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Abstract: The modified second-grade fluid flow across a plate of semi-infinite extent, which is
initiated by the plate’s movement, is considered herein. The relaxation parameters and fractional
parameters are introduced to express the generalized constitutive relation. A convolution-based
absorbing boundary condition (ABC) is developed based on the artificial boundary method (ABM),
addressing issues related to the semi-infinite boundary. We adopt the finite difference method (FDM)
for deriving the numerical solution by employing the L1 scheme to approximate the fractional
derivative. To confirm the precision of this method, a source term is added to establish an exact
solution for verification purposes. A comparative evaluation of the ABC versus the direct truncated
boundary condition (DTBC) is conducted, with their effectiveness and soundness being visually
scrutinized and assessed. This study investigates the impact of the motion of plates at different fluid
flow velocities, focusing on the effects of dynamic elements influencing flow mechanisms and velocity.
This research’s primary conclusion is that a higher fractional parameter correlates with the fluid flow.
As relaxation parameters decrease, the delay effect intensifies and the fluid velocity decreases.

Keywords: absorbing boundary condition; second-grade fluid; fractional derivative; finite difference
method

1. Introduction

Viscoelastic fluid is widely used in petroleum exploitation, medicine, biology, and
other fields [1–3]. Viscoelastic fluid combines the viscosity of the fluid and the elasticity of
the elastic solid, which shows the complex behavior between them and makes it a typical
non-Newtonian fluid. Viscoelastic fluid has a time-dependent stress–strain response,
showing shear rate-dependent viscosity and elastic recovery after unloading. Second-
grade fluids are a specialized subclass of non-Newtonian fluids [4,5] which exhibit unique
viscoelastic characteristics. A feature of these fluids is that their velocity field includes
two derivatives within the correlation linking stress to strain, whereas the velocity field
of Newtonian fluid contains only a first-order derivative. To better understand the flow
characteristics of second-grade fluids, scholars often choose a simple model for analysis,
which is helpful to understand the motion nature of second-grade fluid more deeply and
provide theoretical support for related industrial applications. Ho et al. [6] investigated the
migration of rigid spheres in a flowing second-grade fluid by simplifying the fluid flow
problem between parallel plane walls. Khan et al. [7] gave an exact analytical solution
for the fluid flow of a generalized second-grade fluid between two walls perpendicular
to a flat plate. Tassaddiq [8] analyzed the flow of a second-grade fluid by simplifying the
problem to a non-constant flow of the incompressible fluid over an inclined plate with an
inclined magnetic field. Further studies are cited in references [9,10]. This paper focuses on
the behavior of generalized second-grade fluids over a semi-infinite plate which contains
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broad applications in various fields, as noted in references [11–14], including the flow of
biological fluids, liquid metals and alloys, plasma, and blood.

The traditional second-grade fluid constitutive relation is grounded in integer differ-
entials [15,16]. By considering the historical memory during their flow process, meaning
that their current state is not solely determined by the present stress state but is also influ-
enced by the stress history of the past, the fractional second-grade fluid is developed. The
fractional differential equations [17–20] surpass the capabilities of integer-based models
and offer a more precise capture of the historical dependency. Furthermore, the fractional
derivatives possess a nonlocal nature; the derivative value at any given instant is intimately
connected to the entire historical trajectory. This attribute equips fractional differential
equations with the ability to describe physical processes exhibiting long-range or spatially
extensive correlations [21]. The fractional operator addresses the significant inconsistencies
between classical integer differential models and experimental outcomes, which compen-
sates for their serious shortcomings. Consequently, it can achieve superior fitting results
with experimental data by utilizing a reduced number of parameters. Sene et al. [22]
used the double integration method to solve the fractional differential equation in the
two-level fluid model. Chan et al. [23] carried out research into the behavior of deformable
droplets when suspended within a second-grade fluid environment. Jiang et al. [24] made
contributions to the field by examining the unsteady magnetohydrodynamic flow of a
modified second-grade fluid by taking into account the Hall effect, as it pertains to move-
ment through porous media. For more research on fractional derivatives in the field of
viscoelastic fluids, the readers are encouraged to refer to [25–27]. In this work, we integrate
the fundamental equation governing fluid dynamics with a model representing a modified
second-grade fluid which includes the application of Riemann–Liouville time fractional
derivative (RLTFD) operators.

Numerical simulations, when analyzing flow mechanisms, can demonstrate the flow
properties of complex fluid models, eliminating the necessity of experimental procedures.
Within this study, the formulation of the equation is achieved through the application of the
FDM, as introduced in references [28,29]. The FDM is a numerical technique that divides a
continuous domain into discrete grids and approximates the equation at these grid points.
This method is adept at transforming a partial differential equation into a collection of
either linear or nonlinear algebraic equation. This conversion facilitates straightforward
numerical solutions that can be efficiently computed with the aid of computer systems.
The FDM is not only intuitive in concept and easy to implement in programming, but also
can flexibly handle problems with various boundary conditions and complex geometric
shapes. Mei et al. [30] studied the flow around a sphere with free flow velocity oscillation
and unsteady resistance under a finite Reynolds number by using FDM. Dennis et al. [31]
proposed a new FDM for calculating steady flow in curved pipes. Kim et al. [32] developed
a computational approach specifically tailored for the second-grade gradient theory of
incompressible fluid dynamics. For more related research, one can refer to [33–35]. In
addition, in the numerical simulation of the fractional derivatives, a variety of interpolation
approximation methods has been reported, such as Grünwald–Letnikov definition [36], the
L1 scheme [37], the L2 − 1σ scheme [38] and the fast algorithm [39].

The critical challenge in numerical methods pertains to the effective reduction of the
effects that the unbounded regions exert on computational outcomes. Historically, the
prevalent approach to dealing with the unbounded regions is through the employment of a
direct truncation method (DTM), as documented in reference [40]. This approach involves
selecting an exceedingly large value at the boundary, rather than attempting to define an
actual infinite boundary condition. The DTM is less favorable for performing computer-
based numerical simulations, notably for those that are extended over a long duration. In
this paper, we employ an alternative strategy referred to as the artificial boundary method
to establish the ABC. The core concept of this approach entails partitioning the unbounded
domain into two distinct regions: a confined computational zone, which is the internal
area, and an unbounded zone, representing the external area. The chosen boundary points
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need to ensure that the source term is compactly supported within a finite truncation
area. Subsequently, the relation at the truncation point is determined through the use of
the Laplace transform in the external region. The use of this approach retains the effect
exerted by the external area on the truncated boundary, which ensures the restricted area
has a more reasonable boundary condition. The mentioned approach has been utilized
extensively in various studies. For instance, Barucq et al. [41] analyzed the Helmholtz
equation numerically by using ABC. They conducted an in-depth analysis of the impact
of various parameters on these numerical results. Li et al. [42] solved the effective second-
grade Schrödinger equation with the FDM by constructing ABCs. Muhr et al. [43] applied
the ABC to address the Westervelt wave equation related to sound velocity potential, and
the effectiveness and efficiency were confirmed. Further information on ABC is available
in [44–46].

This paper studies the impulsive motion of a modified second-grade fluid on a plate
of semi-infinite extent by introducing an ABC. In Section 2, we propose the constitutive
relation and formulate the governing equation. Section 3 details the development and
construction of the ABC. In Section 4, the numerical framework for the governing equation,
along with its initial and boundary conditions (IBCs), is presented. In Section 5, four
numerical instances are provided, detailing numerical methods’ efficacy, the dynamic
parameters’ impacts on velocity, the ABC, and a comparison of this study with other
methods. Section 6 offers a summary of these findings.

2. The Construction of the Governing Equation

We are now focusing on an infinitely extended flat plate with a fluid situated on a
single side of the plate. In the initial state, the plate and the fluid above it remain stationary.
Suddenly, the flat plate initiates movement with a velocity denoted as uw(t). As Figure 1
shows, we use a coordinate system where the flow progresses in the x direction, while the y
direction is perpendicular to the plate. The positions of the plate are denoted as y = 0. The
fluid’s velocity on the surface of the plate is equal to the plate’s velocity, which considers the
no-slip condition. The fluid is regarded as a generalized second-grade fluid with stresses
that depend not only on the current strain rate, but also possibly on the historical one. We
neglect sidewall effects because the plate is considered to be infinitely long, such that the
flow problem is mainly controlled by the motion of the plate and the viscoelastic properties
of the fluid. In addition, the fluid is considered incompressible. The flow is supposed
to be laminar, and no turbulence occurs. Finally, the deformation of the fluid is small
and can be analyzed using linear theory. Collectively, these stipulations and suppositions
constitute the foundational framework upon which the problem’s analysis and resolution
are predicated.
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Figure 1. Schematic diagram of fractional second-grade fluid flow problem on a plate of semi-
infinite extent.

The constitutive relation for a second-grade fluid satisfies [45]:

T = −pI + µA1 + α1A2 + α2A1
2 (1)
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in which the identity tensor is expressed as I, the hydrostatic pressure is expressed as p, the
stress tensor is expressed as T, µ represents the coefficients of viscosity, α1 and α2 denote as
the normal stress moduli, and the symbols A1 and A2 refer to the kinematic tensors [47]
separately described by the following equation.

A1 = ∇V + (∇V)T (2)

A2 =
∂A1

∂t
+ A1(∇V) + (∇V)TA1 (3)

in which ∂
∂t is indicative of the material time partial derivative, V expresses the velocity

vector field, and ∇ is the operator of the gradient. Suppose that the fluid described by
Equation (1) conforms to thermodynamics, then all motions of the fluid satisfy the Clausius–
Duhem inequality. Assume that the specific Helmholtz free energy of the fluid is minimized
when the fluid is locally stationary [48]; then,

µ ⩾ 0, α1 ⩾ 0, α1 + α2 = 0 (4)

The fractional derivatives are able to describe the nonlocality and memory
effects [17,21] of the generalized second-grade fluid. Since the fractional derivatives are
nonlocal, this allows fractional differential equations to describe physical processes with
long-range correlations or spatial-extent correlations. In general, the constitutive relation
for the fractional second-grade fluid [49,50] also assumes the form (1), yet A2 satisfies

A2 = RL
0 Dβ

t A1 + A1(∇V) + (∇V)TA1 (5)

in which RL
0 Dβ

t denotes the RLTFD operator [51].
The RLTFD operator RL

0 Dβ
t satisfies

RL
0 Dβ

t u(y, t) =
∂

∂t

(
1

Γ(1 − β)

∫ t

0

u(y, τ)dτ

(t − τ)β

)
, 0 < β < 1 (6)

where Γ(·) denotes the Gamma function. When β = 1, using the RLTFD’s property, one ob-
tains RL

0 Dβ
t f (t) = RL

0 D1
t
(RL

0 D0
t f (t)

)
= d f (t)

dt , namely, Equation (5) simplifies to Equation (3).
When α1 = 0 and α2 = 0, the classical viscous Newtonian fluid is recovered [52,53]. It
should be indicated that we have kept the same notation for the constant α1 in (1) for the
sake of simplicity, but it refers to a new material constant with the dimensions kg ·m−1 · sβ−1.
It reduces to kg · m−1 for β → 1 . For the other relations between (1) and (3), they remain
formally unchanged under the above dimensional understanding [54].

Neglecting the external forces, the equation of motion satisfies

ρ
DV
Dt

= ∇ · T (7)

in which the fluid’s density is expressed as ρ, and the material derivative is represented
as D

Dt .
The continuity equation for velocity is expressed as

∇ · V = 0 (8)

Consider a modified second-grade fluid flowing close to a plate, moving with the
velocity uw(t) within its own plane suddenly. The x-axis is defined following the motion
adjacent to the wall, and the y-axis and the wall are perpendicular. Assuming the effects of
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the side walls can be disregarded and implying the wall is infinitely long, we aim to find
solutions in the form of the velocity field as

V = u(y, t)i (9)

in which the x-direction unit vector is represented as i, and the x-direction velocity is
expressed as u.

The stresses exerted on the plate initiate the movement of the fluid, which is given by
(1), (2), (4), and (5). Substituting (9) into (1)–(6), we obtain

Txy = µ
∂u
∂y

+ α1
RL
0 Dβ

t
∂u
∂y

(10)

where Txy = Tyx and Txx = Tyy = Tzz = Txz = Tyz = 0. Note that we have kept the
same notation for the constant α1 in (10), but it refers to a new material constant with the
dimensions kg · m−1 · sβ−1.

By introducing (9) and (10) into (7), it yields

ρ
∂u
∂t

= µ
∂2u
∂y2 + α1

RL
0 Dβ

t
∂2u
∂y2 (11)

The IBCs satisfy
u(y, 0) = 0, y > 0 (12)

u(0, t) = uw(t), u(+∞, t) = 0, t ∈ [0, T] (13)

where uw(t) is the velocity of the plate.
Dimensionless variables are introduced to facilitate the analysis

⌢
u =

u
U

,
⌢
y =

yUρ

µ
,
⌢
t =

tU2ρ

µ
,
⌢
u w(

⌢
t ) =

uw(t)
U

(14)

where U represents the characteristic velocity.
For generalization purposes, the form of f (y, t) is presented. Subsequently, the dimen-

sionless governing equation along with its IBCs are presented as follows (the superscript
“⌢” is omitted)

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 + f (y, t) (15)

u(y, 0) = 0, y > 0 (16)

u(0, t) = uw(t), u(+∞, t) = 0, t ∈ [0, T] (17)

where η = α1U2βρβ

µβ+1 .

3. The Establishment of the ABC

By using the ABM, we formulate the exact ABC. First, the unbounded region Ω :=
{y|0 ≤ y < +∞} is truncated by the point yr. In such a case, we divide the unbounded re-
gion as the unbounded area Ωr := {y|yr ≤ y < +∞} located to the right, and the bounded
area Ωc := {y|0 ≤ y ≤ yr } is designated for calculation. The selection of yr demands that
the initial conditions and the source term be compactly supported in region Ωc.

In the unbounded region Ωr, we have

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 + f (y, t) (18)

u(y, 0) = 0 for y > 0 (19)

u(+∞, t) = 0 when t ∈ [0, T] (20)
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Since β is between zero and one, the Laplace transform for RL
0 Dβ

t [55] has the form

L
{

RL
0 Dβ

t f (t), s
}

= sβL{ f (t), s} −
[

RL
0 Dβ−1

t f (t)
]

t=0
. By referring to the principle of the

Laplace transform for the RLTFD, we obtain

∂2û(y, s)
∂y2 − s

1 + ηsβ
û(y, s) = 0 (21)

in which the Laplace transform of u(y, t) is represented as û(y, s).
Solving the above equation yields

û(y, s) = e
−
√ s

1+ηsβ y
(22)

For Equation (22), we take the derivative for y

∂û(y, s)
∂y

= − 1(
1 + ηsβ

) 1
2

û(y, s) (23)

Before performing the inverse Laplace transform, it is crucial to define the generalized
Mittag–Leffler function [55]:

Eγ
k,l(z) =

∞

∑
n=0

(γ)n
n!Γ(nk + l)

zn, Rek > 0, l ∈ C, γ > 0 (24)

where (γ)n = γ(γ + 1) · · · (γ + n − 1) = Γ(γ + n)/Γ(γ).
The Mittag–Leffler function [55] has the following property:

L
{

tl−1Eγ
k,l

(
−λtk

)
, s
}
=

skγ−l(
λ + sk

)γ (25)

where Rek > 0 and Rel > 0.
By conducting the inverse Laplace transformation for (23), we infer the ABC at y = yr

∂u(yr, t)
∂y

= −
√

1
η

[
t

1
2 β−1E

1
2
β, 1

2 β

(
− 1

η
tβ

)]
∗ RL

0 D
1
2
t u(yr, t) (26)

where ∗ stands for the convolution.
To facilitate explanation, we introduce the notation as

K1(t) =

√
1
η

[
t

1
2 β−1E

1
2
β, 1

2 β

(
− 1

η
tβ

)]
(27)

After introducing the symbol K1(t), the Equation (26) changes:

∂u(yr, t)
∂y

=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
τ u(yr, τ)dτ (28)

Taking Equation (28) as the exact ABC, we formulate the governing equation based on
the IBCs:

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 + f (y, t) (29)

u(y, 0) = 0 (30)

u(0, t) = 0 (31)
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∂u(yr, t)
∂y

=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
τ u(yr, τ)dτ (32)

Now, we discuss the well-posedness of the considered problem. Since the initial
condition of our question is zero, RL

0 Dβ
t u(t) and C

0 D
β
t u(t) are equivalent. Then, the property

for the Caputo fractional derivative is also applicable to the RLTFD. Initially, we introduce
the following lemma.

Lemma 1. Assume u(t) to be an absolutely continuous function on [0, T]. Considering 0 <
β < 1 and u(0) = 0, it yields [56]

u(t)RL
0 Dβ

t u(t) ≥ 1
2

RL
0 Dβ

t u2(t) (33)

Theorem 1. The problem (29)–(32) is L2 -stable and adheres to the subsequent estimation:∥∥∥∥∂u(y, t)
∂y

∥∥∥∥2

L2[0,yr ]

≤ ∥ f (y, t)∥2
L2[0,yr ]

(34)

where ∥u(y, t)∥2
L2[a,b](t) =

∫ b
a |u(y, t)|2dy.

Proof. In the outer region (yr,+∞], the source term becomes zero due to the compactly
supported assumption in [0, yr]. Multiplying both sides of Equation (29) simultaneously by
∂2u(y,t)

∂y2 and integrating over y from yr to +∞ and t from 0 to T, it yields:

∫ T
0

∫ +∞
yr

∂u(y, t)
∂t

∂2w(y, t)
∂y2 dydt =

∫ T
0

∫ +∞
yr

∂2u(y, t)
∂y2

∂2u(y, t)
∂y2 dydt

+η
∫ T

0

∫ +∞
yr

∂2u(y, t)
∂y2

RL
0 Dβ

t
∂2u(y, t)

∂y2 dydt.
(35)

Employing the method of integration by parts and Lemma 1 yields:

∫ T

0

∫ +∞

yr

∂u(y, t)
∂t

∂2u(y, t)
∂y2 dydt = −

∫ T

0

∂u(yr, t)
∂t

∂u(yr, t)
∂y

dt − 1
2

∫ T

0

∂

∂t

∥∥∥∥∂u(y, t)
∂y

∥∥∥∥2

L2(yr ,+∞]

dt (36)

Considering (30) and (31), we have:

−
∫ T

0
∂u(yr, t)

∂t
∂u(yr, t)

∂y
dt − 1

2
∫ T

0
∂

∂t

∥∥∥∥∂u(y, t)
∂y

∥∥∥∥2

L2(yr ,+∞]

dt

= −
∫ T

0
∂u(yr, t)

∂t
∂u(yr, t)

∂y
dt − 1

2

∥∥∥∥∂u(y, T)
∂y

∥∥∥∥2

L2(yr ,+∞]

≤ −
∫ T

0
∂u(yr, t)

∂t
∂u(yr, t)

∂y
dt.

(37)

The second term satisfies that:∫ T

0

∫ +∞

yr

∂2u(y, t)
∂y2

∂2u(y, t)
∂y2 dydt ≥ 0 (38)
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By using Lemma 1, we obtain:

η
∫ T

0

∫ +∞
yr

∂2u(y, t)
∂y2

RL
0 Dβ

t
∂2u(y, t)

∂y2 dydt ≥ η

2
∫ T

0
RL
0 Dβ

t

∥∥∥∥∂2u(y, t)
∂y2

∥∥∥∥2

L2(yr ,+∞]

dt

=
η

2
∫ T

0
d
dt

(
1

Γ(1 − β)

∫ t
0

∥∥∥∥∂2u(y, τ)

∂y2

∥∥∥∥2

L2(yr ,+∞]

1

(t − τ)β
dτ

)
dt

=
η

2

(
1

Γ(1 − β)

∫ T
0

∥∥∥∥∂2u(y, τ)

∂y2

∥∥∥∥2

L2(yr ,+∞]

1

(T − τ)β
dτ

)
≥ 0.

(39)

Combining (35)–(39), we can deduce:∫ T

0

∂u(yr, t)
∂t

∂u(yr, t)
∂y

dt ≤ 0 (40)

Consider the inner region [0, yr]. Both sides of Equation (29) are simultaneously

multiplied by ∂2u(y,t)
∂y2 and integrated over y in region [0, yr] and t in region [0, T]. Then, we

have ∫ T
0

∫ yr
0

∂u(y, t)
∂t

∂2u(y, t)
∂y2 dydt =

∫ T
0

∫ yr
0

∂2u(y, t)
∂y2

∂2u(y, t)
∂y2 dydt

+η
∫ T

0

∫ yr
0

RL
0 Dβ

t
∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt +
∫ T

0

∫ yr
0 f (y, t)

∂2u(y, t)
∂y2 dydt.

(41)

For the first term, considering the boundary condition, we can derive:

∫ T
0

∫ yr
0

∂w(y, t)
∂t

∂2w(y, t)
∂y2 dydt =

∫ T
0

∫ yr
0

∂w(y, t)
∂t

d
∂w(y, t)

∂y
dt

=
∫ T

0
∂w(yr, t)

∂t
∂w(yr, t)

∂y
dt −

∫ T
0

∫ yr
0

∂w(y, t)
∂y

∂

∂t
∂w(y, t)

∂y
dydt.

(42)

Considering the initial condition, it yields:

−
∫ T

0

∫ yr

0

∂w(y, t)
∂y

∂

∂t
∂w(y, t)

∂y
dydt ≤ −

∫ yr

0

(
∂w(y, T)

∂y

)2
dy +

∫ yr

0

[∫ T

0

∂w(y, t)
∂y

∂

∂t
∂w(y, t)

∂y
dt
]

dy (43)

then one can obtain

−
∫ T

0

∫ yr

0

∂w(y, t)
∂y

∂

∂t
∂w(y, t)

∂y
dydt ≤ −1

2

∫ yr

0

(
∂w(y, T)

∂y

)2
dy ≤ 0 (44)

Combining (40), (42) and (44), the first term changes:

∫ T

0

∫ yr

0

∂w(y, t)
∂t

∂2w(y, t)
∂y2 dydt ≤ 0 (45)

The second term satisfies that:∫ T

0

∫ yr

0

∂2w(y, t)
∂y2

∂2w(y, t)
∂y2 dydt ≥ 0 (46)

Using Lemma 1, the third term satisfies

η
∫ T

0

∫ yr

0

∂2w(y, t)
∂y2

RL
0 Dβ

t
∂2w(y, t)

∂y2 dydt ≥ η

2

∫ T

0

∫ yr

0

RL
0 Dβ

t

(
∂2w(y, t)

∂y2

)2

dydt (47)
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Considering the definition (6), we obtain

η

2
∫ T

0

∫ yr
0

RL
0 Dβ

t

(
∂2w(y, t)

∂y2

)2

dydt

=
η

2
∫ T

0

∫ yr
0

d
dt

(
1

Γ(1 − β)

∫ t
0

1

(t − τ1)
β

(
∂2w(y, τ1)

∂y2

)2

dτ1

)
dydt

=
η

2
∫ yr

0

(
1

Γ(1 − β)

∫ t
0

1

(T − τ1)
β

(
∂2w(y, τ1)

∂y2

)2

dτ1

)
dy ≥ 0.

(48)

According to the Cauchy–Schwartz inequality, one can estimate the fourth term as

−
∫ T

0

∫ yr

0
f (y, t)

∂2u(y, t)
∂y2 dydt ≤ 1

2

∫ T

0

∫ yr

0
( f (y, t))2dydt +

1
2

∫ T

0

∫ yr

0

(
∂2u(y, t)

∂y2

)2

dydt (49)

Then, Equation (41) changes:

∫ T

0

∫ yr

0

∂2u(y, t)
∂y2

∂2u(y, t)
∂y2 dydt ≤

∫ T

0

∫ yr

0
( f (y, t))2dydt (50)

Therefore, the proof is complete and Equation (34) has been proven. □

Theorem 2. Given that u(y, t) and v(y, t) are solutions to (29)–(32), it is concluded that
u(y, t) and v(y, t) are identical, ensuring the uniqueness of the solution.

Proof. Denote w(y, t) = u(y, t)− v(y, t). w(y, t) satisfies the following equation:

∂w(y, t)
∂t

=
∂2w(y, t)

∂y2 + ηRL
0 Dβ

t
∂2w(y, t)

∂y2 (51)

which is subjected to IBCs:
w(y, 0) = 0 (52)

w(0, t) = 0 (53)

∂w(yr, t)
∂y

=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
t w(yr, τ)dτ (54)

According to Theorem 1, it follows that

∫ t

0

∥∥∥∥∂2w(·, τ)

∂y2

∥∥∥∥2

dτ ≤ 0 (55)

where ∥w(·, t)∥2 is defined as ∥w(·, t)∥2 =
∫ yr

0 w2(y, t)dy.

Since
∥∥∥ ∂2w(·,τ)

∂y2

∥∥∥2
is no less than zero, we obtain

∂2w(·, τ)

∂y2 = 0 (56)

According to (56), we assume that w(y, t) has the form

w(y, t) = C1(t)y + C2(t) (57)

Then, one can obtain
∂w(y, t)

∂y
= C1(t) (58)
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Considering the boundary condition (53), we have:

C2(t) = 0 (59)

Combining Equations (54)–(58), we can deduce:

C1(t) = −yr

∫ t

0
K1(t − τ) ∗ RL

0 D
1
2
τ C1(τ)dτ. (60)

Since the parameter yr is arbitrary, the following condition must hold for (60):

C1(t) = 0 (61)

which means w(y, t) = 0. The uniqueness of the solution has been established. The proof
of Theorem 2 has been finished. □

4. Construction of the FDM

This section is dedicated to formulating a numerical scheme based on Equation (29) to
Equation (32), with the aim of solving the problem on a bounded domain Ωc. In the domain
Ωc × [0, T], we define the temporal step size as τ = T/N and the spatial step size as h = yr

M ,
where the integers N and M correspond to the count of grid points in the temporal and
spatial dimensions, respectively. The grid points are defined as tn := nτ for 0 ≤ n ≤ N and
yj = jhy for 0 ≤ j ≤ M. Furthermore, u

(
yj, tn

)
and un

j represent the exact solutions and
numerical solutions of the velocity at grid points

(
yj, tn

)
for 0 ≤ n ≤ N and 0 ≤ j ≤ M,

respectively. For clarity, we introduce some notations below [28,29]

δtun
j =

un
j − un−1

j

τ
, δ2

yun
j =

un
j+1 − 2un

j + un
j−1

h2 (62)

At t = tn, the time-fractional derivative of order α in the RLTFD is approximated by
the L1 scheme [49] by considering the equivalent relationship between the RLTFD and the
Caputo fractional derivative:

RL
0 Dα

t un = C
0 D̃α

t un + R1 =
τ−α

Γ(2 − α)

[
a(α)0 un −

n−1

∑
k=1

(
a(α)n−k−1 − a(α)n−k

)
uk − a(α)n−1u0 +

1 − α

nα
u0

]
+ R1 (63)

where a(α)0 = 1 and a(α)k = (k + 1)1−α − k1−α, k = 1, 2, . . . , n − 1. The symbol R1 refers to
the error and satisfies |R1| ≤ Cτ2−α.

Apart from that, the central difference formula is utilized to approximate ∂2u
∂y2 , and

the error terms are disregarded. Subsequently, the discretized scheme of the equation is
obtained as follows:

δtun
j =

τ−β

Γ(2 − β)

[
a0

(β)δ2
yun

j −
n−1

∑
k=1

(
a(β)

n−k−1 − a(β)
n−k

)
δ2

yuk
j − a(β)

n−1δ2
yu0

j +
1 − β

nβ
u0

j

]
+ δ2

yun
j (64)
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Furthermore, using the definitions given by Equation (62), the aforementioned equa-
tion can be rearranged as:

−
(

ητ−β

Γ(2 − β)
a0

(β) + 1
)un

j+1

h2 +

(
ητ−β

Γ(2 − β)
a0

(β) 2
h2 +

2
h2 +

1
τ

)
un

j −
(

ητ−β

Γ(2 − β)
a0

(β) + 1
)un

j−1

h2

= − ητ−β

Γ(2 − β)

[
n−1
∑

k=1

(
a(β)

n−k−1 − a(β)
n−k

)
δ2

yuk
j + a(β)

n−1δ2
yu0

j −
1 − β

nβ
u0

j

]
+

un−1
j

τ
.

(65)

The integral term (32) under the ABC is approximated using the following form:∫ tk
tk−1

K1(t − τ) ∗ RL
0 D1/2

t udτ

≈ τK1(tn − tk)
τ−1/2

Γ(3/2)

[
a(1/2)

0 uk −
k−1
∑

j=1

(
a(1/2)

k−j−1 − a(1/2)
k−j

)
uj − a(1/2)

k−1 u0 − 1
2n1/2 u0

j

]
.

(66)

By using the backward difference scheme with first-order spatial derivatives, we
derive the final difference scheme for the ABC:

un
j − un

j−1

h
= −

n

∑
k=1

K1((n − k)τ)
τ1/2

Γ(3/2)

[
a(1/2)

0 uk −
k−1

∑
j=1

(
a(1/2)

k−j−1 − a(1/2)
k−j

)
uj − a(1/2)

k−1 u0 +
1

2n1/2 u0
j

]
(67)

Subsequently, the remaining conditions can be discretized as follows:

u0
j = 0, j = 0, 1, 2, . . . , M, un

0 = uw(tn), n = 0, 1, 2, . . ..

Remark 1. Since the governing equation in this work constitutes a particular instance of the issue
in [57] with new boundary condition, the stability and convergence of the proposed numerical scheme
can be proved through a comparable approach. This paper primarily focuses on the formulation of the
ABC and an evaluation of its advantages. As such, a detailed theoretical analysis of the numerical
scheme has been excluded.

5. Numerical Examples
5.1. The Verification of the Solution and the ABC

The first step is to validate the numerical solution by contrasting it with the exact
solution. According to (29) to (32), the governing equation with a source term f (y, t) is
as follows:

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 + f (y, t) (68)

subsequently, the IBCs are presented by

u(y, 0) = 0 for y > 0 (69)

u(0, t) = Wt2and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0, for t > 0 (70)

where yr is selected to be yr = 1.
We define the exact solution as

u(y, t) =

{
W(1 − y)6(1 + y)6t6, for 0 ≤ y ≤ 1,
0, elsewhere.

(71)
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Bringing the above exact solution (71) into Equation (68) yields the expression for the
source term:

f (y, t) =


6Wt5(1 − y)6(y + 1)6 − Wt6(30(y + 1)6(y − 1)4

+72(y + 1)5(y − 1)5 + 30(y + 1)4(y − 1)6)
[

Γ(7)t−β

Γ(7−β)
+ 1
]
, for 0 ≤ y ≤ 1,

0, elsewhere.

It should be indicated that the source term complies with the condition of the ABC
that it is compactly supported in the inner region [0, 1].

In conjunction with the matrix form of the difference scheme, which can be deduced
by (65), we use MATLAB to solve the governing equation. This aims at generating the
numerical solutions on successive time levels. The computational domain is specified as
[0, 1], with a termination time denoted by T = 1. The calculation parameters are set to
β = 0.5 and η = 1, while the temporal and spatial steps are τ = 1/210 and h = 1/210,
respectively. As apparently revealed in Figure 2, the comparative velocity profiles of the
numerical and analytical solutions at t = 1 exhibit similar distribution patterns, which is
sufficient to prove that the numerical scheme we developed is precise.
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Figure 2. The comparison curve of error distribution for T = 1 between the numerical solution and
the exact solution when β = 0.5, η = 1 and W = 1.

Figure 3 provides a clear visualization of the disparities in velocity distribution when
comparing the ABC against the DTBC, facilitated by the choice of f (y, t) = 0. Notably, the
distribution curves exhibit significant divergence at the right boundary. This difference
stems from the fact that the DTBC specifies zero velocity at the selected right boundary,
whereas the velocity at the right boundary follows a specific functional relationship when
subject to the ABC, which is determined through meticulous derivation. In numerous
practical situations, the velocity at the boundary on the right does not maintain a constant
zero over time, which potentially results in imprecise numerical solutions based on the
DTBC. However, the ABC averts the artificial error at the truncation point and is consistent
with the zero boundary condition at infinite locations. This proves that the ABC can
effectively deal with problems related to extension to infinite domains.
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Figure 3. The velocity distribution between the ABC (left) and the DTBC (right) when f (y, t) = 0,
T = 5, β = 0.5, η = 1, and W = 1.

5.2. Impact of Parameter Variations on the Velocity Field Induced by a Moving Plate

We assume that the fluid is set in motion by a plate moving at the velocity uw(t) = Wt2.
With this assumption, the governing equation with its associated IBCs reduces to:

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 (72)

u(y, 0) = 0 for y > 0 (73)

u(0, t) = Wt2 and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0 (74)

The examination of parameter influence on the velocity field is conducted. In this
example, we select the cut-off point as yr = 8. Figure 4 illustrates the impact of the varying
time parameter on the velocity distribution. Comparing multiple curves at different time
points, it can be found that the fluid velocity at the same location increases with time.
Analyzing a single curve, it can be observed that the closer the fluid is to the plate, the
greater the velocity will be. The figure describes the time evolution of the velocity well.
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Figure 4. The impacts exerted by the time parameters on the velocity distribution for β = 0.5, η = 1,
and W = 1.

As shown in Figure 5 for y (left) and t (right), the variation in fractional orders
significantly influences the velocity distribution. This plate’s motion changes the shear
force, causing the fluid near the plate to begin to flow. Therefore, it can be observed that
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in the actual image, the velocity at the starting point is very high, whereas the velocity
at locations further away is relatively low. A trend is observable in these images, where
the flow velocity diminishes with an increase in y. And at a fixed position, the velocity
rises with the augmentation of t. As shown in the figure on the left of Figure 5, at a fixed
time, the increase in the fractional parameter results in a smaller value of the distribution
curve. From this, it can be observed that as the fractional parameter diminishes, the fluid’s
memory properties become more pronounced, and the velocity transmission occurs more
rapidly. Regarding the relationship between the distribution curve and time, when the
spatial position is fixed, the larger fractional parameter results in the decreasing velocity of
the fluid.
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Figure 5. The impacts exerted of the fractional parameters on the velocity distribution versus y (t = 1)
and t (y = 1) for η = 1 and W = 1.

In Figure 6, the effect of relaxation parameters on the velocity distribution is shown.
The relaxation time parameter exerts a delayed impact on the fluid’s flow. As illustrated on
the left side of Figure 6, at a fixed time, an increase in the relaxation parameter results in a
higher value of the distribution curve. From this observation, a conclusion can be drawn
that there is a correlation between the larger relaxation parameter and the delay effect. For
the relationship between the distribution curve and time, when the space y is fixed, the
velocity increases as the relaxation parameter becomes larger.
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Figure 6. The impacts of the relaxation parameters on the velocity distribution versus y (t = 1) and t
(y = 1) for β = 0.5 and W = 1.

Figure 7 demonstrates the distribution versus β with the influence of various relaxation
time parameters, highlighting the relaxation time parameter’s delayed influence on fluid
flow. As depicted in Figure 7, for a constant fractional parameter β, an increase in the
relaxation parameter leads to a higher value of the distribution curve. Concurrently,
with the fractional parameter increasing, the fluid velocity diminishes progressively. It
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is inferred that a larger relaxation parameter results in a diminished delay effect and an
increased velocity.
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5.3. Various Velocities Induced by Vibrating Plates with Different Physical Parameters

In this example, the emphasis is placed on the impact of dynamic parameters on the
flow mechanism of fluid, propelled by a plate with oscillating velocity. The governing
equation for the IBCs is presented below

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + ηRL
0 Dβ

t
∂2u(y, t)

∂y2 (75)

u(y, 0) = 0 for y > 0 (76)

u(0, t) = U sin
(

ωt2
)

and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0 (77)

Figure 8 shows the velocity distribution of y and t. Contrary to previous numerical
instances, the observations from the figure reveal that the oscillating distribution results
directly from a moving plate exhibiting oscillatory velocity. The effects of frequency ω
and amplitude U on the velocity distribution on y and t are shown in Figures 9 and 10. It
should be noted that we took the space calculation region as [0, 5], and the termination time
of the analysis was T = 5.
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Figure 9 illustrates the impact of the oscillation frequency ω on the velocity distribution.
In the left figure, at a fixed time, the fluid near the moving plate has a larger negative
velocity in the initial position. The fluid’s velocity increases with the moving plate’s
vibration frequency ω. Due to the vibration of the moving plate, the peak value of the
velocity distribution curve occurs within a certain distance from the plate when ω = 1 and
ω = 2, while the curve does not oscillate when ω = 3. With the increase in y, the influence
of oscillations on the fluid weakens and the fluid velocity decreases in the negative direction.
By comparing the velocity distribution curves at different frequencies, it can be observed
that the velocity distribution curve of the fluid changes more rapidly as the frequency ω
of the moving plate increases. Finally, when the distance from the plate is far enough, the
vibration of the plate has no effect on the fluid. The velocity distribution curve of the fluid
becomes smoother, and the velocity distribution curves of different vibration frequencies
tend to be close. In the figure on the right, the time change of the fluid near the plate,
which is affected by the moving plate, is described. For the same vibration frequency ω, the
amplitude of the velocity distribution curve and the vibration period gradually decrease
with the passage of time, because the moving plate whose velocity oscillates in the form of
a sinusoidal function causes the fluctuation of the velocity distribution. The peak value of
the velocity distribution curve is earlier for a larger vibration frequency ω. The results show
that, as the frequency ω increases, both the period and the amplitude of the distribution
curve decrease.

Figure 10 depicts the impact of the amplitude on the velocity distribution. Similar to
Figure 9, the negative velocity of the fluid close to the moving plate first increases to the
peak and then decreases. At a fixed position, the oscillation period and amplitude of the
fluid decrease gradually with the passage of time. By comparing the velocity distribution
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curves of different amplitudes, the larger the amplitude U is, the greater the peak value
of the velocity distribution curve at a fixed time is, and the faster the curve changes. In a
fixed position, the velocity distribution curve’s amplitude is directly proportional to the
amplitude U.

5.4. Comparison of This Study with Other Methods in Ref. [58]

To further verify the accuracy of the numerical solutions presented in this paper, other
studies on generalized second-order fluid flow on a semi-infinite plate are selected for
comparison. Shahed [58] studied the impulsive flow of a fractional second-grade fluid on a
flat plate. The IBCs were u(y, 0) = 0, y > 0, u(0, t) = 1, u(+∞, t) = 0, and t ∈ [0, T].

Since the initial condition is zero, the equation containing the Caputo fractional
derivative in reference [58] is equivalent to the equation with RLTFD in this paper. The
ABC (32) is applied. By selecting the same parameters and comparing them with Figure 2
in [58], the comparison curve with the numerical solution in our study is given in Figure 11.
The red dotted line is the curve derived from the method of this study, and the black solid
line is the curve given by Shahed [58]. The comparison shows that the curves derived from
the two methods match very well, which indicates the accuracy of our numerical method.
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6. Conclusions

In this study, the fractional governing equation that describes generalized second-
grade fluid’s flow over semi-infinite plates, induced by varying plate velocities, was rigor-
ously derived. For semi-bounded domains, the study employed the ABM. This resulted
in the formulation of ABC as convolutions within a finite region. The use of the artificial
boundary method made the numerical simulation of this fractional governing equation
highly applicable. Subsequently, the governing equation was numerically discretized by
incorporating the initial condition and the ABC by utilizing the L1 scheme. The paper
then presented four numerical examples: the first one validated the difference scheme’s
effectiveness through introducing the source term and demonstrated the superiority of
the ABC compared to the DTBC, and the second one examined how dynamic parameters
within the governing equation affect velocity distribution. In the third example, a numerical
example was given to analyze the flow mechanism arising from an oscillating plate, and
the effects of the frequency and amplitude on velocity were described, respectively. Finally,
the comparison of the numerical example with the ABC and the results in Ref. [58] was
discussed. Some of the major findings are summarized below.

(i) A higher fractional parameter leads to a slower rate of fluid flow;
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(ii) The delay effect increases with the decrease in relaxation parameters, and the fluid
velocity rises as the relaxation parameter increases;

(iii) The higher the oscillation frequency is, the faster the velocity will change, and the
velocity distribution curve will exhibit a decreased period and amplitude;

(iv) With a greater amplitude, the fluid velocity changes more rapidly and the amplitude
of the velocity distribution curve also increases.

The important conclusions drawn from this study not only advance the theory of
non-Newtonian fluid dynamics, but also extend to its engineering applications in a broad
spectrum of fields, including chemical, petroleum, aerospace, and biomedical engineering.
In addition, this research contributes to the design and optimization of new materials in
materials science, the prediction of pollutant dispersion in environmental science, and the
diagnosis and treatment of cardiovascular diseases in the medical field. It also promotes
the advancement of numerical simulation technology to solve the problem of infinite
boundaries using artificial boundary techniques and provides a theoretical basis and
computational methods for the simulation of complex fluid systems. We intend to explore
more comprehensive non-Newtonian fluid models with ABC is our future work.
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