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Abstract: To better simulate the prices of underlying assets and improve the accuracy of pricing
financial derivatives, an increasing number of new models are being proposed. Among them, the
Lévy process with jumps has received increasing attention because of its capacity to model sudden
movements in asset prices. This paper explores the Hamilton–Jacobi–Bellman (HJB) equation with a
fractional derivative and an integro-differential operator, which arise in the valuation of American
options and stock loans based on the Lévy-α-stable process with jumps model. We design a fast
solution strategy that includes the policy iteration method, Krylov subspace method, and banded
preconditioner, aiming to solve this equation rapidly. To solve the resulting HJB equation, a finite
difference method including an upwind scheme, shifted Grünwald approximation, and trapezoidal
method is developed with stability and convergence analysis. Then, an algorithmic framework
involving the policy iteration method and the Krylov subspace method is employed. To improve
the performance of the above solver, a banded preconditioner is proposed with condition number
analysis. Finally, two examples, sugar option pricing and stock loan valuation, are provided to
illustrate the effectiveness of the considered model and the efficiency of the proposed preconditioned
policy–Krylov subspace method.

Keywords: banded preconditioner; American option pricing; fractional partial integro-differential
equation; stability; stock loan
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1. Introduction

The option-pricing problem has always been a hot research topic in finance, as options
are important tools for investment and hedging risk. Among a variety of option products,
American options have gained popularity in the market because they can be exercised
before maturity. This feature makes them the predominant type of options sold in the
market. Concurrently, stock loans have become commonplace in the current financial
market, and determining how much money can be loaned against the current value of
stocks has also emerged as a significant area of research. Given that both of these financial
instruments can be exercised (or repaid) at any time, their prices (or loan amounts) can be
determined by solving the following linear complementarity problem (LCP):

LU(x, t) ≥ 0,
U(x, t) ≥ U∗(x, t),
LU(x, t)[U(x, t)− U∗(x, t)] = 0,

(1)
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where L is a linear operator containing partial derivatives, U(x, t) represents the value,
and U∗(x, t) signifies the constraint.

To solve the LCP (1), it is necessary to understand the definition of the operator
L, which depends on the assumed underlying asset price behavior. According to the
well-known Black–Scholes model [1], the underlying asset price is modeled as follows:

dSt = νStdt + σStdWt,

where St is the assets’ price, Wt represents the standard Brownian motion, ν is the drift rate
of the asset’s return, and:

LU(S, t) := −∂U(S, t)
∂t

− 1
2

σ2S2 ∂2U(S, t)
∂S2 − rS

∂U(S, t)
∂S

+ rU(S, t),

with r being the interest rate, σ being the volatility, and S being the asset’s price. However,
this model cannot account for many empirical observations of asset prices, such as sudden
price movements. Hence, new models have been proposed to handle these issues, including
stochastic volatility models [2,3], jump diffusion models [4], self-exciting jump models [5],
Hawkes jump diffusion models [6], mixed fractional Brownian model [7], two-factor non-
affine stochastic volatility model [8], and sub-fractional Brownian model [9,10]. The model
based on the Lévy process, notable for its ability to model price jumps and transform into a
fractional diffusion equation [11], is among these. With different density functions, different
models have been proposed, such as the KoBoL model [12], the CGMY model [13], and the
FMLS model [14]. The Lévy process with jumps has also been proposed to more accurately
describe the price of underlying assets [15,16]. In this paper, this stochastic process is used
to model the underlying assets, defined by

dxt = (r − ν − λ̃ξ)dt + σdLα,−1
t + d(

Nt

∑
i=1

Yi),

where xt = ln St and t denotes the current time, with ν = − 1
2 σα sec( απ

2 ) being the convexity
adjustment. The variable Lα,−1

t represents the Lévy-α-stable process with maximum skew-
ness, where the tail index α falls within the range of (1, 2). Nt denotes a Poisson process
characterized by the jump intensity λ̃ ≥ 0. {Yi, i = 1, 2 . . .} is a sequence of independent

and identically distributed random variables, and ξ = euJ+
σ2

J
2 − 1, where the parameters uJ

and σJ represent the expectation and standard deviation of the jumps, respectively. Then,
the operator LU(x, t) includes both a fractional derivative and an integral operator (for
more details, refer to the following section). By solving the LCP in (1) with this LU(x, t)
under specific boundary and initial conditions, we can determine the price of American
options or the value of stock loans.

To address the LCP arising from the valuation of American options and stock loans,
various numerical algorithms have been developed. These can be categorized into five pri-
mary strategies. The first focuses on identifying the optimal execution boundary to resolve
the challenges, as demonstrated by the approach presented in [17]. The second strategy
transforms the problem into a linear framework through either semi-implicit or implicit–
explicit schemes, such as the L-stable method [18], the linearly implicit predictor–corrector
scheme [19], and the IMEX BDF method [20]. The third approach converts the problem
into a nonlinear equation, utilizing iterative methods for solution acquisition, including the
fixed-point method [21], the preconditioned penalty method [22], and the modulus-based
matrix splitting iteration method [23]. The fourth approach involves devising iterative
methods for direct LCP resolution, exemplified by the projected SOR method [24] and
the projected algebraic multigrid method [25]. The last category of algorithms consists of
the recently popular deep learning algorithms, such as the neural network method [26]
and the physics-informed neural network method [27]. For the LCP discussed in this
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paper, a Laplace transform method is introduced for rapid resolution by avoiding time
marching [15]. Moreover, a fast solution strategy that combines Newton’s method with
the preconditioned conjugate gradient normal residual method is proposed in [16], bene-
fiting from fast Fourier transformation acceleration and achieving an operational cost of
O(N log N) per inner iteration. This paper introduces an alternative approach, translating
the LCP into a Hamilton–Jacobi–Bellman (HJB) equation, and devising a fast algorithm for
its resolution, complete with theoretical assurances.

This study aims to devise a fast algorithm for solving the HJB equation, which includes
a fractional derivative and an integral operator derived from the LCP based on the Lévy-
α-stable process with jumps model. To tackle this equation, a nonlinear finite difference
method is developed, accompanied by stability and convergence analyses. Subsequently,
the policy iteration method and the Krylov subspace method are applied to solve the
resultant finite difference scheme. A banded preconditioner is also proposed to enhance
the convergence speed of the internal iterative method, supported by theoretical analysis.
These steps enable the development of a preconditioned policy–Krylov subspace method
for solving the fractional partial integro-differential HJB equations in finance, ensuring an
efficient and theoretically sound solution.

The rest of this article is organized as follows: The description of the equation consid-
ered in this paper is illustrated in Section 2. A nonlinear finite difference scheme is proposed
in Section 3 to discretize the HJB equation with the unconditional stability guarantee and
first-order convergence rate. In Section 4, a fast algorithm framework incorporating the
policy iteration method and the Krylov subspace method is introduced. In Section 5, a
banded preconditioner is proposed with theoretical analysis about the condition number of
the preconditioned matrix. Numerical experiments are given in Section 6, and conclusions
are drawn in Section 7.

2. Description of the Equation

As described in Section 1, the price of the American options and the stock loans can
be obtained by solving the LCP in (1). Referring to [28], solving the LCP can be achieved
by converting it into an HJB equation. Then the pricing model based on the Lévy-α-stable
process with jumps considered in this paper can be solved by solving the following HJB
equation, which is defined as follows:

min{LU(x, t), U(x, t)− U∗(x, t)} = 0, (x, t) ∈ (xL, xR)× [0, T),
U(x, T) = Ψ(x, T), x ∈ (xL, xR),
U(xL, t) = Ψ(xL, t), U(xR, t) = Ψ(xR, t), t ∈ [0, T],

(2)

where x = ln S, and S is the asset’s price. In the above equation, LU(x, t) is defined by

LU(x, t) := −∂U(x, t)
∂t

− (r − ν − λ̃ξ)
∂U(x, t)

∂x
− νDα

−U(x, t)

+(r + λ̃)U(x, t)− λ̃
∫ +∞

−∞
U(x + y, t) f (y)dy,

(3)

where Dα
−U(x, t) is the left Riemann–Liouville fractional derivative [29], and the definition

of the parameters r, ν, λ̃, ξ has been given in Section 1. The boundary conditions and initial
condition are determined by the function Ψ(x, t), which has different meanings in different
problems. This paper considers the problems of pricing American options and stock loans;
hence, the definition of Ψ(x, t) is given as follows:

Ψ(x, t) =

{
max(0, ex − K), for American option pricing,
max{0, ex − Keγt}, for stock loan pricing,
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for x ∈ (−∞, ∞) and t ∈ [0, T]. For the American option pricing, K is the strike price.
For stock loan pricing, K is the principal value, and γ is the interest rate of the loan [30].
Additionally, U(z, t) = Ψ(z, t) for z ∈ (−∞, xL) ∪ (xR, ∞) in (3).

The main difficulty in solving the HJB Equation (2), apart from it being a nonlinear
equation, also lies in how to handle the Riemann–Liouville fractional derivative and the
integral operator. First is the Riemann–Liouville fractional derivative, which is defined
as follows:

Dα
−U(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ x

−∞

U(ζ, t)
(x − ζ)α−1 dζ.

Because it is a global operator, using the shifted Grünwald approximation [29] will result
in a dense coefficient matrix after discretization, thus making the solution challenging.

On the other hand, the integro-differential part
∫ +∞
−∞ U(x + y, t) f (y)dy also poses

computational difficulties. If the trapezoidal method is used for discretization [15], it will
also result in a dense coefficient matrix. Therefore, in summary, when designing a fast
algorithm to solve the HJB equation, it is necessary to address the computational challenges
posed by a fractional derivative and an integro-differential operator. In addition, differing
from Refs. [15,16], the probability density function f (z) of Yi is described by the following
Gaussian distribution formula [31]:

f (z) =
e−(z−uJ)

2/2σ2
J

√
2πσJ

.

3. Finite Difference Method with Theoretical Analysis

As mentioned above, since LU(x, t) in the HJB Equation (2) involves both a fractional
derivative and an integral operator, finding the analytical solution to the HJB equation is
challenging. Consequently, numerical methods become the primary approach for solving
the aforementioned HJB equation. In this section, a finite difference method is developed
to discretize the equation, which includes the shifted Grünwald approximation, an upwind
scheme and the trapezoidal formulas.

3.1. Finite Difference Method

Let N and M be positive integers. Divide the spatial interval [xL, xR] and temporal
interval [0, T] into N + 1 and M sub-intervals, respectively. That is,

xi = xL + ih, for i = 0, 1, . . . , N+1,

tm = T + mτ, for m = 0, 1, . . . , M,

where h = xR−xL
N+1 , τ = −T/M. With above finite difference mesh, the left fractional

derivative Dα
−U(x, t) can be discretized using the shifted Grünwald approximation [29],

expressed as

Dα
−U(xi, tm) =

1
hα

i+1

∑
k=0

g(α)k U(xi−k+1, tm) +O(h), (4)

for all 1 < α < 2. The sequence {g(α)k } is defined by
g(α)0 = 1,

g(α)k =
(−1)k

k!
α(α − 1)· · ·(α − k + 1), for k = 1, 2, 3 . . . .

(5)

For the advection term, the upwind scheme [32] is applied, as given by

∂U(xi, tm)

∂x
=

{
U(xi+h,tm)−U(xi ,tm)

h +O(h), i f r − ν − λ̃ξ ≥ 0,
U(xi ,tm)−U(xi−h,tm)

h +O(h), i f r − ν − λ̃ξ < 0.
(6)
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In addition, the integral part in (3) can be approximated by the trapezoidal formulas. To
simplify the notation, we denote Ω(û, σ̂, x) as

Ω(û, σ̂, x) = 1 − F(x) =
∫ +∞

x

e−(z−û)2/2σ̂2

√
2πσ̂

dz, (7)

where F(x) =
∫ x
−∞

e−(z−û)2/2σ̂2
√

2πσ̂
dz denotes the cumulative distribution function with expecta-

tion û and standard deviation σ̂, evaluated at the values in x.
To simplify the analysis, we assume that the truncation domain is sufficiently large; i.e.,

the left and right boundary conditions for the American call option are 0 and ex − K, respec-
tively. As mentioned before, the value outside the domain satisfies that U(z, t) = Ψ(z, t)
for z ∈ (−∞, xL) ∪ (xR, ∞). Similar to the approach in [33], with the notation given in (7),
when x = xi, we have∫ +∞

−∞
U(xi + z, tm) f (z)dz

=
∫ x0−xi

−∞
U(xi + z, tm) f (z)dz +

∫ xN+1−xi

x0−xi

U(xi + z, tm) f (z)dz

+
∫ +∞

xN+1−xi

U(xi + z, tm) f (z)dz

=
∫ x0−xi

−∞
U(xi + z, tm) f (z)dz +

N

∑
j=0

∫ xj+1−xi

xj−xi

U(xi + z, tm) f (z)dz

+
∫ +∞

xN+1−xi

U(xi + z, tm) f (z)dz

=
N

∑
j=0

1
2
[U(xj, tm) + U(xj+1, tm)]

∫ (j−i+1)h

(j−i)h
f (z)dz + ηi +O(h2)

=
N

∑
j=0

ρj−i[U(xj, tm) + U(xj+1, tm)] + ηi +O(h2),

(8)

and define ρj as follows,

ρj =
1
2

∫ (j+1)h

jh
f (z)dz =

1
2

∫ (j+1)h

jh

e−(z−uJ)
2/2σ2

J
√

2πσJ
dz,

=
1
2

Ω(uJ , σJ , jh)− 1
2

Ω(uJ , σJ , (j + 1)h).

(9)

Additionally, ηi varies based on the financial product in question. For the American option
pricing, ηi is defined as follows:

ηi =
∫ +∞

xN+1−xi

(exi+z − K) f (z)dz =
∫ +∞

xN+1−xi

(exi+z − K)
e−(z−uJ)

2/2σ2
J

√
2πσJ

dz

= e
σ2

J +2uJ+2xi
2

∫ +∞

xN+1−xi

e−(z−(uJ+σ2
J ))

2/2σ2
J

√
2πσJ

dz − K
∫ +∞

xN+1−xi

e−(z−uJ)
2/2σ2

J
√

2πσJ
dz

= e
σ2

J +2uJ+2xi
2 Ω(uJ + σ2

J , σJ , xN+1 − xi)− KΩ(uJ , σJ , xN+1 − xi).

(10)

Similarly, by assuming that the truncation domain for the stock loan is sufficiently large,
then the left and right boundary conditions are set to 0 and ex − Keγt, respectively. Thus,
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the operator
∫ +∞
−∞ U(xi + z, tm) f (z)dz, used in the stock loan pricing, can be discretized

according to (8), and ηi is given by

ηi = e
σ2

J +2uJ+2xi
2 Ω(uJ + σ2

J , σJ , xN+1 − xi)− KeγtΩ(uJ , σJ , xN+1 − xi).

Also, denote c1 = r − ν − λ̃ξ, c2 = ν, c3 = r + λ̃, c4 = λ̃; combining (4), (6) and (8), the
HJB Equation (2) can be discretized as

min{L̃um+1
i , um+1

i − um+1,∗
i } = 0, (11)

where um
i ≈ U(xi, tm), um,∗

i ≈ Ψ(xi, tm),

L̃um+1
i = −

um+1
i − um

i
τ

− c1

um+1
i+θ − um+1

i−(1−θ)

h
− c2

hα

i+1

∑
k=0

g(α)k um+1
i−k+1

+c3um+1
i − c4(

N

∑
j=0

ρj−i[um+1
j + um+1

j+1 ] + ηi),

(12)

and

θ =

{
1, if c1 ≥ 0,
0, if c1 < 0.

3.2. Matrix Form

To simplify the notation of the matrix form, we use Tn to denote an n-by-n Toeplitz
matrix, which is defined by

Tn(tn−1, . . . , t1; t0; t−1, . . . , t1−n) =



t0 t−1 · · · t2−n t1−n
t1 t0 t−1 · · · t2−n
... t1 t0

. . .
...

tn−2 · · · . . . . . . t−1
tn−1 tn−2 · · · t1 t0

.

Define the vectors um = [um
1 , um

2 , um
3 , . . . , um

N ]
T , um,∗ = [um,∗

1 , um,∗
2 , um,∗

3 , . . . , um,∗
N ]T ,

f m = [ f m
1 , f m

2 , f m
3 , . . . , f m

N ]T . Since τ < 0, L̃um+1
i ≥ 0 is equal to −τL̃um+1

i ≥ 0. Then,
the matrix form of the numerical scheme (11) can be written as

min{Wum+1 − um + τ f m+1, um+1 − um+1,∗} = 0, (13)

where
W = (1 − τc3)IN +

τc1

h
D +

τc2

hα
G + τc4S, (14)

and IN is an N by N identity matrix; other matrices in (14) can be expressed by

D = Tn(0, 0, . . . , θ − 1; 1 − 2θ; θ, 0, . . . , 0),

G = Tn(g(α)n , g(α)n−1, . . . , g(α)2 ; g(α)1 ; g(α)0 , 0, 0 . . . , 0),

S = Tn(s1−N , s2−N , . . . , s−1; s0; s1, s2, . . . , sN−1),

where

sj =
1
2

∫ (j+1)h

(j−1)h
f (z)dz =

1
2

∫ (j+1)h

(j−1)h

e
−(z−µ)2

2σ2

√
2πσJ

dz =
1
2

Ω(uJ , σJ , (j− 1)h)− 1
2

Ω(uJ , σJ , (j+ 1)h).
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To simplify the notation, we assume that the truncation domain is large, then the specific
form of the entry f m

i is given as follows:

f m
i =


c4(ηi + ρN−ium+1

N+1), i f i = 1, 2, . . . , N − 1,
c4(ηN + ρ0um+1

N+1) +
c2
hα um+1

N+1 +
c1
h um+1

N+1, i f i = N and c1 ≥ 0,
c4(ηN + ρ0um+1

N+1) +
c2
hα um+1

N+1, i f i = N and c1 < 0.

3.3. Stability and Convergence Analysis

Although the numerical scheme has been developed, theorems about the stability and
convergence are still needed to ensure the numerical solution can be obtained correctly. For
theoretical analysis, the following proposition is introduced.

Proposition 1 ([34]). The sequence {g(α)k } defined in (5) has the following properties:{
g(α)0 = 1, g(α)1 = −α < 0, g(α)2 > g(α)3 > g(α)4 > · · · > 0,

∑∞
k=0 g(α)k = 0, ∑n

k=0 g(α)k < 0, ∀n ≥ 1.

The above proposition provides the properties of the shifted Grünwald approximation.
Additionally, one more lemma is needed to analyze the properties of the integral operator,
which is given as follows:

Lemma 1. With the density function f (z), the entries of the matrix S satisfy

0 <
N−1

∑
1−N

sj < 1.

Proof. By the definition of sj, we have

N−1

∑
1−N

sj =
1
2

N−1

∑
j=1−N

∫ jh

(j−1)h

e
−(z−µ)2

2σ2

√
2πσJ

dz +
∫ (j+1)h

jh

e
−(z−µ)2

2σ2

√
2πσJ

dz


=

1
2

∫ (N−1)h

−Nh

e
−(z−µ)2

2σ2

√
2πσJ

dz +
∫ Nh

(1−N)h

e
−(z−µ)2

2σ2

√
2πσJ

dz


<1.

On the other hand, sj is equal to the probability of a variable X that follows a normal
distribution, in the range of (j − 1)h to (j + 1)h, that is, Pr((j − 1)h < X < (j + 1)h).
Therefore, its value is definitely greater than 0 for all j.

In the following analysis, the properties of the M-matrix play an important role.
Therefore, the definition of the M-matrix is provided first. A matrix is called an M-matrix
if it is a diagonally dominant matrix, with all entries on the main diagonal being positive
and all off-diagonal entries being negative [35]. To prove the stability and convergence of
the numerical scheme, combining Proposition 1 and Lemma 1, the properties of matrix W
are analyzed.

Lemma 2. For 1 < α < 2, the matrix W = [wi,j]
N
i,j=1 is an M-matrix, and satisfies

|wi,i| −
N

∑
j=1,j ̸=i

|wi,j| ≥ 1 + |τ|r.
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Proof. By the definition of D and G, and with Proposition 1, it is straightforward to
understand that the matrices τc1

h D and τc2
hα G are the weakly diagonally dominant matrices

which have positive diagonals and non-positive off-diagonals. Let us denote a matrix W̃ as
W̃ = (1 − τc3)IN + τc4S. Then, we obtain that

|w̃i,i| −
N

∑
j=1,j ̸=i

|w̃i,j| ≥1 − τc3 + τc4s0 − |τ|c4

N−1

∑
j=1−N,j ̸=0

|sj|

=1 + |τ|r + |τ|c4 − |τ|c4

N−1

∑
j=1−N

|sj|

≥1 + |τ|r.

and

w̃i,j =

{
1 + |τ|r + |τ|c4 − |τ|c4s0, f or i = j,
τc4sj, f or i ̸= j.

(15)

Based on the definition of W̃ in (15), and given that τsj < 0 and |τ|c4 > |τ|c4s0, W̃ is a
diagonally dominant matrix with positive diagonals and negative off-diagonals. Since
the sum of matrices W̃, τc1

h D and τc2
hα G constitutes the matrix W, we know that W is an

M-matrix and satisfies |wi,i| − ∑N
j=1,j ̸=i |wi,j| ≥ 1 + |τ|r.

To prove that the numerical scheme is stable, we assume that um
i and ũm

i are both
the numerical solutions of the scheme (13). Denote that Em

i = um
i − ũm

i and the vector
Em = [Em

1 , Em
2 , . . . , Em

N ]
T , then we have the following theorem.

Theorem 1. The proposed nonlinear scheme (13) is unconditionally stable, that is,

∥Em∥∞ ≤ ∥E0∥∞,

where m = 1, 2, . . . , M.

Proof. Assume that the i0-th entry of the vector Em is such that ∥Em∥∞ = |Em
i0
| = max{|Em

i |}
for i = 1, 2, . . . , N. We can then proceed with the proof as follows: since um

i and ũm
i are both

the numerical solutions of the scheme, we are given the following two equations:

min{Wum − um−1 + τ f m, um − um,∗} = 0,

min{Wũm − ũm−1 + τ f m, ũm − um,∗} = 0.

By assuming the existence of the solution, the proof can be discussed in four cases.
Case 1: Assume that in the i0-th row of the vector um and ũm, two solutions satisfy
∑N

j=1 wi0,jum
j − um−1

i0
+ τ f m

i0
= 0, um

i0
≥ um,∗

i0
, ∑N

j=1 wi0,jũm
j − ũm−1

i0
+ τ f m

i0
= 0, and ũm

i0
≥ um,∗

i0
.

Then we have the following equation:

N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 =
N

∑
j=1

wi0,jũm
j − ũm−1

i0
+ τ f m

i0 +
N

∑
j=1

wi0,jEm
j − Em−1

i0

=
N

∑
j=1

wi0,jEm
j − Em−1

i0
.

With Lemma 2, this yields

∥Em∥∞ = |Em
i0 | ≤ |

N

∑
j=1

wi0,jEm
j | = |Em−1

i0
| ≤ ∥Em−1∥∞.
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Case 2: In the i0-th row of the vector um and ũm, two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+

τ f m
i0

≥ 0, um
i0
= um,∗

i0
, ∑N

j=1 wi0,jũm
j − ũm−1

i0
+ τ f m

i0
= 0, and ũm

i0
≥ um,∗

i0
. Then, we have

Em
i0 = um

i0 − ũm
i0 = um,∗

i0
− ũm

i0 ≤ 0.

On the other hand, this leads to

N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 =
N

∑
j=1

wi0,jũm
j − ũm−1

i0
+ τ f m

i0 +
N

∑
j=1

wi0,jEm
j − Em−1

i0

=
N

∑
j=1

wi0,jEm
j − Em−1

i0
≥ 0.

With Lemma 2, we have

Em−1
i0

≤
N

∑
j=1

wi0,jEm
j ≤ Em

i0 ≤ 0.

Thus,
∥Em∥∞ ≤ ∥Em−1∥∞.

Case 3: In the i0-th row of the vector um and ũm, two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+

τ f m
i0

= 0, um
i0
≥ um,∗

i0
, ∑N

j=1 wi0,jũm
j − ũm−1

i0
+ τ f m

i0
≥ 0, and ũm

i0
= um,∗

i0
. Then, we have

Em
i0 = um

i0 − ũm
i0 = um

i0 − um,∗
i0

≥ 0,

and

N

∑
j=1

wi0,jũm
j − ũm−1

i0
+ τ f m

i0 =
N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 −
N

∑
j=1

wi0,jEm
j + Em−1

i0

=−
N

∑
j=1

wi0,jEm
j + Em−1

i0
≥ 0.

Then,

0 ≤ Em
i0 ≤

N

∑
j=1

wi0,jEm
j ≤ Em−1

i0
.

This leads to
∥Em∥∞ ≤ ∥Em−1∥∞.

Case 4: In the i0-th row of the vector um and ũm, two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+

τ f m
i0

≥ 0, um
i0

= um,∗
i0

, ∑N
j=1 wi0,jũm

j − ũm−1
i0

+ τ f m
i0

≥ 0, and ũm
i0

= um,∗
i0

. The following
inequality can be obtained:

∥Em∥∞ = |Em
i0 | = |um

i0 − ũm
i0 | = 0 ≤ ∥Em−1∥∞.

By combing the above four cases, we know that the proposed scheme (13) is unconditionally
stable, that is,

∥Em∥∞ ≤ ∥E0∥∞.

Theorem 2. The proposed nonlinear scheme (13) is convergent with first order, meaning that

∥um
i − U(xi, tm)∥∞ ≤ C(h + |τ|),

where m = 1, 2, . . . , M, and C is a positive constant.
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Proof. Similar to the proof of Theorem 1, by denoting Rm
i = C(h + |τ|), we know that the

solutions um
i and U(xi, tm) satisfy the following two equations:

min{
N

∑
j=1

wi,jum
j − um−1

i + τ f m
i + τRm

i , um
i − um,∗

i } = 0,

min{
N

∑
j=1

wi,jU(xj, tm)− U(xi, tm−1) + τ f m
i , U(xi, tm)− um,∗

i } = 0,

respectively. Denote that em
i = um

i − U(xi, tm) and Rmax = maxi=1,...,N;m=1,...,M{|Rm
i |};

then we can start the analysis. Similarly to the proof of Theorem 1, by assuming that
∥em∥∞ = |em

i0
| = max{|em

i |} for i = 1, 2, . . . , N, the proof can be completed by dividing into
four cases.
Case 1: Two solutions satisfy ∑N

j=1 wi0,jum
j − um−1

i0
+ τ f m

i0
+ τRm

i0
= 0, um

i0
≥ um,∗

i0
,

∑N
j=1 wi0,jU(xj, tm) − U(xi0 , tm−1) + τ f m

i0
= 0, and U(xi0 , tm) ≥ um,∗

i0
. Then we have the

following equation:

N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 + τRm
i0 =

N

∑
j=1

wi0,jU(xj, tm)− U(xi0 , tm−1) + τ f m
i0 + τRm

i0

+
N

∑
j=1

wi0,jem
j − em−1

i0

=τRm
i0 +

N

∑
j=1

wi0,jem
j − em−1

i0
.

With Lemma 2, we have

∥em∥∞ = |em
i0 | ≤ |

N

∑
j=1

wi0,jem
j | = |τRm

i0 − em−1
i0

| ≤ ∥em−1∥∞ + |τ|Rmax.

Case 2: Two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+ τ f m
i0

+ τRm
i0

≥ 0, um
i0

= um,∗
i0

,

∑N
j=1 wi0,jU(xj, tm)− U(xi0 , tm−1) + τ f m

i0
= 0, and U(xi0 , tm) ≥ um,∗

i0
. Then,

em
i0 = um

i0 − U(xi0 , tm) = um,∗
i0

− U(xi0 , tm) ≤ 0.

On the other hand, this leads to

N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 + τRm
i0 =

N

∑
j=1

wi0,jU(xj, tm)− U(xi0 , tm−1) + τ f m
i0 + τRm

i0

+
N

∑
j=1

wi0,jem
j − em−1

i0

=
N

∑
j=1

wi0,jem
j − em−1

i0
+ τRm

i0 ≥ 0.

With Lemma 2, the following inequality can be obtained.

em−1
i0

− τRm
i0 ≤

N

∑
j=1

wi0,jem
j ≤ em

i0 ≤ 0.

Thus,
∥em∥∞ ≤ ∥em−1∥∞ + |τ|Rmax.
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Case 3: Two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+ τ f m
i0

+ τRm
i0

= 0, um
i0

≥ um,∗
i0

,

∑N
j=1 wi0,jU(xj, tm)− U(xi0 , tm−1) + τ f m

i0
≥ 0, and U(xi0 , tm) = um,∗

i0
. Then,

em
i0 = um

i0 − U(xi0 , tm) = um
i0 − um,∗

i0
≥ 0,

and

N

∑
j=1

wi0,jU(xj, tm)− U(xi0 , tm−1) + τ f m
i0 =

N

∑
j=1

wi0,jum
j − um−1

i0
+ τ f m

i0 −
N

∑
j=1

wi0,jem
j + em−1

i0

=−
N

∑
j=1

wi0,jem
j + em−1

i0
− τRm

i0 ≥ 0.

Then,

0 ≤ em
i0 ≤

N

∑
j=1

wi0,jem
j ≤ em−1

i0
− τRm

i0 .

This leads to
∥em∥∞ ≤ ∥em−1∥∞ + |τ|Rmax.

Case 4: Two solutions satisfy ∑N
j=1 wi0,jum

j − um−1
i0

+ τ f m
i0

+ τRm
i0

≥ 0, um
i0

= um,∗
i0

,

∑N
j=1 wi0,jU(xj, tm) − U(xi0 , tm−1) + τ f m

i0
≥ 0, and U(xi0 , tm) = um,∗

i0
. The following in-

equality can be obtained:

∥em∥∞ = |em
i0 | = |um

i0 − U(xi0 , tm)| = 0 ≤ ∥em−1∥∞ + |τ|Rmax.

By combing the above four cases, we have

∥em∥∞ ≤ ∥e0∥∞ + m|τ|Rmax ≤ TRmax = C(h + |τ|).

With Theorems 1 and 2, the proposed numerical scheme has been shown to be stable
and convergent. However, given its nature as a nonlinear finite difference scheme, a
numerical algorithm is required to address this problem. Consequently, a preconditioned
policy–Krylov subspace method is developed in the subsequent section.

4. Fast Policy–Krylov Subspace Iterative Method

Inspired by [28,36], this paper employs the policy iteration method to solve the discrete
HJB equation. Within each policy iteration, a linear system must be solved. The coefficient
matrix W being a Toeplitz matrix allows for the consideration of the Krylov subspace
iterative method, accelerated with the fast Fourier transformation (FFT), as the inner
iterative method for solving this linear system.

4.1. Policy Iteration Method

The component-wise form based on the HJB Equation (13) can be written as,

min
ϕ∈{0,1}

{ϕ(Wum+1 − um + τ f m+1)i + (1 − ϕ)(um+1 − um+1,∗)i} = 0, (16)

where (v)i represents the i-th entry of any given vector v when 1 ≤ i ≤ N. ϕ is a control
parameter that can take two values, 0 or 1. It is defined that the sequence {um+1,k} will
converge to the solution um+1, where k = 0, 1, 2 . . . . Then, the framework of the policy
iteration method [28], starting with the initial numerical value um+1,0, is presented in
Algorithm 1. Similar to the above, let (V)i represent the i-th row for any given matrix V
when 1 ≤ i ≤ N.
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Algorithm 1 Policy iteration method

Since um+1,k is the k-th iteration of the policy iteration method for computing the solution
um+1. Let ϕk ∈ RN , Mk ∈ RN×N and bk ∈ RN . Find um+1,k+1 ∈ RN such that

Mm+1,kum+1,k+1 = bm+1,k, (17)

for 1 ≤ i ≤ N, where

(Mm+1,k)i = (ϕm+1,k)i(W)i + (1 − (ϕm+1,k)i)(IN)i,

(bm+1,k)i = (ϕm+1,k)i(um − τ f m+1)i + (1 − (ϕm+1,k)i)(um+1,∗)i,

and

(ϕm+1,k)i = arg min
ϕ∈{0,1}

{ϕ(Wum+1,k − um + τ f m+1,k)i + (1 − ϕ)(um+1,k − um+1,∗)i}.

After introducing the structure of the policy iteration method, an additional lemma is
needed to prove that the exact solution can be obtained in a finite number of steps.

Lemma 3. The coefficient matrix Mm,k is invertible and satisfies

∥(Mm,k)−1∥∞ ≤ 1. (18)

Proof. From Lemma 2, we know that the matrix W is anM-matrix and |wi,i|−∑N
j=1,j ̸=i |wi,j| ≥

1+ |τ|r. The identity matrix IN satisfies |ii,i| − ∑N
j=1,j ̸=i |ii,j| = 1. The coefficient matrix Mm,k

is composed by selecting rows from the identity matrix IN and the matrix W. Since both IN
and W are M-matrices, Mm,k is also an M-matrix and satisfies

|mi,i| −
N

∑
j=1,j ̸=i

|mi,j| ≥ 1.

Referring to Theorem 1 in [37], it can also be proven that ∥(Mm,k)−1∥∞ ≤ 1.

Based on the properties outlined in Lemma 3 and referring to [28], it can be proven
that the policy iteration method can be shown to converge to the solution after a finite
number of steps.

4.2. Fast Krylov Subspace Method

With the policy iteration method, the discrete HJB equation can be solved. However, a
linear system exists within each policy iteration that needs to be solved. With Algorithm 1,
the coefficient matrix can be expressed as follows:

Mm,k = Φm,kW + (I − Φm,k)IN , (19)

where Φm,k represents a diagonal matrix, and its i-th diagonal entry is the control parameter
ϕm,k

i . Specifically, it is defined as Φm,k = diag(ϕm,k
1 , ϕm,k

2 , . . . , ϕm,k
N ). Similar to the case in [38],

the fast Krylov subspace method can be used to solve the linear system, given the Toeplitz
structure of the matrix W. Hence, in this paper, the fast policy–Krylov subspace iterative
method is utilized to solve the discrete HJB equation. It is noteworthy that the operational
cost of each iteration of the Krylov subspace method is only O(N log N), where N is the
matrix size.

5. Preconditioning Technique

Although the preconditioning method proposed in [38] can be utilized to enhance
the efficiency of the Krylov subspace method discussed in this paper, our ongoing pursuit
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of faster and more stable algorithms remains paramount. Consequently, we reference
the preconditioning approach in Ref. [39], designing a new banded preconditioner in
this section.

5.1. Banded Preconditioner

Define the matrix Pm,k
l as a banded matrix that approximates the coefficient matrix

Mm,k with 2l − 1 bands. In this paper, we consider the situation where l ≥ 2. The composi-
tion of the matrix Pm,k

l is structured as:

Pm,k
l = Φm,k[(1 − τc3)IN +

τc1

h
D +

τc2

hα
(GT + GD) + τc4(ST + SD)] + (1 − Φm,k)IN , (20)

where

GT = TN(0, 0, . . . , 0, g(α)l , g(α)l−1, . . . , g(α)2 ; g(α)1 ; g(α)0 , 0, . . . , 0),

GD = diag(0, 0 . . . , 0︸ ︷︷ ︸
l

, g(α)l+1, g(α)l+1 + g(α)l+2, . . . ,
N

∑
j=l+1

g(α)j ),

ST = TN(0, 0, . . . , 0, s1−l , s2−l , . . . , , s−1; s0; s1, . . . , sl−2, sl−1, 0, . . . , 0),

SD = diag(0, 0 . . . , 0︸ ︷︷ ︸
l

, s−l , s−l−1 + s−l , . . . ,
−l

∑
j=1−N

sj) + diag(
N−1

∑
j=l

sj,
N−2

∑
j=l

sj, . . . , sl , 0, 0 . . . , 0︸ ︷︷ ︸
l

).

After proposing the band preconditioner, it becomes necessary to further analyze the
properties, such as the invertibility of the preconditioning matrix and the condition number
of the preconditioned matrix. To simplify the subsequent analysis, we drop the indices m
and k; that is, we use P−1

l M to represent (Pm,k
l )−1Mm,k.

5.2. Properties of the Preconditioned Matrix

To ensure the proposed preconditioner is feasible, a theorem is required to prove that
Pl is invertible. The theorem is stated as follows:

Theorem 3. The proposed preconditioner Pl is invertible and satisfies

∥P−1
l ∥∞ ≤ 1.

Proof. Based on the structure of the matrix Pl as described in (20), and a proof similar
to that in Lemma 3, it can be easily demonstrated that Pl is an M-matrix and satisfies
∥P−1

l ∥∞ ≤ 1.

With the above theorem, we can ascertain that the preconditioner Pl is feasible. Since
the preconditioner Pl is a banded matrix, the computational cost of the LU factorization
of Pl is O(l2N), and the cost for the matrix-vector product P−1

l v is O(lN) for any given
vector v. With the proposed preconditioning technique, the operational cost of the Krylov
subspace iterative method remains O(N log N) per iteration when l ≪ N. However, the
computational cost of the preconditioned Krylov subspace method still depends on the
number of iterations. In order to prove that the preconditioner proposed in this paper can
improve the convergence rate of the Krylov subspace method, the following analysis will
examine the condition number of the preconditioned matrix, defined as follows:

κ∞(P−1
l M) = ∥P−1

l M∥∞∥(P−1
l M)−1∥∞.

If the coefficient matrix is ill-conditioned, that is, if the condition number is large, the
fast Krylov subspace method converges to the solution slowly. Hence, in the following
part, we will prove that the condition number κ∞(P−1

l M) has an upper bound. Then, a
relatively fast convergence rate of the preconditioned Krylov subspace method can be
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expected. The following lemmas are provided to support further analysis before analyzing
the condition number:

Lemma 4 ([40]). For α ∈ (1, 2), we have

∞

∑
j=l

g(α)j ≤ C̄
lα

, for l ≥ 2

with C̄ being a positive constant.

Lemma 5. If uJ = 0 and σJ =
√

C′h, the entries sj satisfy

N−1

∑
j=l

sj +
−l

∑
j=1−N

sj ≤
C′

(l − 1)2h
,

where C′ is a positive constant. In the more general case, when σJ is not specified, one obtains:

N−1

∑
j=l

sj +
−l

∑
j=1−N

sj ≤
2σJ

(l − 1)h
√

2π
.

Proof. When uJ = 0, σJ =
√

C′h, with Chebyshev’s inequality, we have

N−1

∑
j=l

sj +
−l

∑
j=1−N

sj = 1
2
√

2πσJ

∫ Nh
lh e

− z2

2σ2
J dz + 1

2
√

2πσJ

∫ (N−1)h
(l−1)h e

− z2

2σ2
J dz

+ 1
2
√

2πσJ

∫ −lh
−Nh e

− z2

2σ2
J dz + 1

2
√

2πσJ

∫ (1−l)h
(1−N)h e

− z2

2σ2
J dz

≤ 1√
2πσJ

∫ +∞
(l−1)h e

− z2

2σ2
J dz + 1√

2πσJ

∫ (1−l)h
−∞ e

− z2

2σ2
J dz

= P(|z| ≥ (l − 1)h) ≤ σ2
J

(l−1)2h2 = C′

(l−1)2h .

Next, we proceed to prove the scenario where σJ is unspecified. Based on the properties of
the Q-function, we derive the following equation.

N−1

∑
j=l

sj +
−l

∑
j=1−N

sj ≤
2√

2πσJ

∫ +∞

(l−1)h
e
− z2

2σ2
J dz

= 2Q(
(l − 1)h

σJ
) ≤

2σJ

(l − 1)h
√

2π
e
− (l−1)2h2

2σ2
J

≤
2σJ

(l − 1)h
√

2π
.

To analyze the condition number of the preconditioned matrix, an additional assump-
tion is needed: there exists a positive constant C̃ such that

|τ|
hα

≤ C̃.

With the above assumption, it will be shown that there exists an upper bound on the
condition number of the preconditioned matrix P−1

l M. Thus, the relatively fast convergence
rate of the preconditioned Krylov subspace method can be expected.
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Theorem 4. If uJ = 0 and σJ =
√

C′h, the preconditioned matrix satisfies

κ∞(P−1
l M) ≤

(
1 +

2c2C̄C̃
(l + 1)α

+
2c4C′C̃
(l − 1)2

)2

.

Further, if uJ = 0, the condition number of the preconditioned matrix holds

κ∞(P−1
l M) ≤

(
1 +

2c2C̄C̃
(l + 1)α

+
4σJc4C̃

(l − 1)
√

2π

)2

.

Proof. It is straightforward that

P−1
l M = IN + P−1

l MR,

where

MR = M − Pl

= Φ[
τc2

hα
(G − GT − GD) + τc4(S − ST − SD)]

= Φ[
τc2

hα
TN(g(α)N , . . . , g(α)l+2, g(α)l+1, 0, . . . , 0; 0; 0, 0, . . . , 0)− τc2

hα
GD]

+ Φ[τc4TN(s1−N , s2−N , . . . , s−l , 0, . . . , 0; 0; 0, . . . , 0, sl , sl+1, . . . , sN−1)− τc4SD].

Hence,

∥MR∥∞ ≤ 2|τ|c2

hα

N

∑
j=l+1

g(α)j + |τ|c4

−l

∑
j=1−N

sj + |τ|c4

N−1

∑
j=l

sj + |τ|c4∥SD∥∞.

With Lemmas 4 and 5, when uJ = 0 and σJ =
√

C′h, we have

∥MR∥∞ ≤ 2c2C̄C̃
(l + 1)α

+
2c4C′C̃
(l − 1)2 .

Thus, with Theorem 3, we have

∥P−1
l M∥∞ = ∥IN∥∞ + ∥P−1

l ∥∞∥MR∥∞ ≤ 1 +
2c2C̄C̃
(l + 1)α

+
2c4C′C̃
(l − 1)2 .

Similarly,
∥(P−1

l M)−1∥∞ =∥M−1Pl∥∞ ≤ ∥IN + M−1(Pl − M)∥∞

≤ 1 + ∥M−1∥∞∥MR∥∞

≤ 1 +
2c2C̄C̃
(l + 1)α

+
2c4C′C̃
(l − 1)2 .

Therefore,

κ∞(P−1
l M) = ∥P−1

l M∥∞∥(P−1
l M)−1∥∞ ≤

(
1 +

2c2C̄C̃
(l + 1)α

+
2c4C′C̃
(l − 1)2

)2

.

On the other hand, by Lemma 5, if uJ = 0, then

∥MR∥∞ ≤ 2c2C̄C̃
(l + 1)α

+
4σJc4C̃

(l − 1)
√

2π
,
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and

κ∞(P−1
l M) = ∥P−1

l M∥∞∥(P−1
l M)−1∥∞ ≤

(
1 +

2c2C̄C̃
(l + 1)α

+
4σJc4C̃

(l − 1)
√

2π

)2

.

6. Numerical Experiments

In this section, two examples are given to demonstrate the accuracy of the considered
model and the effectiveness of the proposed preconditioned iterative method. All numerical
experiments are carried out using Matlab 2023a with the following configuration: an Intel(R)
Core(TM) i9-10900K CPU at 3.70 GHz and 64 GB RAM. The stopping criterion for the policy
iteration method is set to 10−9, while the stopping criterion for the Krylov subspace method
is 10−12. The generalized minimal residual (GMRES) method [41] is chosen to represent
the Krylov subspace method. The initial guess of the GMRES method is the zero vector,
whereas the initial guess of the policy iteration method is the numerical solution from the
previous time step. The GMRES method is restarted every 20 iterations. To simplify the
notation in the following section, let Ñ = N + 1.

6.1. American Call Option

In the first example, we consider an American option pricing problem. To test the
accuracy of the considered model for the option pricing problem in the real financial market,
the considered model, i.e., the FMLSJ model, is used to price the sugar call option contract
SR403 on 23 November 2023, in the Zhengzhou Commodity Exchange. Additionally, the
Black–Scholes (BS) model and the finite moment log stable (FMLS) model are used as
comparative models for pricing this option. In this test, r = 2.561%, derived from the
annual Shibor rate on the trading day, and T = 56/179, xl = ln(1), xr = ln(20000), the
strike prices K = [6500, 6600, 6700, 6800, 6900, 7000, 7100], and the option prices in the
market are C = [300.5, 219.5, 167, 117, 76.5, 49, 33.5]. Note that the right preconditioner is
used in these numerical experiments.

Denote that Θ represents the set of the parameters of the models; Vmodel,i and Vmarket,i
are the i-th values of the option from the model and the market, respectively. The particle
swarm optimization algorithm is then used to obtain the model’s parameters, with the
objective function being

argΘ min max
i

∣∣∣∣Vmodel,i(Θ)− Vmarket,i

Vmarket,i

∣∣∣∣.
The specific values of these parameters and the mean square error (MSE) from different
model pricing are shown in Table 1.

Table 1. Parameters and MSE from different models.

α σ µJ σJ λ̃ MSE

BS - 0.0806 - - - 163.6608
FMLS 1.9990 0.0777 - - - 168.0140
FMLSJ 1.9990 0.0645 0.5523 0.2585 0.0132 56.4139

From Table 1, it is evident that the MSE of the FMLSJ model is the smallest, being only
about one-third of the error compared to the other two models. To further distinguish the
performance of different models in terms of pricing errors, Figure 1 is provided.
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(a) (b)

Figure 1. Comparisons between three models. (a) Option price comparison. (b) Pricing errors of
three models.

Figure 1a offers a comparison of the three models against the actual option prices.
From the figure, it can be observed that the prices calculated via the FMLS model and the
BS model are relatively similar, which explains why their MSEs are close to each other. In
contrast, the FMLSJ model’s prices are closer to the actual prices. Figure 1b presents the
relative errors under different option prices. This figure also demonstrates that the errors
of the FMLS model and the BS model are very similar. Meanwhile, the relative errors of
the FMLSJ model are all below 7%, indicating superior performance compared to the first
two models.

In the second numerical test of this example, the parameters listed in Table 1, obtained
from the option contract SR403, are used to assess the performance of the proposed fast so-
lution strategy. The other parameters are set as follows: r = 2.561%, T = 1, xmax = ln(100),
xmin = ln(0.1), K = 50. Additionally, to evaluate the effectiveness of the banded precondi-
tioner used in this paper, the preconditioner based on the circulant approximation from [38]
is employed for comparison. Specifically, this preconditioner is defined as:

Ps = Φ[(1 − τc3)IN +
τc1

h
D +

τc2

hα
s(G) + τc4s(S)] + (1 − Φ)IN , (21)

where s(.) denotes Strang’s approximation.
For simplicity, the following text will use the notation GMRES to refer to the GMRES

algorithm without preconditioning, SGMRES to denote the GMRES algorithm with the
circulant preconditioner (21), and BGMRES(l) to indicate the GMRES method precondi-
tioned by the banded preconditioner with 2l − 1 bands. Additionally, in the following
tables, “Error” represents the infinite norm of the error between the numerical solution and
the exact solution, “Rate” represents the convergence rate, “Iter-Out” indicates the average
number of iterations of the policy iteration method on each time level, and “Iter-In” refers
to the average number of iterations of the Krylov subspace method on each policy iteration.
Note that the numerical solution on a fine grid with Ñ = 216 and M = 212 is regarded as
the exact solution since its analytical solution is unknown.

From Table 2, it is evident that since the outer iterations all employ the policy iteration
method, the number of outer iterations remains the same, as do the errors and convergence
order. Meanwhile, Table 3 demonstrates that compared to circulant preconditioning, the
band preconditioning method performs better. Additionally, when comparing different
values of l, BGMRES(4) achieves good results with the lowest CPU time, whereas l = 7
and l = 13 do not improve the number of iterations in this example and lead to higher
CPU times due to the increased computational effort required for obtaining its inversion.
Therefore, l = 4 is found to be sufficient to achieve good results, both in terms of the
number of iterations and CPU time.
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Table 2. Comparisons of errors and outer iteration numbers.

GMRES SGMRES BGMRES (4)

Ñ M Error Rate Iter-Out Error Rate Iter-Out Error Rate Iter-Out
210 25 1.1432 × 10−2 - 2.0 1.1432 × 10−2 - 2.0 1.1432 × 10−2 - 2.0
211 26 5.6617 × 10−3 1.0138 2.0 5.6617 × 10−3 1.0138 2.0 5.6617 × 10−3 1.0138 2.0
212 27 2.6366 × 10−3 1.1026 2.0 2.6366 × 10−3 1.1026 2.0 2.6366 × 10−3 1.1026 2.0
213 28 1.2406 × 10−3 1.0876 2.0 1.2406 × 10−3 1.0876 2.0 1.2406 × 10−3 1.0876 2.0
214 29 5.3396 × 10−4 1.2163 2.0 5.3396 × 10−4 1.2163 2.0 5.3396 × 10−4 1.2163 2.0

Table 3. Comparisons between different linear solvers.

Method Ñ = 211 M = 26 Ñ = 212 M = 27 Ñ = 213 M = 28 Ñ = 214 M = 29

Iter-In Time (s) Iter-In Time (s) Iter-In Time (s) Iter-In Time (s)
GMRES 49.0 1.89 70.0 6.67 100.0 70.15 146.0 416.42

SGMRES 18.6 1.35 30.4 4.05 45.8 51.31 68.0 316.21
BGMRES(2) 4.0 0.32 4.0 0.58 4.0 4.12 4.0 17.29
BGMRES(4) 4.0 0.28 3.0 0.52 3.0 3.61 3.0 15.22
BGMRES(7) 4.0 0.30 3.0 0.64 3.0 4.18 3.0 18.10

BGMRES(13) 4.0 0.37 3.0 0.87 3.0 5.92 3.0 23.64

Additionally, to verify the effectiveness of Theorem 4, the condition numbers of the
preconditioning matrices for different l will be presented. However, it should be noted
that the coefficient matrix in the policy iteration method changes with each time step and
iteration. To facilitate verification, the parameters of the model from Table 2 are utilized,
with Ñ = 214, M = 27, and Φ = diag(ϕ1, ϕ2, . . . , ϕN), where

ϕi =

{
0, for i ≤ ⌊ Ñ−1

2 ⌋,

1, for i > ⌊ Ñ−1
2 ⌋.

Then, the condition number of the coefficient matrix M is 365.1499. The condition numbers
of the preconditioned coefficient matrix for various l values are depicted in Figure 2.

Figure 2. Condition number of the preconditioned matrix.

As stated in Theorem 4, it is observed from Figure 2 that as l increases, the condition
number gradually decreases and more closely approaches 1. Given that the original
condition number reaches 365.1499, it can be seen that the banded preconditioner effectively
reduces the condition number of the coefficient matrix, and when l = 2, the condition
number is already very close to 1.
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6.2. Stock Loan

In this part, we consider a stock loan problem to test the performance of the proposed
preconditioned policy–Krylov subspace method. The parameters are set as follows: σ = 0.2,
λ̃ = 0.01, uJ = 0.8, σJ = 0.01, γ = 0.1, r = 0.05, T = 1. Experience from Example 1 indicates
that a smaller value of l can achieve satisfactory results, so in this example, the value of
l is uniformly set to 4. Additionally, in this example, the value of α will be set to 1.2, 1.5,
and 1.8, respectively, to assess the algorithm’s performance with different fractional orders.
Similar to Example 1, the numerical solution on a fine grid with Ñ = 215 and M = 211 is
regarded as the exact solution.

For α = 1.2, 1.5, and 1.8, the comparison results of different iterative methods are
presented in Tables 4, 5 and 6, respectively. The errors in these tables are derived from the
results of the BGMRES(4) method. It is observed that the convergence rate is first order for
all results. Compared with the results of the iterative method without preconditioning, it is
evident that as α increases, more iterations are required. However, both the circulant pre-
conditioner and the proposed banded preconditioner can reduce the number of iterations,
with the band preconditioning technique demonstrating significantly better performance
in terms of both the number of iterations and CPU time.

Table 4. Algorithm comparison for α = 1.2.

Ñ M Error Rate Iter-Out Iter-In Time (s)

GMRES

210 26 1.9624 × 10−1 0.9531 2.0 40.9 0.62
211 27 9.7790 × 10−2 1.0049 2.0 45.0 3.51
212 28 4.6303 × 10−2 1.0786 2.0 49.0 9.54
213 29 2.0009 × 10−2 1.2104 2.0 54.0 69.94

SGMRES

210 26 1.9624 × 10−1 0.9531 2.0 13.8 0.29
211 27 9.7790 × 10−2 1.0049 2.0 14.6 1.88
212 28 4.6303 × 10−2 1.0786 2.0 16.2 3.93
213 29 2.0009 × 10−2 1.2104 2.0 17.6 39.81

BGMRES (4)

210 26 1.9624 × 10−1 0.9531 2.0 7.0 0.15
211 27 9.7790 × 10−2 1.0049 2.0 7.0 0.74
212 28 4.6303 × 10−2 1.0786 2.0 7.0 1.68
213 29 2.0009 × 10−2 1.2104 2.0 7.0 11.83

Table 5. Algorithm comparison for α = 1.5.

Ñ M Error Rate Iter-Out Iter-In Time (s)

GMRES

210 26 4.0928 × 10−2 1.0024 2.0 44.9 0.67
211 27 2.0015 × 10−2 1.0320 2.0 55.0 4.25
212 28 9.3484 × 10−3 1.0983 2.0 68.0 13.29
213 29 4.0197 × 10−3 1.2176 2.0 84.0 119.81

SGMRES

210 26 4.0928 × 10−2 1.0024 2.0 14.7 0.32
211 27 2.0015 × 10−2 1.0320 2.0 17.8 2.27
212 28 9.3484 × 10−3 1.0983 2.0 22.0 5.90
213 29 4.0197 × 10−3 1.2176 2.0 27.4 65.05

BGMRES (4)

210 26 4.0928 × 10−2 1.0024 2.0 7.2 0.16
211 27 2.0015 × 10−2 1.0320 2.0 8.0 0.85
212 28 9.3484 × 10−3 1.0983 2.0 8.0 1.95
213 29 4.0197 × 10−3 1.2176 2.0 8.7 15.35

To further illustrate the effectiveness of the model and the impact of its parameters,
Figure 3 is presented. The same parameters from this subsection are used, specified as
follows: uJ = 0.8, σJ = 0.01, γ = 0.1, r = 0.05, T = 1. Any missing parameters are
provided in the figure captions. Additionally, all models are solved using the BGMRES(4)
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method with settings of Ñ = 212 and M = 210. The figures demonstrate that the stock
loan prices, similar to American call options, are positioned above the pay-off function.
Figure 3a shows that as α increases, the curve approaches the pay-off function, aligning
with results from Ref. [42]. Figure 3b illustrates that as volatility σ increases, the price of
the stock loan becomes higher. Figure 3c indicates that as λ̃, the jump frequency, increases,
price fluctuations become more frequent, thereby enhancing the value of the stock loan.
These figures confirm that the solutions obtained from the considered model meet our
expectations for the curve of stock loan valuation.

Table 6. Algorithm comparison for α = 1.8.

Ñ M Error Rate Iter-Out Iter-In Time (s)

GMRES

210 26 1.2786 × 10−2 1.0394 2.3 53.0 0.88
211 27 6.1931 × 10−3 1.0459 2.2 68.8 5.98
212 28 3.1333 × 10−3 0.9830 2.2 89.5 19.49
213 29 1.4819 × 10−3 1.0802 2.2 117.8 165.29

SGMRES

210 26 1.2786 × 10−2 1.0394 2.3 21.2 0.64
211 27 6.1931 × 10−3 1.0459 2.2 29.6 4.08
212 28 3.1333 × 10−3 0.9830 2.2 39.2 11.21
213 29 1.4819 × 10−3 1.0802 2.2 52.9 125.92

BGMRES (4)

210 26 1.2786 × 10−2 1.0394 2.3 7.0 0.18
211 27 6.1931 × 10−3 1.0459 2.2 8.0 0.94
212 28 3.1333 × 10−3 0.9830 2.2 8.0 2.10
213 29 1.4819 × 10−3 1.0802 2.2 9.0 15.82

(a) (b)

(c)

Figure 3. Comparative analysis of stock loan values. (a) Comparison of different α with σ = 0.2 and
λ̃ = 0.01. (b) Comparison of different σ with α = 1.5 and λ̃ = 0.01. (c) Comparison of different λ̃

with σ = 0.2 and α = 1.5.
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7. Conclusions

In this paper, we consider a fractional partial integro-differential HJB equation result-
ing from the American option pricing and stock loan pricing based on the Lévy-α-stable
process with jumps model, and propose a preconditioned policy–Krylov subspace method
to solve it. A finite difference scheme is developed to discretize the HJB equation, with
stability and first-order convergence analysis. The coefficient matrix generated from the
fractional derivative and the integro-differential operator is an M-matrix and possesses
the Toeplitz structure, leading us to use the policy iteration method and the fast Krylov
subspace method as the outer and inner iterative methods, respectively. To accelerate the
convergence rate of the Krylov subspace method, a banded preconditioner is proposed. It
is proven that the condition number of the preconditioned matrix has an upper boundary
affected by the bandwidth. Finally, numerical examples of an American options pricing
problem and a stock loan valuation problem are provided to demonstrate the effectiveness
of the proposed fast solution strategy.
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