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Abstract: In this paper, we investigate a class of multi-term implicit fractional differential equation
with boundary conditions. The application of the Schauder fixed point theorem and the Banach
fixed point theorem allows us to establish the criterion for a solution that exists for the given
equation, and the solution is unique. Afterwards, we give the criteria of Ulam—Hyers stability
and Ulam-Hyers—Rassias stability. Additionally, we present an example to illustrate the practical
application and effectiveness of the results.
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1. Introduction

In recent years, because of the prevalence of fractional derivatives and integrals in
modeling biological systems, such as population dynamics and erythrocyte sedimentation
rates, etc. (see [1-3]), the qualitative and stability analyses of fractional differential equa-
tions has garnered considerable interest and attention. Regarding the studies of stability
problems, based on the Lyapunov method, scholars proposed many different concepts of
stability, such as equi-stability, Lipschitz stability, and practical stability, which are docu-
mented in the literature [4-6]. However, the difficulty lies in finding and calculating the
appropriate Lyapunov functions, which limited the application of this method in a certain
sense. Ulam [7] introduced the concept of Ulam stability in 1940. This stability is not
only convenient to obtain, but also solves the problem of finding exact solutions of nonlin-
ear differential equations. It ensures the existence of approximate solutions to equations,
which is crucial in optimization and numerical analysis. Since then, Hyers [8] refined the
Ulam-Hyers stability, and Rassias [9] further developed the Ulam-Hyers—Rassias stability.
At present, researchers have made progress in studying the existence and Ulam stability
analysis of fractional differential equations (see [10-14]). We note that there are few results
on fractional differential equations with multiple terms. For example, Alam et al. [15] con-
ducted a study on the existence and Ulam-Hyers stability of two-term implicit fractional
order differential equations as follows:

(K1°D™ 4 KpR1%2)u(t) =R1% ¢y (£, (K1°D* + KR 1%2)u(t))
+ ¢ (t, (K1°DM + KR 1%2)u(t)),
u(0) =0, °D'u(0) =0,
_oyy—1
fol u(s)ds + fol ‘Dlu(s)ds = fol %u(s)ds,
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where the functions ¢;, ¢, : ] x R — R, and the parameters a1 € (2,3), ap, a3, a4 € (0,1),
t € ] =[0,1]. K, K; are nonzero constants. “D*1u(t) represents the Caputo fractional
derivative of the function u(t), and RI*2u(t) represents the Riemann-Liouville fractional
integral of the function u(t).

In 2022, Rahman et al. [16] focused on exploring the existence and Ulam-Hyers—
Rassias stability of a class of n-order multi-term fractional differential equations with
a delay:

n
(L AcD

, )
- dlx(O)
X(O) = 0/ dxl

n—2
x(1) = X ox(m), & €R, 1, €(0,1), 1 =1,2,--- ,n =2,
=1

x(t) = f(t, x(t), x(0t)),

0,1=12,---,n-2,

where the function f : ] x R x R — R, the parameters a1 € (n —1,n), a; € (0,1), i =2,
3,---,n.t € ] =[0,1]. A; are positive constants. ‘D% x(t) represents the Caputo fractional
derivative of the function x(t).

In this paper, we extend our investigation to address a multi-term implicit fractional
differential equation that includes boundary problems:

(X ACDI+ ¥ KRIu(s) = f(s,u(s), (L MDY+ & KRIT)u(s)),

» - (1)
(0) 0, Dlu(O)zo,l:1,2,~~~,n—2,
u(1) = RI1%u(y),

where the function f : ] x R x R — R, and the parametersg; € (n —1,n), g; € (0,1), i =2,
3,---,mp;€(0,1),j=12--,nwe(01),se]=][01], 7 €[0,1]. A;, K;are positive
constants. ‘D7iu(s) represents the Caputo fractional derivative of the function u(s), and
RIPiu(s) represents the Riemann-Liouville fractional integral of the function u(s).

The purpose of this paper is extend the form of high-order implicit differential equa-
tions with integral terms, and obtain results on the existence, uniqueness, and stability
of the solutions to such equations. We employ the fixed point theorem to establish the
existence results of Equation (1). Additionally, we give the criteria of Ulam-Hyers stability
and Ulam-Hyers-Rassias stability for Equation (1). Furthermore, we provide an illustrative
example to showcase the practical effectiveness of the obtained results.

2. Existence of Solutions

The following basic definitions, lemmas and theorems are provided first.
Let C(J,R) denote the Banach space of all continuous functions from | to R, where

the norm is defined as ||u||co = sup{|u(s)|}.
sej

Definition 1 (See [2]). The g order Riemann—Liouville fractional integral of the integrable function
u(s) is defined as

Riau(s) = 1"(1q) /Os(s — )1 u(z)dz, s € J.

Definition 2 (See [2]). The q order Caputo fractional derivative of the differentiable function u(s)

is defined as

oy G- @z s e

where n = [q), i.e., n is the smallest integer not exceeding q.

‘Diu(s) =
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Lemma 1 (See [2]). Let q1 > g > 0, and u(s) is a integrable function on [0, b]; then, for any
s € [0, D], there is

+
R (RIZu(s)) = R u(s);
+
“DJL (DR u(s)) = “DIE Pu(s);
RIL (DR u(s)) = R Pus).
Lemma 2 (See [17]). The solution of fractional differential equation ‘D9u(s) =0(n—1 < q <mn)
is given by
u(s) =ag+ars +ays® + - +a,_15"Y,

wherea, € R, k=0,1,2,...,n—1.

To establish the existence results of Equation (1), we derive an equivalent integral
expression of Equation (1).

Theorem 1. Let u(s) € C(J,R); the equivalent integral form of Equation (1) is

1 1 ° 1— - Ai * 1—4qi—
u(s) :a{r(ql)/()(s—z)q 1¢(z)dz—i_z2r(ql_£m/0 (s — 2)1 9 u(z)dz

s i Snfl 1 1 -~
]; I'(q + pj) /0 (s =27 u(z)dz + A [Tfh) /o (1—2)7¢(z)dz

m 1 1
1—2)1n 9y (z)dz — / 1—2)1Pi~1ly(z)dz
gfql—qz)/( ) ZT@H—P] (1=2) &)

- ey =2 (e

LG U
+ —/ —z W‘H]l_qi_lu z\dz
Yt ra b @)

+Ji K; | /’7 (7 — Z)w+q1+pj71u(z)d4 },

-1 r(w+fh+Pj 0

n+w

where ¢(s) = f(s,u(s), (le\CDql + ZlKRI”J) u(s)),and A =1— r(w)w(wﬂﬁ)m(w”)(nil)! £0.
1= ]—

Proof. Afterintegrating the g1 order on both sides of Equation (1), according to Lemmas 1 and 2,
we obtain

RI91eDIu(s)] :/\% { L /Os(s —2)1"p(z)dz — é()\l) /Os(s — z)N =%y (2)dz

[(q1) ST —ai
m K; s
f]; F(qurpj) /o (s — 2)1 P Lz )dz}

Then, we use the following relationship that exists between fractional integral and
derivative [17]

RIEDTu(s)] = u(s) + by + bys + bps® + - - + by_15" 1, @
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wherea, € R, k=0,1,2,...,n — 1, and we obtain
u(s) = [ 7 / 52 gl = 3 p s [ (s 2 (e
/\ r(ql) i=2 %) (3)

s
- Z q _|_p ) / (S—Z)qﬁpf*lu(z)dz} —|—a0+als+a252+...+an715n71.
1P

Using the boundary condition #(0) = 0, we have a9 = 0. Then, by differentiating (3),
we obtain

c _1 1 ° 1= ’ 1= 4i—
Dlu(s) —A—l{%/( s—z)1 dz—zrql_al_l)/(s—z)” 921 (z)dz

UL s
- m / (s — Z)q””f’zu(z)dz} tap+- 4 (n—1)a,_qs" 2 @)
j=1 j

From the boundary condition cDly (0) = 0, we have a; = 0. Continuing differentiating

(4), we obtain a; = 0. Repeating the process, we obtain az = a4 = -+ - = a,_ = 0. Then,
1 m A s
— (s —z)" 1p(z)dz — 71/ s—z)N 91y (2)dz
) =37 / S M s ACECLRNTO
m . "S 1 (5)
_ S\Ntpi— d g1
; 1+p]) / (s —z2) u(z) z} +a,_1s
By integrating the w order on both sides of (5), we obtain
1 1 s
Rrou(s) == 7/ s —2)tnlp(2)dz
) =3 [rgy fy =9 o)
— i A /S(S — Z)0t N1y (2)dz
S T(w+aq1—qi) Jo
K; (6)

Yo [ 2 )]
-y — s —z)¥ i~ u(z)dz
SAlw+a+p)h

Sn+w

+ﬂn711—-(w)w(w+1) RN ((A)*FT’Z)(” - 1)'

According to the boundary condition u(1) = RI“u(y), it follows that

771’1#»(4/
-1 (1 C T(ww(w+1) - (w+n)(n— 1)')

17 1 1 ~ 1 o
:a[TLH)/()( _Zq 1 dZ_ZI* ql /(1_Z)q q 1u(z)dz

7]; F(anim) /01(1 =M u(z)dz - r(qllw) /0'17(17 — 7)1 (2)dz
e +Aqi1 n /017('7 — )T u(z)dz
+;n21 T(w +I;jl ) /07](77 — Z)wtatrily )dz}

LetA=1- i then we obtain

INw)w(w+1)-(w+n)(n=1)!"
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1 m 1
ot =g [Fgg y (9" e Lty [0 e
! — 1+p;—1 _ # 1 _ \wtg—1
; ‘11+P])/ (1 =2)"7P u(z)dz T(q1 +w)/o (= 2)* " g(z)dz
m @)
tLr m [ =2 e
3 — 7 _ \wtq+pi—1
]; w+‘11+P1)/ tr=2) j u(z)dz},
Substituting (7) into (3), there is
_i 71 ’ — 1—1 — - L ° _ 1—qi—1
& =% {r(ch) /0 o2t 1222 T(g1 — i) /o (5 =2)" 0 u(z)dz
m . s n—1 1 1
Z Mo+ P]) /o (6 =2 P u(a)dz + =5 [qu)/o (1-2)""¢p(z)dz
3 ' — 1—qi—1 — - L ! _ 1+pi—1
~ Loy Jy " e = L s [ Ao e

- I’(qll—l—w) /17(77 — )t (z)dz

n A
+Z—w+q1 ql)/o (g —z)@tn—ai Yiu(z)dz

+ Z R P /W(” =) )z )

In summary, the conclusion is confirmed. [J

In order to demonstrate the existence and uniqueness results, it is customary to assume
that the following conditions are satisfied.

Hypothesis 1 (H1). Forany s € ], there exist non-negative constants L1 and L;, such that
|f(s,uy,up) — f(s,v1,02)| < Li|lug —ug| + La|va — v3).

Hypothesis 2 (H2). Forany s € ], there exist bounded functions c1(s), cz(s) and c3(s), such that
[f(s,u1(s),uz(s))| < c1(s) + ca(s)[ur(s)] + ca(s)uz(s)]-

Define the operator ¥ : C(J,R) — C(J,R) as

Fx(t) :qll{r(zl)/os(s—z)‘h -1 i ql) /S(s—z)‘h—qi—lu(z)dz

=2

s n—1
7]/ (s—z)qﬁpi*lu(z)dz—l—s !
T ) 0

A [qu) /01(1 2" ()
! n—qi—
ZF = /(1_7‘)1 | Zr

1
(1—2)"TPi~ly(z)dz
j= (71 + P]) /

(*/wu
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A /17 w+g1—q;—1
+) — —z)YTN Ty (2)dz
;F(wﬂl—qi) 0(;7 ) =)
L K; Ul
+ —]/ — )90ty ()dz | Y,
]§r<w+q1+pj> (1 -2) (2)dz] }

where ¢(s) = f(s, u(s), ( % Ai€D%i + g KRIPi)u(s)).

i=1 =1

2.1. Existence Result Using the Shauder Fixed Point Theorem

In this current subsection, we prove the existence result of Equation (1) using the
Shauder fixed point theorem.

Theorem 2. Assume that the conditions (H1) and (H2) are satisfied; then, Equation (1) has at least
one solution.

Proof. We define a subspace B = {u € C(J,R) : ||u|| < d}, where

a1 ¢ 1+ U -1
d< 1-0)"1 8
— M|A] (F(q1+1) F(w+q1+1))( ) ®)

1 1+ |A| 17W+‘71 m 14+ |A| 77w+q1—ql-

0 = h + + YA +
MIAI[ (T(q1+1) T(w+q1+1)> 5 ’(F(ql—qi+1) T(w+q1—qi)) .
+Z ( 1+ Al U )} ©

= \T(q1+p;j+1)  [AT(w+4q1+p))

Step 1. We prove that Ju C B. Indeed, for any u € B, there is

1 - ! 19—
H%||<MA|sup{ i [a=am e |dz+2 = () e

seJ T(q1 _’71
_ 1 n -
L 0 s [ e
- T wtm—gi-1
+l;rw+ql—q)/(’7 2)TI u(z) )z w0
- T \wotqitpi—1
gy wﬂhﬂ,])/w ) ) |u<z>\dz}
Al ] /(s )11 |g(2) |dz+z ) / (s — 2)1 =9 u(2)|dz
se i) .

- Z =2 )z},

41"‘}7]

By condition (H2), we have

9(5)] = |f(s,u(s), (iAichl’ - iKﬁlmu(s))\
i= j=

< c1(s) + ca(s)|u(s)| + e3(s \DCDMZKW u(s)|
i=1 j=1

no KsPi
< a(s) + eals) +eals (,;m— AN )|l



Fractal Fract. 2024, 8, 311 7 of 15

m m K:
Leth=c+ca( L n 1 bl;) + X F(lJip]-))’ where ¢; = sup ca(s), c3 = sup c3(s). Then,
i=1 j=1 sej seJ
we obtain
p(s)| < 1+ hlu(s)], (11)
where c; = sup ¢1(s). Substituting (11) into (10), we have
seJ
1+ A U
Ful| <
I7ull <1 (fap3, gy 1)+ BT 7 D)
1+ 14| et
+ |k +
[ (|A\/\1F(q1+1) |A|A1F(w+q1+1))

m 1+ |A| ;7‘U+‘71*‘7i
+ +
122 (B —asD * Br@Tn=m)

M
K 1+ A oI
* M + uis
X%Al(wf (1 +pi+1) |A\r(w+q1+pj)>}|| (s)]]

<d.

Step 2. To establish the continuity of the operator &, we consider a sequence {u,} € B
when n — o0, u;;, — u. Our aim is to demonstrate that as n — oo, Fu,, — Fu. Notice that

|Fun(s) — Fu(s)]

1 1 1 -
SA1|A|S‘”°{r<ql> | a=2"0u(2) — 0(z) 2
3 Ai ! 14— _
L T o 0 () (2

l P
+le W/ (1—2) 1P iy (2) — u(z)|dz

1 U o -

+W/o (0 =2)" " (2) - ¢(2)ldz
3 Ai ! w1 —qi— _

+§r<w+q1—q>/o (7 =2) 10 un (z) — u(z)|dz
n K v 0 ) ]

+]; r(w+q]1+p]> /0 (7 — 2) 1P~y (2) — u )\dz}
1

1 s _
(g =2 ) — 9@z

* i s (=2 (z) — u(z) e

K; s -
+]2W/0 (S—Z)‘il"rl’/ 1|un(Z)—u(z)|dz}_

By the Lebesgue dominated convergent theorem, when n — oo, ||Fu, — Fu|| — 0.
Step 3. Now, we prove that F maps bounded sets into equalcontinuous sets.
Let sy < sp; then, we can obtain the following relationship:
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|so — s1] 1 /1 -
[Fu(sr) ~ Fulsa)] <G Sup{r(m) | =2 (@)

se]

X gy o A= ol

. 1
+ 7]/ 1—2)1Pi 1y (2)|dz
el e L

[\1§

1 U w+q1—1
Yty o @ ()l
M 1 _ S\wtqr—gq;—1
+1:22Fw+q1 ‘71’)/0(;7 R
m Ul Wt +pi—1
Lty 0D e e
) . . . » (12)
T Tm)/o ((s2 =271 = (51— 2) 1) | (2)|dz
1 52 11
Y L 2= (el
Ai

+
ngE

) /o51 ((s2 = 2)T 751 — (51 —2)M 9 1) |u(z)|dz

ST —4)
+ lé 1"(ql/\lql) /: (s2 —2)1 79 u(z)|dz
ﬂi leip,) I " (2= 2T (51— 2P fu(z) d2
+ i (qlKJ]rm) /52 (52— Z)q1+pf_1|u(z)|dz}.

According to condition (H2), there is

1 1,]w+q1

(lh) * I'(w+q +1))

)~ Fulsp) <A (e )

AlA

d m 1701+511*Qi
a BN (G qz+1> atn—g D)
m ’7w+q1+p]-
% (a0 Tetaan o))
l {(cl +hd)(sy —s1)N

M I'(q1)
e i A (sgl_qi —(sa—s)" % ST — (51— Sz)”“*q")
= T(q1 —q:) q1 — qi q1 —qi
+pj , +p; ,
+d f Kj Sgl P (sp = s)M P _ Szl P (s1— )"t )}
Sl +p) 7+ p a1+ pj ’

when s; — s, we obtain |Fu(s;) — Fu(sp)| — 0.
In conclusion, by applying the Arzela—Ascoli theorem, we can deduce that the operator
F is completely continuous.
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Step 4. Lastly, we demonstrate that the set
E={ueC(,R):u=A%Fu, A* €(0,1)}

is bounded.
Suppose u € €; then, we obtain

* Log (LHIAl g
= [|[A*Ful| < ||Ful| <
lelt = 13°gul| < 17| <3r{er (71 * oo 1o 5 D))
[h(HIAI n )
i +1)  T(w+gq+1)

_|_
M§

I'(n—gqi+1) T(w+q1—9q;

Il
N

(q
/\1< 1+ |A| . neTa—ai ))
(r

1+ |A| peTNTP
) " T+ g ‘f‘Pj))} }”u“

_|_
™

=
5
s
+
=
_.I_
y_\

<d.
By the Shauder fixed point theorem, Equation (1) has at least one solution. [J

2.2. Existence Result Using the Banach Fixed Point Theorem

Subsequently, we employ the Banach fixed point theorem to establish the existence
and uniqueness result of Equation (1).

Theorem 3. Assume that the condition (H1) is satisfied, and the inequality

(el + )L
|A|A1r<ql+1> [AJMT (w + g1 +1)/ 7

1+ |A| petn=ai
+
Z 3 M (IAIF( —gi+1)  [Al(w+aq — qi)) (13)

L THNE ET N EUL
S MNAN( +pj+1) AT (w+q1+p))
<1

holds, then Equation (1) has a unique solution.

Proof. For any u, uy € C(J,R), there is

[|Furg — Fuy|| <

= |A|S“P{ i A= ) - ez

sef

+ Z 6Iz ,/1(1 —z)" 9y (2) — up(z) |dz

m

+Zr

j=1 qler]

" r(ql1+w> / (1= 2 pu(2) — pal2)|dz

m U g1 -
+1221"(47‘*%]1—‘11)/ (n —2)T N4 uy (2) — up(z)|dz (14)

UL K; 1
5 _ \wtmtp—1 _ d
L aTaTh) =2y (2) = a(2) e

/1<1 —z)" P g (2) — up(z)|dz
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1 15 B
Ms;él]o{ fa b =" I (z) — 9ol iz
+Z q /s(s_z)qﬂ"ﬂ“l(z)—uz(Z)Idz
Z g = N e) ~ ()}
By condition (H1), it follows that
m /\i m K]
12 =92)| < [+ L( L gy + L py) @ —w@l as)
=1 1 j=1

m
Letl3 =L +L2(

i=1

i e
=1 1"(1+p/-)

). Substituting (15) into (14), we obtain

1 [( 1+ A netn )
MIAII\T (g1 +1)  T(w+q1+1)

UL 1+ |A| ;7w+%*ﬂi
+ A +
1-:22 (F(ql —qi+1) " T(w+aq, —qi)) (16)

% 1+ A U
+ + up — Us||.
Z% ( T(q +p;+1) r(w‘f"h‘f’Pj))]Hl 2l

||9u1 —971/12|| S

w+q1+p;

Consequently, by utilizing Inequality (13), we can conclude that the operator J is
contractive. As a result, we can assert that there exists a unique solution for Equation (1)
based on the Banach fixed point theorem. [

3. Ulam Stability

In this section, we give the criterion of Ulam stability for Equation (1). To begin,
we provide the definitions of Ulam—Hyers stability and Ulam-Hyers—Rassias stability for
Equation (1).

Definition 3. Equation (1) has Ulam—Hyers stability if, given a unique solution u(s) € C(J,R),
there exists a positive real number ng > 0, such that, for any € > 0 and v(s) € C(],R) satisfying
the inequality

m m m m

‘(; DT 4 X;K]-Rlpf)v(s) — f(s,0(s), (2 AfDT 4 Z;KjRIpf)v(s)) <e, (17)
1= ]: 1= ]:

there is

[o(s) —u(s)| < nge.

Definition 4. Equation (1) is Ulam—Hyers—Rassias stable with respect to {(s) € C(J,R) if, given
a unique solution u(s) € C(J,R), there exists a positive real number ny > 0, such that for any
€ > 0and v(s) € C(J,R) satisfying the inequality

(30 MDY KRIPYos) — £(s,0(s), (3 AT + 3 KRIPJo(s))| < eg(s),  (18)
i=1 j=1 i=1 j=1
there is

[o(s) —u(s)| < ngeg(s).

Remark 1. A function v(s) is a solution of the inequality (17), if and only if there exists
o(s) € C(J,R) that satisfies the following conditions:
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(S1) le(s) <e,

S
(82) (X A€DT + 32 KRIP)o(s) = £(s,0(s), (£ A<D + 3 KRIP))o(s)) + o (s),
i=1 j=1 i=1 =1

Remark 2. A function v(s) is a solution of the inequality (18), if and only if there exists
o(s) € C(J,R) that satisfies the following conditions:
(S3) o (s)] < eG(s),

(S4) (X A€DT + 5 KRIP)o(s) = £(5,0(5), (£ AD + ¥ KiRIP)o(s)) + o (s),
i=1 j=1 i=1 =1

Theorem 4. Assume that condition (H1) is satisfied; then, Equation (1) has Ulam—Hyers stability.

Proof. Given that v(s) is a solution of the inequality (17), and u(s) is the unique solution
of Equation (1), then v(s) satisfies the following equation:

(ﬁ ACDYi 4 f KjRIpf)v(s) = f(s,0(s), ( % ADYi 4 f KjRIpJ')v(S)) +o(s),
i=1 j=1 i=1 j=1

U(O) = 0/ CDZU(O) = 0/ l = 1/2/"' rnfzr

v(1) = R1vo(n).

(19)

There is
gn1 1 1

4+ — 7/ 1—2)1" 1o (z)dz
M|A| [r(lh) 0 ( ) 2

1 e
T +w) /0 (1= 2)* o2z +

v(s) =Fv(s)

1 -~
)\1F(Q1)/0(S_Z)q 1U(z)dz.

By Remark 1, it follows that

1 1 petm 1 ] ‘

€
) =796 < 3|3 (Fr 70 * T 7w s D) F@ D

Denoting

i s
MLUANT (g1 +1) T(g+w+1)/ T(g+1))

Then, it follows that
[v(s) — Fo(s)| < €.

Thus, we can deduce that

[o(s) —u(s)| <[o(s) = Fo(s)| + [Fo(s) — u(s)]

[o(s) —u(s)| 7 1+ A netn
<eb L
ST A [(T(q1+1) T(w+q1+1)) °
m 1+ |A| 17“7+‘71_‘7i
Xﬁ (r(fh—%’-i‘l) F(w+q1—qi))

w+q1tp;

+ YA
i=
- 1+ A U
+ Y K; + .
]; ](F(q1+m+1) F(W+q1+pj>ﬂ
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Let

1+ 4] petn - 1+ 4| et
— L+ Y A
KF(%H) T(w+q1+1>) ’ 1:22 ’(T(ql—qu) T(w+q1—qi>)

m 1+ |A| ’7w+q1 +pj
+ Y K - :
,; ](F(q1+m+1) F(w+q1+rﬂj)>}

Then, we obtain
|v(s) —u(s)| < ed+ Mlv(s) — u(s)|.

Thus, we have
€l
1-M

Based on Definition 3, we can conclude that Equation (1) has Ulam-Hyers stability. [

[v(s) —u(s)| <

To obtain the Ulam-Hyers—Rassias stability of Equation (1), assume that the following
condition holds:

Hypothesis 3 (H3). There exist constants Mg, Nz > 0 and a nondecreasing function
¢(s) € C(J,R), such that

RINg(s) < Mgg(s), "19TME(s) < Neg(s), s € J.

Theorem 5. Assume that the conditions (H1) and (H3) are satisfied, then Equation (1) has
Ulam—Hyers—Rassias stability.

Proof. Given that v(s) is a solution of the inequality (18), and u(s) is the unique solution
of Equation (1), then v(s) satisfies the following equation:

A€DI 4 3 KRIPYo(s)) + o (s),

(L A€DT + ¥ KRIPo(s) = £(s,0(s), (
i i=1 j=1

i=1 j=1 i
v(0) =0, ‘D'v(0) =0,1=1,2,--- ,n—2,
v(1) = R1vo(n).

m

(20)

There is
n—1
0l8) =00 + 3 [y (127 )z
1 n Wi — 1 s -1\ d
Ty b 0]+ s [ -2 (e

By Remark 2 and (H3), it follows that

[o(s) - Fo(s)] < ( At Jea(s) = edzg(s)
Denoting
_ M+ N M
=0ar T

Then, it follows that
[o(s) — Fo(s)] < edd(s).
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Thus, we can deduce that
[v(s) —u(s)| <[v(s) — Fo(s)| + |Fo(s) —u(s)|

[o(s) —u(s)| 17 1+ 4| petn
<
<e0gé(s) + M|A| [(r(thrl) * F(W+Q1+1))L3
m 1+ |A| ;7“”“71*%‘
+ A
l-; ’<F(¢h—qi+1) F(w+q1—qi)>

m 1+ |A| 1,](U+t]1+Pj
+ YK + :
]; ’<F(q1+Pj+1) F(W+Q1+Pj))]

1

Then, we obtain
[0(s) —u(s)| < €6z¢(s) + Mlv(s) —u(s)|.

Hence, we have

€66 (s)
4
— < .
[o(s) — u(s)| < S
Based on Definition 4, we can conclude that Equation (1) has Ulam-Hyers—Rassias

stability. O

Example 1. Let us consider a four-term implicit fractional order differential equation with boundary
conditions:

‘DMu(s) + %CDO'Su(s) +R1O3u(s) + R1%%u(s) =

1.9 1c0.38 R703 R702
sinu(s) ‘D"u(s) + 15°D"%u(s) + “I"u(s) + I u(s)‘
100 + , (21)
50(1 + € DYu(s) 4+ 756D8u(s) + R103u(s) 4+ R102u(s) D
u(0) =0,

u(1) = R1%1y(0.5),

whereq1 =19,9 =08, p1 =03, p2 =02, w=01,4y=05 A =1 A = L Ki =K, =1,

107
and
2 2 .
. , sinu(s)
fsu(s), (L ADY+ Y KRIP)u(s)) =
( g7 T H ) = 0
“DYu(s) + §5DOSu(s) + K1%3u(s) + R102u(s)|
+ .
50(1+ |"D19u(s) + $DOBu(s) + RI%3u(s) + R12u(s)) )

Then, we obtain

2 2 2 2
e, (4D + LK 1P)33(5)) = 5 (5, (3 44D+ 1 K17 ()|
= = i= j=

< |sinuy (s) — sinuy(s)| DY (uy(s) — ua(s)) + 11*()CD0'8(”1(5) - uZ(S))‘

+

100 50
[RIO3(uq () — ua(s)) + K102 (uy (s) — Mz(s))‘
+
50
2 2 2 2
(X AfD% + Y KRIP)uy(s) — (X AD% + 1 Klepj)uz(S)’
<|M1(S) — ua(s)| 4 i=1 j=1 i=1 j=1

- 100 50
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n+w

M@)o~ rm =1 — 0-8939. When

Denoting L1 = 11Wr L, = 51—0, and A =1 —
uy1, uy > 0, it follows that

(s Er )
[AIMT (g1 +1)  [AAMT(w+q1+1)/) 7
mooa 1—|—|A\ 77w+fh*%'
+ —
£A1<\Alf(q1—qi+1) \Alf(w+q1—qf))
m K 1 A w+q1+p;j
+27]( + 4] + 1
S MVAL(g+pj+1) AT (w+ g1+ p))

(22)

)} —0.5383 < 1.

Consequently, based on Theorem 3, we can conclude that Equation (21) has a unique solution.
Moreover, the conditions of Theorem 4 are also satisfied. As a result, we can assert that Equation (21)
has Ulam—Hyers stability.

4. Conclusions

In this paper, we focused on investigating the existence results and Ulam stability
of multi-term implicit fractional differential equations with boundary conditions. We
established an equivalent integral expression of Equation (1), and proved the existence
and uniqueness results via the Schauder fixed point theorem and the Banach fixed point
theorem. Additionally, we provided the criteria for the Ulam-Hyers stability and Ulam—
Hyers—Rassias stability of Equation (1). Finally, we presented an example to demonstrate
the effectiveness and validity of the obtained results. Similarly, we can consider the
existence results and stability of the solutions to multi-term implicit differential equations
with Riemann-Liouville, Hilfer, and other fractional-order derivatives.

Author Contributions: Conceptualization, PW., B.H. and ].B.; writing, B.H.; writing—review and
editing, PW. and ].B.; Supervision, PW. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China
(No. 12171135).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,
The Netherlands, 2006.

2. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69,
2677-2682. [CrossRef]

3. Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. ]. Math. Anal. Appl. 2002, 265, 229-248. [CrossRef]

4. Agarwal, R,; O’'Regan, D.; Hristova, S. Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math.
2015, 60, 653-676. [CrossRef]

5. Hristova, S.; Tersian, S.; Terzieva, R. Lipschitz Stability in Time for Riemann-Liouville Fractional Differential Equations. Fractal
Fract. 2021, 5, 37. [CrossRef]

6. Agarwal, R.; Almeida, R.; Hristova, S.; O'Regan, D. Caputo fractional differential equation with state dependent delay and
practical stability. Dyn. Syst. Appl. 2019, 28, 715-742.

7. Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, N, USA, 1940.

8. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222-224. [CrossRef]

9.  Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297-300. [CrossRef]

10. Benchohra, M.; Bouriah, S.; Nieto, ].J. Existence and Ulam stability for nonlinear implicit differential equations with Riemann-
Liouville fractional derivative. Demonstr. Math. 2019, 52, 437-450. [CrossRef]

11.  Chen, C,; Li, M. Existence and Ulam type stability for impulsive fractional differential systems with pure delay. Fractal Fract. 2022,

6, 742. [CrossRef]


http://doi.org/10.1016/j.na.2007.08.042
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.1007/s10492-015-0116-4
http://dx.doi.org/10.3390/fractalfract5020037
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1
http://dx.doi.org/10.1515/dema-2019-0032
http://dx.doi.org/10.3390/fractalfract6120742

Fractal Fract. 2024, 8, 311 15 of 15

12.

13.

14.

15.

16.

17.

Subramanian, M.; Aljoudi, S. Existence and Ulam-Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order
with Nonlocal Generalized Conditions via Generalized Liouville-Caputo Derivative. Fractal Fract. 2022, 6, 629. [CrossRef]
Alam, M.; Khan, A.; Asif, M. Analysis of implicit system of fractional order via generalized boundary conditions. Math. Methods
Appl. Sci. 2023, 46, 10554-10571. [CrossRef]

Ali, G.; Shah, K.; Rahman, G.U. Existence of solution to a class of fractional delay differential equation under multi-points
boundary conditions. Arab. J. Basic Appl. Sci. 2020, 27, 471-479. [CrossRef]

Alam, M.; Zada, A.; Abdeljawad, T. Stability analysis of an implicit fractional integro-differential equation via integral boundary
conditions. Alex. Eng. J. 2024, 87, 501-514. [CrossRef]

Rahman, G.; Agarwal, R.P.; Ahmad, D. Existence and stability analysis of nth order multi term fractional delay differential
equation. Chaos Solitons Fractals 2022, 155, 111709. [CrossRef]

Derbazi, C.; Baitiche, Z.; Abdo, M.S. Extremal solutions of generalized Caputo-type fractional-order boundary value problems
using monotone iterative method. Fractal Fract. 2022, 6, 146. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.3390/fractalfract6110629
http://dx.doi.org/10.1002/mma.9139
http://dx.doi.org/10.1080/25765299.2020.1850621
http://dx.doi.org/10.1016/j.aej.2023.12.055
http://dx.doi.org/10.1016/j.chaos.2021.111709
http://dx.doi.org/10.3390/fractalfract6030146

	Introduction
	Existence of Solutions
	Existence Result Using the Shauder Fixed Point Theorem
	Existence Result Using the Banach Fixed Point Theorem

	Ulam Stability
	Conclusions
	References

