 0.6, α2 = 0.8, ψ(t) = t, t ∈ [0, 1]. From Definition 1, it is easy to observe that
system (42) is equivalent to the classical Caputo fractional differential equation. Define

f (t, u1, u2) = (1 + t)

{
(u2

1 + u2
2)

2, u2
1 + u2

2 ≤ 1,
2(u2

1 + u2
2)

2 − (u2
1 + u2

2)
1
2 , u2

1 + u2
2 > 1,

and
I11(u1(t1)) = −1

2
u

1
5
1 , I21(u2(t1)) = −1

3
u

1
5
2 .

Obviously, I11 and I21 are continuous odd functions and satisfy (H3) and (H4), f (t, u1, u2) is
continuous with respect to t and continuously differentiable with respect to u1, u2, and satisfies
(H1) and (H2). From Theorem 2, we can say that system (42) exists with infinitely many solutions.
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Example 2. Consider the system

CD0.6,e
1
10 t

1− (CD0.6,e
1

10 t

0+ u1(t)) = λDu1 f (t, u1(t), u2(t), u3(t)), t ∈ [0, 1], t ̸= t1,

CD0.75,e
1

10 t

1− (CD0.75,e
1
10 t

0+ u2(t)) = λDu2 f (t, u1(t), u2(t), u3(t)), t ∈ [0, 1], t ̸= t1,

CD0.8,e
1
10 t

1− (CD0.8,e
1

10 t

0+ u3(t)) = λDu3 f (t, u1(t), u2(t), u3(t)), t ∈ [0, 1], t ̸= t1,

∆(CD0.6,e
1

10 t

1− (I0.4,e
1

10 t

0+ u1))(t1) = I11(u1(t1)),

∆(CD0.75,e
1
10 t

1− (I0.25,e
1
10 t

0+ u2))(t1) = I21(u2(t1)),

∆(CD0.8,e
1

10 t

1− (I0.2,e
1

10 t

0+ u3))(t1) = I31(u3(t1)),
u1(0) = u1(1) = u2(0) = u2(1) = u3(0) = u3(1) = 0,

(43)

where α1 = 0.6, α2 = 0.75, α3 = 0.8, ψ(t) = e
1
10 t, t ∈ [0, 1]. Define f (t, u1, u2, u3) =

∑3
i=1 2|ui|2 − ∑3

i=1 3|ui|
2
3 , where ζ1 = ζ2 = ζ3 = 4, G(t, u1, u2, u3) = ∑3

i=1 3|ui|
2
3 . Obvi-

ously, f is continuous with respect to t and continuously differentiable with respect to u1, u2, u3,
G(t,−u1,−u2,−u3) = G(t, u1, u2, u3). Choosing σi = ωi = 2

3 , µi = 4, i = 1, 2, 3, then

∑3
i=1(

ζi
2 ) | ui |σi≤ G(t, u1, u2, u3) ≤ ∑3

i=1 µi | ui |ωi . Define I11(u1(t1)) = − 1
2 u

1
5
1 , I21(u2(t1))

= − 1
3 u

1
5
2 , I31(u3(t1)) = − 1

4 u
1
5
3 . Then, I11, I21, and I31 are continuous odd functions and sat-

isfy (H3).
By direct calculations, maxt∈[0,1] ψ′(t) = 1

10 e
1

10 , mint∈[0,1] ψ′(t) = 1
10 , and

M̂1 =
1

10 e
1
10 (e

1
10 )

1
10

Γ(0.6)( 1
5 )

1
2

≈ 0.6762, M̂2 =
1

10 e
1
10 (e

1
10 )

1
4

Γ(0.75)( 1
2 )

1
2
≈ 0.1308, M̂3 =

1
10 e

1
10 (e

1
10 )

3
10

Γ(0.8)( 3
5 )

1
2

≈ 0.1263.

Take η1 = η2 = η3 = 10, then

λ ∈
[ 1

20 e
1

10 + 1
200

,
1

10

2(e
1

10 − 1)2M̂2
1

)
≈ [1 × 10−2, 5.2 × 10−1).

Consequently, from Theorem 3, we can see that system (43) exists with infinitely many solutions
with λ ∈ [1 × 10−2, 5.2 × 10−1).

5. Conclusions

This article dealt with a nonlinear impulsive boundary value problem involving
the more general ψ-Caputo-type fractional derivative and integral. Drawing upon some
simple and easily verifiable algebraic conditions, we established relationships between a ψ-
Caputo-type fractional boundary value problem and critical point theory, and obtained new
multiplicity results of infinitely many solutions for problem (6). This work completed the
extension of some existing results in terms of the equation form and assumption conditions.
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