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Abstract: In this study, we investigate the application of fractional calculus to the mathematical
modeling of biological systems, focusing on fractional-order-in-time partial differential equations
(FTPDEs). Fractional derivatives, especially those defined in the Caputo sense, provide a useful
tool for modeling memory and hereditary characteristics, which are problems that are frequently
faced with integer-order models. We use the Chebyshev spectral approach for spatial derivatives,
which is known for its faster convergence rate, in conjunction with the L1 scheme for time-fractional
derivatives because of its high accuracy and robustness in handling nonlocal effects. A detailed
theoretical analysis, followed by a number of numerical experiments, is performed to confirmed
the theoretical justification. Our simulation results show that our numerical technique significantly
improves the convergence rates, effectively tackles computing difficulties, and provides a realistic
simulation of biological population dynamics.

Keywords: fractional-order-in-time biological population model; Chebyshev spectral method; error
analysis; numerical examples

1. Introduction

Fractional calculus is an extension of conventional calculus that explores the possibility
of taking real-numbered powers of the differentiation and integration operators. Unlike
classical calculus, which only works with integer orders, fractional calculus accepts integrals
and derivatives of any fractional order, positive or negative. The fractional integral of order
α is a generalization of the n-fold integral applied n times, where α can be any real number.
It is typically defined using a convolution with a power function, leading to an integral
operator known as the Riemann–Liouville integral. Fractional calculus has a wide range of
applications in disciplines including biology, engineering, physics, economics, and more. It
is employed in physics to simulate systems that have memory and inherited characteristics,
such as viscoelastic materials or processes in which the system’s future state is dependent
on both its past behavior and its current state. Fractional calculus is helpful to engineers in
control theory, especially for designing controllers that provide reliable performance under
a variety of circumstances [1–3]. Fractional derivatives are incorporated into standard
partial differential equations in order to generate fractional partial differential equations
(FPDEs), which enable the modeling of memory and hereditary features in a variety of
materials and systems. Time-fractional differential equations, in which the order of the time
derivative is a fraction instead of an integer, are the subject of this research. When modeling
systems where the rate of change is not constant but rather depends on the process’s
whole history, these equations are especially helpful. Most recently, the application of
fractional-order equation-based vegetation–water in an arid flat environment has been
studied in [4].

The most common form of a time-fractional partial differential equation involves the
Caputo or Riemann–Liouville definition of fractional derivatives. Time-fractional PDEs
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are extensively used to model physical phenomena exhibiting anomalous diffusion, which
is diffusion where the flux at any point in space depends on the historical states of the
system, rather than being directly proportional to the gradient of concentration as in
classical diffusion. These models have been used to simulate subdiffusion or superdiffusion
processes in complex systems where particle trajectories diverge from those of traditional
Brownian motion in domains like physics. When molecular movement is impeded by
barriers or binding effects that lead to anomalous diffusion, biology uses it to describe
the transport dynamics within cells. In finance, on the other hand, it is employed to
capture memory and hereditary effects in financial markets, enhancing asset price and risk
management modeling [5–8].

The goal of the latest developments in fractional calculus has been to enhance the
numerical techniques for solving fractional differential equations, which are crucial for
real-world applications across a range of industries. Several novel techniques have been
presented by researchers in an effort to more effectively handle the nonlocal characteristics
included in fractional derivatives. Adaptive methods are among them; they improve
accuracy and save computing costs by modifying the time steps based on the behavior of the
answer. The ability to numerically solve differential equations with fractional derivatives,
which are more difficult by nature because of their nonlocal nature, has been made possible
by advances in computational mathematics. Modern numerical techniques and algorithms
are still developing, which makes fractional calculus more useful in both industry and
scientific study [9–14]. As fractional calculus advances, it will offer a more comprehensive
mathematical framework that goes beyond the constraints of traditional differential and
integral calculus, providing up new possibilities for modeling and understanding the
natural world.

Biological population models are crucial and have contributed significantly to our
understanding of ecology, public health, and the behavior of the environment. Because they
aid in forecasting and controlling species interactions, population growth, and the impact of
changing environmental circumstances on ecosystems, these models are crucial to ecology.
They serve as crucial tools in conservation biology as well, helping scientists identify a
species’ vulnerability and develop effective conservation strategies. In order to evaluate
programs, predict the beginning of epidemics, and comprehend how infectious diseases
propagate, biological population models are essential to public health research [15,16].
A more comprehensive study on the role of fractional calculus in modeling a biological
phenomena can be found in [17]. Fractional derivatives are used in biology to simulate
anomalous diffusion, which deviates from the standard equations of diffusion in cells
and tissues due to its ability to capture memory and hereditary properties inherent in
such systems as compared to the integer-order differential equation. Due to the fact that
these mathematical models, which consist of fractional-order derivatives, have a nonlocal
nature, involve complicated boundary conditions and memory effects, and therefore lack
closed-form solutions, the analytical solution of fractional differential equations is more
complicated, and sometimes it is even not possible to find it. These models are especially
helpful in ecosystems where organisms have lengthy lifespans or where environmental
changes occur slowly, which reduces the efficacy of standard models.

A sophisticated method of applying fractional calculus to study biological population
dynamics is introduced by the idea of a two-dimensional fractional-order-in-time biological
population model. By utilizing fractional derivatives, which are expansions of ordinary
derivatives, this mathematical framework expands upon the traditional population models
by including memory and hereditary features. This model takes into account both the
history and present population sizes when determining each population’s growth rate. This
is accomplished through the use of fractional differential equations, in which the degree
to which the past influences the dynamics of the present is indicated by the derivative’s
order, typically between 0 and 1. These models are better able to capture the intricacies
of biological processes that, as is common in many ecological systems, display long-term
memory or power-law waiting times. Predators and prey are two examples of interacting
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animals that could be included in a two-dimensional model. Fractional derivatives are
useful in modeling scenarios in which the dynamics of both populations in the future
are influenced throughout time by the residual effects of past interactions (e.g., resource
competition or predation rates). When contrasted to traditional models, this may result
in oscillations and stability conditions that are more realistic. In general, biologists and
ecologists can benefit greatly from the use of two-dimensional fractional-order models
in biological populations since they offer a greater understanding of the dynamics of
intricate ecosystems where past conditions have a substantial influence on future states.
Analytically solving population models is often infeasible for complex boundary and initial
conditions; thus, numerical solutions such as finite difference methods, finite element
methods, and spectral methods are employed. These methods involve discretizing the time
and space variables and approximating the fractional derivatives using techniques adapted
for their nonlocal nature. The integration of fractional calculus into partial differential
equations offers a powerful tool for exploring and describing dynamic systems with
memory and hereditary characteristics, which are not adequately modeled by classical
PDEs for these models. The development of robust numerical methods continues to be a
vital area of research, enabling the practical application of FPDEs across various scientific
disciplines [18,19].

Fractional-order diffusion equations, which are generalizations of classical diffusion
equations and address super-diffusive flow processes, are among the most basic instances
of the former. A large portion of published work on FPDEs has been focused on fractional
diffusion equations. In [20], Agrawal uses a finite sine transform method to find the
general solution of fractional-order diffusion equations. A theoretical framework using
the least-squares finite element technique has been investigated in [21], while a spectral
collocation scheme for two-dimensional nonlinear fractional diffusion equations and a
radial basis function approximation method is used in [22,23], respectively. A mathematical
model based on nonlinear fractional-order equations for the description of the behavior
of viscoplastic materials was developed in [24], while a fractional advection–dispersion
equation has been numerically investigated in [25,26]. In order to find the scale-invariant
solution of the TFDE in terms of the Wright function, Gorenflo et al. employed the similarity
approach and the Laplace transform method [27,28]. Numerous authors have examined
these models in analytical and numerical frameworks. A few of these researchers have
attempted to find analytical solutions for differential equations using temporal fractions.
For instance, time-fractional diffusion-wave equations were taken into consideration by
Schneider and Wyss and Wyss [29,30]. The temporal fractional PDE using finite difference in
fractional time and a higher numerical scheme was investigated in detail in [31]. Capturing
memory and hereditary properties is crucial in biological systems due to their inherent
dependence on past states. Fractional differential equations are particularly adept at
modeling these characteristics because they incorporate nonlocal properties, meaning the
rate of change at any point in time depends on all previous states. However, these equations
are complex and often lack closed-form solutions, making analytical solutions challenging
and necessitating robust numerical methods. The complexity of fractional derivatives,
especially their nonlocal nature, poses significant computational challenges that need to be
addressed with efficient numerical techniques.

In this work, we consider solving numerically a fractional-order-in-time biological
population model in two dimensions. We use the L1 scheme for fractional-order-in-time
derivatives. This scheme is very useful in handling the nonlocal properties of fractional-
order-in-time derivatives. For spatial derivatives, we use an efficient numerical scheme
based on the Chebyshev spectral method. Spectral methods are a class of techniques
used in numerical analysis to solve differential equations whose solutions are essentially
represented by the sum of globally defined basis functions. These functions are typically
orthogonal or trigonometric polynomials, depending on the boundary conditions and
nature of the problem. When the solution has smooth properties, spectral methods are well
known for their high accuracy and exponential rates of convergence, which greatly exceed
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the performance provided by conventional finite difference or finite element methods. The
most notable method among these is the Chebyshev spectral method due to its particular
effectiveness in handling problems with complex geometries or boundary conditions.
This method utilizes Chebyshev polynomials, which are a set of orthogonal polynomials
defined on the interval [−1, 1]. The main advantage of Chebyshev polynomials is their near-
minimal property for polynomial approximation. This property significantly minimizes
the maximum error between the numerical solution and the true solution. The efficiency
of this approach is further increased by the employment of Chebyshev nodes, or the
roots of these polynomials, which assist prevent the Runge phenomenon and guarantee
stability and dependability in numerical approximations [32–40]. Several studies have
applied fractional calculus to model biological systems. For instance, fractional derivatives
have been used to simulate anomalous diffusion in cells and tissues, capturing more
realistic dynamics than traditional models. Hattaf and Yousfi explored the global stability
of fractional diffusion equations in biological systems, highlighting the advantages of
fractional models in capturing complex biological behaviors [41]. However, many of these
studies focus on one-dimensional models or rely on analytical solutions, which are not
feasible for complex systems. This paper addresses this gap by developing a numerical
scheme for a two-dimensional fractional-order-in-time biological population model [42,43].

The rest of the paper is organized as follows: In Section 2, we present some preliminar-
ies and some basic definitions, which play a key role in the analysis of the scheme, followed
by the mathematical description of the model and the discretization scheme. Section 4
consists of a detailed error analysis, followed by numerical examples in Section 5. Section 6
consists of concluding remarks.

2. Preliminaries and Some Basic Definitions

In this section, we present some basic definitions related to fractional calculus theory
and orthogonal polynomials that are useful in the error analysis of our proposed numerical
scheme [44–47].

Definition 1. A real function g(τ), τ > 0 is defined to belong to the space Cν, ν ∈ R, if there
exists a real number q > ν, such that g(τ) = τqg1(τ), where g1(τ) ∈ C(0, ∞), and g is in the
space Cnν if and only if g(n) ∈ Cν, n ∈ N.

Definition 2. The Riemann–Liouville fractional integral operator Iβ (β ≥ 0) of a function g ∈ Cν,
ν ≥ −1 is given by

Iβg(τ) =
1

Γ(β)

∫ τ

0
(τ − s)β−1g(s) ds, (β ≥ 0) (1)

where Γ(·) is the gamma function. The properties of the operator Iβ include

Iβ Iγg(τ) = Iβ+γg(τ), (β ≥ 0, γ ≥ 0) (2)

Iβτδ =
Γ(1 + δ)

Γ(1 + δ + β)
τβ+δ, (δ ≥ −1) (3)

Definition 3. The Caputo fractional derivative Cα of a function g(τ) is defined as

CDα
τ g(τ) =

1
Γ(n − α)

∫ τ

0
g(n)(s)

ds
(τ − s)α+1−n , (n − 1 < Re(α) ≤ n, n ∈ N) (4)

The properties of the Caputo fractional derivative include

CDα
ττβ =

Γ(1 + β)

Γ(1 + β − α)
τβ−α, (5)
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(IαCDα)g(τ) = g(τ)−
n−1

∑
k=0

g(k)(0+)

k!
τk, (6)

The Caputo fractional derivative is chosen for its ability to incorporate conventional initial and
boundary conditions in problem formulations.

Definition 4. The Mittag–Leffler function Eα,β(z) for complex numbers z and parameters α and β
is defined by the series

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (7)

where α > 0 and β are real numbers, and Γ(·) denotes the Gamma function. This function
generalizes the exponential function, which is recovered as a special case when α = 1 and β = 1.

Eα,β(z) represents a two-parameter family of functions, where α and β allow for
various forms of convergence and divergence characteristics depending on their values.
When α = 1 and β = 1, the Mittag–Leffler function simplifies to the exponential function
ez, that is E1,1(z) = ez.

Definition 5. Chebyshev polynomials, represented as Cn(x), are established over the domain
[−1, 1] and can be formulated by the expression

Cn(x) = cos(n arccos(x)), n = 0, 1, 2, . . . (8)

Definition 6. The collection of Chebyshev polynomials {Cn(x)} set within the interval [−1, 1]
adhere to this orthogonality condition with respect to the weighted scalar product

⟨Ci, Cj⟩ω :=
∫ 1

−1
Ci(x)Cj(x)ω(x) dx =


0, if i ̸= j,
π, if i = j = 0,
π
2 , if i = j ̸= 0.

(9)

where the weighting function ω(x) is defined by

ω(x) =
1√

1 − x2
. (10)

Definition 7. Let δn denote the scaling coefficients for orthogonality:

δn =

{
2, if n = 0,
1, if n > 0.

(11)

Considering practical approaches in mathematical representations, when examining
polynomials of a degree at most N, the matrix representation of the weighted scalar product
can be succinctly illustrated as

H = diag{hii}, hii :=
σ

2
δn (12)

Here, the matrix H is diagonal with size (N + 1)× (N + 1), and each diagonal element
hii is influenced by the coefficient δn from the previous equation.

Definition 8. A smooth, continuous function σ(θ), defined on [−1, 1], can be approximated using
Chebyshev polynomials Cn(θ) as follows:

σ(θ) ≈
N

∑
n=0

σ̃nCn(θ), (13)
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where N represents the truncation level in the spectral method, and σ̃n is the Chebyshev expansion
coefficient for σ. This coefficient is calculated by

σ̃n =
1
δn

∫ 1

−1
σ(θ)Cn(θ)ω(θ) dθ, δn =

∫ 1

−1
C2

n(θ)
√

1 − θ2 dθ =

{
π, if n = 0,
π
2 , if n > 0.

(14)

Definition 9. In the computational process known as the Chebyshev forward transformation, the
Gauss–Lobatto integration method is typically employed for computing the weighted integral:

σ̃n ≈ 1
δn

N

∑
i=0

σ(θi)Cn(θi)wi (15)

where N represents the number of integration nodes, matching the truncation level. These nodes
and weights are specified as

θ0 = 1, θN = −1, θi = cos
(

πi
N

)
, w0 = wN =

π

2N
, wi =

π

N
(16)

Definition 10. For any continuous and smooth function σ(θ) defined over the interval [−1, 1], if
the derivative σ′(θ) maintains smoothness, it can be expanded using Cn(θ) as

σ′(θ) ≈
N

∑
n=0

σ̃′
nCn(θ), (17)

It is established that the expansion coefficient σ̃′
n for the derivative σ′(θ) and the coefficient σ̃n

for the original function satisfy the relation

σ̃′
n ≈ 2

δn

N

∑
q=n+1, q+n odd

qσ̃q, n ≥ 0 (18)

This relation can then be reformulated in matrix terminology:

σ̃′ = Dσ̃, (19)

where σ̃′ and σ̃ are arrays with dimensions 1 × (N + 1), defined as σ̃′ = [σ̃′
0, σ̃′

1, . . . , σ̃′
N ] and

σ̃ = [σ̃0, σ̃1, . . . , σ̃N ]. The matrix D is an upper triangular square matrix, sized (N + 1)× (N + 1).

Definition 11. The natural Sobolev norms, appropriate for gauging approximation errors within
the Chebyshev framework, integrate the Chebyshev weight into the quadratic means of the error and
its derivatives over the span (−1, 1). Thus, we establish the weighted Sobolev norm as

∥g∥Hw
m(−1,1) =

(
m

∑
n=0

∥g(n)∥2
L2

w(−1,1)

)1/2

. (20)

The associated Hilbert space is denoted Hw
m(−1, 1), where:

• ∥g(n)∥L2
w(−1,1) signifies the L2-norm of the n-th derivative of g, weighted over the interval

(−1, 1).
• Hw

m(−1, 1) is the weighted Sobolev space capturing the behavior of functions and their deriva-
tives up to order m under the weighted norm.

3. Fractional-Order-in-Time Dispersal in Population Dynamics

According to biologists, migration or dispersal has a significant impact on the regu-
lation of species populations. The diffusion of a biological species in a given region C is
described by three functions of position x = (η, ξ) and time t: the population supply s(x, t),
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the diffusion velocity u(x, t), and the population density ρ(x, t). The population density
ρ(x, t) quantifies the number of individuals per unit volume at position x and at time t. By
integrating ρ over any subregion D of C, the total population in D at time t is obtained. The
term s(x, t) indicates the rate at which individuals are added or removed per unit volume
at position x due to births and deaths. The diffusion velocity u(x, t) represents the mean
velocity of individuals at position x at time t, facilitating the description of population
movement from one location to another.

The following equation governs the dynamics:

∂α

∂tα

∫
D

ρ dV +
∫

∂D
ρu · n dA =

∫
D

s dV, (21)

where n is the outward unit normal on the boundary ∂D. The Caputo fractional derivative
is used to interpret the derivative. This basic equation means that the rate at which new
individuals are delivered directly to D must equal the rate at which the population within
D changes plus the rate at which people leave D over its boundary. With s = s(ρ) and
u = λ(ρ)∇ρ as assumptions, one can derive the following two-dimensional nonlinear
degenerate parabolic partial differential equation for ρ, where λ(ρ) > 0 for ρ > 0 and ∇ is
the gradient operator:

∂αρ

∂tα
= ∆(s(ρ)) + s(ρ), t > 0, (η, ξ) ∈ R2, (22)

where the order of the fractional derivative with respect to time t is denoted by α. The
temporal fractional-order biological population model (TFBPM) is the name given to this
equation. The analysis presents ϕ(ρ) = ρ2 as a specific instance for modeling animal
populations, as explored by Gurney and Nisbet [48]. The migrations usually happen as a
result of individuals traveling down the population density gradient, which moves more
quickly at higher densities, in search of less congested areas to breed in a model that took
into account an animal walking through a rectangular grid was created to mimic this
behavior. With each step, the animal might either remain in the same spot or migrate
toward the area with the lowest density. The size of the population density gradient at the
relevant grid boundary determines the probability distribution for these movements. This
model leads to

∂αρ

∂tα
= ∆(ρ2) + s(ρ), t > 0, (η, ξ) ∈ R2, (23)

with the initial condition ρ(η, ξ, 0) provided. When α = 1, this equation simplifies to the
normal biological population model (NBPM):

∂αρ

∂tα
= ∆(ρ2) + s(ρ), t > 0, (η, ξ) ∈ R2. (24)

Additionally, various properties such as Hölder estimates and solutions of this model
have been explored.

Constitutive equations for s(ρ) may include the following:

• Malthusian Law: s(ρ) = cρ, where c is a constant.
• Verhulst Law: s(ρ) = c1ρ − c2ρ2, where c1, c2 are positive constants.
• Porous Media: s(ρ) = cρq, where c > 0 and 0 < q < 1.

For a generalized form, consider

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρa(1 − ℓρb), t > 0, (η, ξ) ∈ R2, (25)

subject to some appropriate initial conditions and where h, a, ℓ, b are real numbers. Under
some specific parameter conditions, both the Verhulst and the Malthusian laws are covered
by Equation (25).
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Discretization Methodology

We consider the time-fractional partial differential equation given by Equation (25):
The L1 scheme is used to discretize the fractional time derivative ∂αρ

∂tα . This scheme is
particularly suitable for fractional derivatives due to its capability to handle the memory
effect inherent in such derivatives. The L1 approximation at a time tn is defined as: The L1
scheme approximates the fractional time derivative as follows:

∂αρn+1

∂tα
=

(δt)−α

Γ(2 − α)

n

∑
k=0

(ρn+1−k − ρn−k)
(
(k + 1)1−α − k1−α

)
+ O(δt2−α), (26)

where δt is the time step, and α is the fractional order of the derivative.
The correction term Bn, defined as

Bn =
(δt)−α

Γ(2 − α)

n

∑
k=1

(
(k + 1)1−α − k1−α

)
(ρn+1−k − ρn−k), (27)

becomes zero when n = 0. Therefore, the discretization formula simplifies as

∂αρn+1

∂tα
=

{
(δt)−α

Γ(2−α)
(ρn+1 − ρn) + Bn + O(δt2−α), α ∈ (0, 1),

ρn+1−ρn
δt + O(δt), α = 1.

(28)

The Chebyshev spectral method involves representing the solution ρ as a series expan-
sion in terms of Chebyshev polynomials. These polynomials are particularly effective for
approximating functions on bounded intervals due to their excellent approximation prop-
erties and the clustering of nodes at the endpoints, which can help in resolving boundary
layer effects. The approximation of ρ at a fixed time tn is given by

ρ(η, ξ, tn) ≈
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ), (29)

where Ti are Chebyshev polynomials and cn
ij are the spectral coefficients.

The derivatives in the spatial domain are computed using the derivative properties of
Chebyshev polynomials:

∂2ρ2

∂η2 ≈
N

∑
i=0

N

∑
j=0

(
cn

ij

)2 d2

dη2 Ti(η)Tj(ξ), (30)

∂2ρ2

∂ξ2 ≈
N

∑
i=0

N

∑
j=0

(
cn

ij

)2
Ti(η)

d2

dξ2 Tj(ξ). (31)

Combining the discretized forms of the time and space derivatives, we obtain the fully
discretized version of the the model Equation (25), given by

1
Γ(2 − α)

n

∑
k=0

ρk+1 − ρk

∆tα
((k + 1)∆t)1−α − (k∆t)1−α

=
N

∑
i=0

N

∑
j=0

[
(cn

ij)
2
(

d2

dη2 Ti(η) +
d2

dξ2 Tj(ξ)

)]
(32)

+ h

(
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ)

)a
1 − ℓ

(
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ)

)b
.
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4. Error Analysis

This section deals with the error analysis of our proposed numerical scheme. Before
the main results, we state some useful results in the form of lemmas [49].

Lemma 1 (Estimate for the Truncation Error). Consider the truncation error of a function u
when approximated by its truncated Chebyshev series, denoted as PNu, where

PNu =
N

∑
k=0

ûkTk,

and ûk represents the Chebyshev-series coefficients of u. The truncation error u − PNu, measured
in the weighted L2 norm over the interval (−1, 1), satisfies the inequality

∥u − PNu∥L2
w(−1,1) ≤ CN−m∥u∥Hw

m;N(−1,1), (33)

for all functions u belonging to the weighted Sobolev space Hw
m(−1, 1) with m ≥ 0. Here, C is a

constant that depends on N and m, and Hw
m;N(−1, 1) represents the Sobolev space characterized by

integrating the function and its derivatives up to order m, each weighted by the Chebyshev weight.

Lemma 2 (Interpolation Error Estimate). The interpolation error associated with approximating
a function u by its interpolant INu, which is defined at Chebyshev Gauss points across three
different families. For this interpolant, which belongs to the polynomial space PN , an important
error estimates. The error between the function u and its interpolant, measured in the weighted L2

norm over the interval [−1, 1], adheres to the following bound:

∥u − INu∥L2
w(−1,1) ≤ CN−m∥u∥Hw

m;N(−1,1), (34)

∥u − INu∥L∞
w (−1,1) ≤ CN

1
2−m∥u∥Hw

m;N(−1,1), (35)

where C represents a constant and m ≥ 1 reflects the smoothness level of the function. This estimate
is valid under the condition that u is an element of the weighted Sobolev space Hw

m(−1, 1). This
space is characterized by considering functions that maintain their derivatives up to the m-th order,
each weighted appropriately over the interval.

Lemma 3 (Integration Error Estimate). Given a function u from the weighted Sobolev space
Hw

m(−1, 1) with m ≥ 1 and a polynomial φ from the space PN , the error produced by applying a
Gauss-type quadrature formula for integration relative to the Chebyshev weight can be estimated as
follows. Consider the integral of the product of u and φ, weighted by the Chebyshev weight w(x),
and its approximation by the quadrature formula:∣∣∣∣∫ 1

−1
u(x)φ(x)w(x) dx − (u, φ)N

∣∣∣∣ ≤ CN−m∥u∥Hw
m;N(−1,1)∥φ∥L2

w(−1,1), (36)

where

• (u, φ)N denotes the approximation of the integral by the Gauss-type quadrature.
• C is a constant dependent on N and m, indicating the rate at which the error diminishes as the

polynomial degree N or the smoothness m of the function u increases.
• ∥u∥Hw

m;N(−1,1) and ∥φ∥L2
w(−1,1) are the norms measuring the magnitude of u and φ in their

respective function spaces.

One can state and prove the following error estimates for the fractional-order time
discretization.
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Theorem 1 ([31]). Let ρ be the exact solution of the model Equation (25), and let {ρk}K
k=0 be

the time-discrete solution of with the initial condition ρ0(x) = ρ(x, 0); then, the following error
estimates hold:

1. For 0 ≤ a < 1,
∥ρ(tk)− ρk∥1 ≤ cu,aTa∆t2−a, k = 1, 2, . . . , K, (37)

where cu,a := cu
1−a with cu a constant defined in (3.3).

2. As a → 1,
∥ρ(tk)− ρk∥1 ≤ cuT∆t, k = 1, 2, . . . , K. (38)

Similarly for the space discretization, using Lemmas 1–3, one can state and prove the
following results of exponential order of convergence.

Theorem 2. Let {ρN
k }K

k=0 be the solution of the problem given in Equation (25) with the initial
condition ρN

0 taken to be INρ(0), and {ρk}K
k=0 be the numerical solution. Suppose ρk ∈ Hm(K) ∩

H0
1(K), m > 1; then,

• For 0 ≤ α < 1,

∥ρk − ρN
k ∥L2 ≤ cα∆tαN−m max

0≤j≤k
∥ρj∥m, k = 1, 2, . . . , K, (39)

where cα = c
1−α with c a constant.

• As α → 1,
∥ρk − ρN

k ∥L2 ≤ c∆t−1N−m max
0≤j≤k

∥ρj∥m, k = 1, 2, . . . , K, (40)

where c only depends on T.

Proof. Assume rN = ρN
k+1 − wN where wN is any function in PN

0 (K). By direct calculation,

AN(rN , rN) = A(ρk+1 − wN , rN) + A(wN , rN)− AN(wN , rN) + FN(rN)− F(rN), (41)

which leads to

∥rN∥2
1,N ≤ ∥ρk+1 − wN∥1∥rN∥1 +

∣∣∣A(wN , rN)− AN(wN , rN)
∣∣∣

+
∣∣∣F(rN)− FN(rN)

∣∣∣ ∀wN ∈ PN−1
0 (K). (42)

∣∣∣F(rN)− FN(rN)
∣∣∣ = ∣∣∣(1 − b1)

[
(ρk, rN)− (ρN

k , rN)N
]

+
k−1

∑
j=1

(bj − bj+1)
[
(ρk−j, rN)− (ρN

k−j, rN)N
]

(43)

+ bk

[
(ρ0, rN)− (ρN

0 , rN)N
]∣∣∣.

(g, rN)− (gN , rN)N ≤ (cN−m∥g∥m + ∥g − gN∥L2)∥rN∥L2 . (44)

Applying this to g = ρj; gN = ρN
j for all j = 1, 2, . . . , k, we derive∣∣∣F(rN)− FN(rN)

∣∣∣ ≤ (1 − b1)∥eN
k ∥L2 +

k−1

∑
j=1

(bj − bj+1)∥eN
k−j∥L2

+ bk∥eN
0 ∥L2 + cN−m max

0≤j≤k
∥ρj∥m∥rN∥L2 . (45)

This shows that the order of convergence of our combined numerical scheme is
O(δt2−α + N−m) in the L2 norm in the case of spatial coordinates. Similarly, if we use the
L∞ norm in the space coordinate, then the error estimate is of O(δt2−α + N

1
2−m).
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5. Numerical Results

We present in this section a number of numerical examples to confirm our theoretical
justification, as given in Theorems 1 and 2. In our simulations, we use a fixed time t = 0.1
in comparison between the exact solution and the solution obtained by using the proposed
scheme. In addition to this, in all of our simulations, we use a PC with processor 12th Gen
Intel(R) Core(TM) i7-1255U and 16 GB RAM. The average CPU time in all these simulations
is 0.03 s for collocation points from 15–50. The algorithm for these simulations is given in
Appendix A.

Example 1. Consider the model Equation (25) with a = 0, b = 1, that is, we have the following
linear fractional-order-in-time biological population model of the form

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρ, (46)

subject to the initial condition:
ρ0 =

√
ηξ. (47)

Equation (46), subject to the initial condition given in Equation (47), corresponds to Malthu-
sian law. The exact solution is given by

ρ(η, ξ, t) =
√

ηξehtEαhtα, (48)

where Eαhtα is the Mittag–Leffler function. When α → 1, then the exact solution becomes

ρ(η, ξ, t) =
√

ηξ
∞

∑
n=0

(ht)n

Γ(1 + n)
=
√

ηξeht. (49)

In our simulations, we use the fractional-order α = 0.5. We compare our results for
different collocation points with the exact solution as shown in Figures 1–3. The error
behavior between the exact and numerical solution is shown in Figure 4. One can see that
the error between the exact and approximate solution decays exponentially by increasing
the number of collocation points. These results emphasize the reliability of our numerical
scheme, which is crucial for accurately predicting population dynamics in more detailed
biological studies, making it practical for real-world biological population models where
computational resources may be limited.

Figure 1. Example 1: Exact (left) vs. numerical solution (right) at N = 15 collocation points.
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Figure 2. Example 1: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Figure 3. Example 1: Exact (left) vs. numerical solution (right) at N = 50 collocation points.
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Figure 4. Example 1: Error behavior of exact solution vs. numerical solution at N = 15 (left) and at
N = 20 (right).
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Example 2. Consider the model Equation (25) with a = 1, b = 1. This gives us Verhulst law, and
the model Equation (25) becomes

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρ(1 − ℓρ), (50)

subject to the initial condition

ρ0 = e
√

hℓ
8 (η+ξ), (51)

The exact solution is given by

ρ0 = e
√

hℓ
8 (η+ξ)Eαhtα (52)

For α → 1, the exact solution has the form

ρ0 = e
√

hℓ
8 (η+ξ)+ht. (53)

The numerical experiments are performed between exact and approximate solution
for α = 0.5 and different collocations points, as shown in Figures 5–7. The error behavior
between the exact and numerical solution is given in Table 1. Again, one can see how fast
the error is decreasing while increasing the number of collocation points. The numeri-
cal solution accurately captures the behavior of the exact solution, which represents the
population growth with a carrying capacity, highlighting how the population stabilizes
over time, which is a key aspect in ecological studies. The high-level accuracy is essential
for making reliable predictions, especially in scenarios involving critical decisions about
species conservation or resource management.

Table 1. Example 2: Error behavior of exact vs. numerical solution.

N L∞ L2 N L∞ L2

6 9.541 × 10−1 4.086 × 10−1 8 4.842 × 10−2 2.485 × 10−2

10 8.145 × 10−3 3.139 × 10−3 12 2.670 × 10−4 1.210 × 10−4

14 1.650 × 10−5 7.114 × 10−6 16 4.706 × 10−7 2.099 × 10−7

18 2.132 × 10−8 6.028 × 10−9 20 5.213 × 10−10 1.906 × 10−10

Figure 5. Example 2: Exact (left) vs. numerical solution (right) at N = 15 collocation points.
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Figure 6. Example 2: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Figure 7. Example 2: Exact (left) vs. numerical solution (right) at N = 50 collocation points.

Example 3. In this example, we choose a = −1, b = 1. This gives us the model Equation (25) of
the form

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + h(ρ−1 − ℓ), (54)

subject to the initial condition

ρ0 =

√
hℓ
4

η2 +
hℓ
4

ξ2 + ξ + 5, (55)

The exact solution is given by

ρ(η, ξ, t) = ρ0 +
∞

∑
n=0

(htα)ρ0

Γ(1 + (n + 1)α)
+

(
htα

ρ2
0

)n

(56)

For α → 1, the transform exact solution is

ρ(η, ξ, t) = ρ0 +
ht
ρ0

e
ht
ρ2

0
.

(57)
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Figures 8–10 show the comparison between the actual and numerical solution for
α = 0.5 with different collocations points. Our simulations confirmed that our numerical
method performed very well against the exact solution. Further validation of exponential
error decays is shown in Table 2. These results illustrate the model’s capability to handle
nonlinear dynamics, which are common in biological systems where interactions between
species or within populations can lead to complex behaviors.

Figure 8. Example 3: Exact (left) vs. numerical solution (right) at N = 15 collocation points.

Figure 9. Example 3: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Table 2. Example 3: Error behavior of exact vs. numerical solution.

N L∞ L2 N L∞ L2

6 1.901 × 100 7.400 × 10−1 8 1.951 × 10−1 1.009 × 10−1

10 2.218 × 10−2 6.456 × 10−3 12 1.093 × 10−3 5.585 × 10−4

14 7.824 × 10−5 2.584 × 10−5 16 3.480 × 10−6 1.295 × 10−6

18 1.039 × 10−7 3.863 × 10−8 20 6.763 × 10−9 1.602 × 10−9
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Figure 10. Example 3: Exact (left) vs. numerical solution (right) at N = 50 collocation points.

6. Conclusions

This study has successfully shown how fractional calculus may be used to describe
fractional-order-in-time partial differential equations, which are used to simulate the dy-
namic behavior of biological populations. It has been shown that using the L1 scheme for
time-fractional derivatives is a reliable and accurate way to deal with the nonlocal proper-
ties included in these kinds of equations. This method is especially crucial for capturing
the genetic and memory components that are essential to biological systems. Additionally,
it has been demonstrated that the Chebyshev spectral method for spatial derivatives is a
highly effective method that offers an exponential rate of convergence, making it perfect
for managing intricate boundary conditions and geometries that are common in biolog-
ical modeling. Our algorithms provide a powerful tool for approximation solutions in
situations where analytical methods are not sufficient, as confirmed by our theoretical
and numerical investigation. Our approach is accurate and reliable, as evidenced by the
well-aligned numerical experiments with the theoretical predictions.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Algorithm A1 Algorithm for Solving the Fractional PDE (25):

1. Parameter Initialization:
• Define h, a, ℓ, b, and fractional order α.
• Define time step size ∆t and total simulation time T.

2. Spatial Domain Discretization:

• Define Chebyshev nodes ηj = cos
(

jπ
Nη

)
and ξi = cos

(
iπ
Nξ

)
for j, i = 0, 1, . . . , N.

• Construct Chebyshev differentiation matrices Dη and Dξ .

3. Initial Condition:
ρ(η, ξ, 0) = given initial condition. (A1)
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Algorithm A1 Cont.

4. Time Discretization Using L1 Scheme:

∂αρ

∂tα
≈ 1

Γ(2 − α)

n

∑
k=0

wk(ρ
n−k − ρn−k−1), (A2)

where wk = (∆t)α(k1−α − (k − 1)1−α).
5. Assembling the System:

1
Γ(2 − α)

n

∑
k=0

wkρn−k = D2
η(ρ

n)2 + D2
ξ(ρ

n)2 + h(ρn)a(1 − ℓ(ρn)b), (A3)

6. Matrix Formulation:
• Represent the problem in matrix form to prepare for numerical solving:

Aρn+1 = bn, (A4)

where A is derived from the L1 and Chebyshev methods, and bn contains the
known terms from time step n.

7. Iterative Solving:
• Solve the matrix equation using an appropriate iterative method:

ρn+1 = A−1bn. (A5)

8. Advance Time Step:
• Increment n and repeat from step 4 until t = T.

9. Postprocessing:
• Plot ρ(η, ξ, t).
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