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Abstract: In this paper, a new command filter-based adaptive NN control strategy is developed to
address the prescribed tracking performance issue for a class of nonstrict-feedback nonlinear systems.
Compared with the existing performance functions, a new performance function, the fixed-time
performance function, which does not depend on the accurate initial value of the error signal and
has the ability of fixed-time convergence, is proposed for the first time. A radial basis function
neural network is introduced to identify unknown nonlinear functions, and the characteristic of
Gaussian basis functions is utilized to overcome the difficulties of the nonstrict-feedback structure.
Moreover, in contrast to the traditional Backstepping technique, a command filter-based adaptive
control algorithm is constructed, which solves the “explosion of complexity” problem and relaxes
the assumption on the reference signal. Additionally, it is guaranteed that the tracking error falls
within a prescribed small neighborhood by the designed performance functions in fixed time, and
the closed-loop system is semi-globally uniformly ultimately bounded (SGUUB). The effectiveness of
the proposed control scheme is verified by numerical simulation.

Keywords: nonstrict-feedback nonlinear systems; neural networks; prescribed performance;
prescribed-time tracking control; command filter

1. Introduction

Nonlinear systems have received extensive attention since they were proposed because
these systems can well model most actual systems [1,2]. Many useful techniques have been
proposed to control nonlinear systems. Among these methods, the adaptive Backstepping
method is a powerful and popular tool, and many meaningful control achievements have
been reported for nonlinear systems in the framework of the traditional Backstepping
method [3,4]. As is known, in the Backstepping control design, the repeated derivatives
of the virtual control functions result in the “explosion of complexity” (EOC) problem. To
solve the EOC problem, the dynamic surface control (DSC) strategy [5–7] and the command
filter (CF) technique [8–12] are incorporated into the Backstepping method. Based on the
DSC technique, the adaptive NN/FLS control problem is addressed for strict-feedback
nonlinear fractional-order systems [6] and switched strict-feedback nonlinear systems
(SFNSs) [7], respectively. However, the DSC technique reported in [5–7] does not take
into account the filtering errors created by the virtual function passing through the filter.
Therefore, it is hard to achieve high control performance for the considered systems. To
overcome this limitation, the CF control method was proposed originally in [8] where the
compensating mechanism is introduced to handle the filtering errors. Subsequently, the
command-filtered Backstepping approach was extended to the single-input-single-output
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(SISO) SFNSS with constant parameters [9], and then the adaptive Backstepping control
scheme based on CF was constructed to warrant that all signals are bounded. Recently, for
switched SFNSs with hysteresis input [10], the adaptive finite-time neural network (NN)
control strategy has been developed by exploiting the command-filtered Backstepping
technique. However, it is worth noting that most of the above control schemes are only
concerned with the nonlinear systems in affine form.

In fact, many control systems, e.g., helicopter systems [13], servo mechanisms [14],
and aircraft systems [15], are inherently nonlinear, and their input variables may not be
expressed in an affine form. Thus, it is essential and interesting to study the control issues of
non-affine nonlinear systems. Nevertheless, most of the control algorithms proposed above
are unavailable for non-affine systems. To overcome this restriction, much effort has been
made and some meaningful results have been published for a kind of nonlinear system in
non-affine form [16–18]. For instance, by combining multilayer NN with implicit function
theory, both state and output feedback adaptive NN controllers are constructed for a type
of SISO non-affine nonlinear system with zero dynamics [16]. For non-affine pure-feedback
nonlinear multiagent systems with unmodeled dynamics and unknown dead zones [17],
an adaptive event-triggered NN control scheme has been designed to warrant that the
closed-loop system is bounded. However, it has to be emphasized that most of the obtained
results are focused only on nonlinear systems with a strict-feedback structure.

In reality, many actual systems are modeled as nonstrict-feedback nonlinear sys-
tems (NSFNSs) with a relaxed system structure, such as uncertain robot systems [19]
and aircraft sight control systems [20]. Nevertheless, the previously developed control
schemes for strict-feedback systems are unavailable. It is common knowledge that under
the framework of the Backstepping approach, a necessary condition is that there must
exist a state feedback control law to stabilize the corresponding subsystem. That is, to
ensure the existence of these control laws αi (i = 1, 2, . . . , n), the designed controllers for
each subsystem are dependent on the i-th system states only. If αi is related to all the
system states x1, x2, . . . , xn, the algebraic loop problem will arise [21]. Therefore, how to
control NSFNSs has attracted much attention, and then a great deal of effort has been
made. Recently, to deal with the nonstrict-feedback structure, the variable separation
method has been utilized under the assumption that the system function is less than or
equal to a strictly increasing function [22,23]. Apparently, the assumption condition limits
the application of the control algorithm reported in [22–24]. More recently, some effective
adaptive fuzzy-logic system (FLS)/NN control schemes have been designed for uncertain
NSFNSs [25–28], which relax the restriction on the system functions. For example, by
combining the adaptive Backstepping and FLS techniques [25], the adaptive finite-time
control issue of the NSFNSs with unknown dynamics is investigated. However, these
reported control strategies [25–28] ensure that the tracking error (TE) converges to a small
set of residuals, whose size is unknown.

To achieve high tracking performance, prescribed performance control (PPC) was first
proposed in [29]. The PPC method guarantees both the transient (such as convergence
rate, overshoot, etc.) and steady-state (such as control accuracy) performance of the TE for the
controlled systems. Thus, much attention has been given and many favorable achievements
have been published by utilizing the PPC and adaptive control techniques [29–38]. For instance,
an adaptive optimal control method is proposed in [31] to address the path tracking control
problem with prescribed performance for autonomous vehicles. It is significant to note that
the initial value of the performance functions reported in [29–31,36–38] are dependent on
the initial value of the system states and the reference signal. That is, the exact value of
e1(0) is required in advance. To overcome the restriction of the initial value, several types of
performance functions have been constructed [32–34]. For example, Bu et al. propose a new
performance function to handle the prescribed tracking performance control problem for a
type of hypersonic vehicle system [32]. Additionally, the performance functions reported
in [29–34] ensure that the TE converges asymptotically to within a prescribed bound. To
obtain better convergence performance, several new types of performance functions are
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designed in [35–38], such that the TE falls into a predetermined small neighborhood of
zero in finite time. However, the convergence time of TE depends on initial values e1(t) or
system design parameters. Therefore, it is a rewarding and challenging problem regarding
how to design a performance function without initial value constraints to ensure that
tracking error converges within a predetermined time.

Motivated by the foregoing discussion, this study is the first attempt to address the
fixed-time prescribed tracking performance control problem for a kind of NSFNS. Moreover,
based on the PPC method, a new fixed-time performance function (FTPF) is constructed
first, which is not constrained by initial values e1(0), and the convergence time can be
predetermined according to the practical system requirements. And then, by utilizing the
adaptive control technique, the radial basis function neural network (RBFNN) method, and
CF approach, a novel CF-based adaptive NN control scheme is constructed to warrant the
fixed-time PPC of the TE and handle the EOC problem. Furthermore, it is also proved that
all the signals of the closed-loop system are SGUUB. Compared with existing works, the
following contributions are worth being emphasized:

(1) This paper focuses on a class of NSFNSs, which are more general than SFNSs reported
in [3,4] and the traditional NSFNSs proposed in [25,28]. And thus, the developed
control scheme has wider applicability. Moreover, for the nonstrict-feedback struc-
ture, differently from the variable separation method with the requirement that the
system function is less than or equal to a strictly increasing function in [22,23], the
property of the Gaussian basis function is utilized without any restriction on the
unknown functions.

(2) A novel FTPF with fixed-time boundedness is proposed for the first time. Compared
with the existing PPC in [29,31,38] where the accurate e1(0) has to be known in
advance, the limitation is removed in this paper. Moreover, differently from the
performance functions reported in [32,34] where the asymptotic convergence of the
TE is warranted, the FTPF is developed, and the fixed-time prescribed performance
of the TE is guaranteed. That is, the transient and steady-state performance of TE is
guaranteed within a fixed time, and the convergence time can be designed according
to the actual system requirements.

(3) The proposed fixed-time PPC control strategy solves the EOC problem while eliminat-
ing the effects of filtering errors. In contrast to the traditional Backstepping technique
with the restriction that the n-th derivatives of the reference signal are continuous [3,4],
this paper tackles the EOC problem and relaxes the assumption where only the ref-
erence signal and its first-order derivative are continuous. Although the control
strategies designed based on the DSC method [5–7] also deal with the EOC problem,
these strategies ignore the influence of filtering errors and do not consider the PPC of
the TE.

2. Problem Description and Preliminaries
2.1. Problem Formulation

Consider the NSFNS as follows
ẋi = gi(X) + fi(X), i = 1, 2, . . . , n − 1,
ẋn = gn(X, u) + fn(X),
y = x1,

(1)

where X = [x1, . . . , xn]T denotes the system state vector; y and u stand for the system
output and control input, respectively; gi(X), gn(X, u), and fi(X) are unknown smooth
functions with gi(0) = 0, gn(0, 0) = 0, and fi(0) = 0; and 0 is a vector whose elements are
all zero.



Fractal Fract. 2024, 8, 339 4 of 17

Assumption 1 ([39]). Smooth functions gi(X) (i = 1, 2, . . . , n − 1) and gn(X, u) are continu-
ously differentiable, such that

∂gi(X)

∂xi+1
≥ bi > 0,

∂gn(X, u)
∂u

≥ bn > 0,

where bi (i = 1, 2, . . . , n) are positive constants.

Remark 1. Assumption 1 is a common assumption of nonstrict-feedback systems [39] to ensure
that system (1) is controllable.

Remark 2. System (1) represents a class of general nonlinear systems. When gi(X) = gi(xi)xi+1
and function fi(X) ≤ ϕi(∥X∥) with ϕi(0) = 0, system (1) becomes the NSFNSs reported
in [23,24]. Unlike references [23,24], this paper has no such restriction on function fi(X). If
functions gi(X) and fi(X) are both dependent on system state vector x̄i = [x1, . . . , xi]

T , system (1)
degrades into the well-known SFNSS.

Definition 1 ((SGUUB) [40]). If there exists a compact set Ω ∈ Rn, for every x0 ∈ Ω, there
are positive constant b and T = T(x0, b) ≥ 0, independent of t0, such that ∥x(t)∥ ≤ b,
∀t ≥ t0 + T(x0, b); then, the solutions of system (1) are SGUUB with ultimate bound b.

Definition 2 (Fixed-Time SGUUB). The solutions of system (1) are said to be Fixed-Time SGUUB
if it is SGUUB with settling time T > t0, independent on initial value x0 and constant b.

Remark 3. Compared with Definition 1 where T is dependent on the initial value x0 and ultimate
bound b, the settling time T in Definition 2 is a prescribed constant and irrelevant to the value of x0
and b. According to Definitions 1 and 2, for every x0 ∈ Ω, if there exist constants b and T > t0,
such that lim

t→T
∥x(t)∥ ≤ b, then the solutions of system (1) are Fixed-Time SGUUB.

The objective of this paper is to construct a CF-based adaptive NN control scheme
for NSFNSs (1), such that the TE eventually converges to the prescribed bounded by
the designed FTPFs in fixed time, and the SGUUB stability of the considered system
is warranted.

To achieve this purpose, in what follows, some preparatory work is provided.

Assumption 2 ([10]). Reference signal yd(t) and its first derivative are continuous.

2.2. Radial Basis Function Neural Networks

As is known, the more popular methods for dealing with unknown system functions
are FLSs and NNs, which can be expressed as W∗TS(Z) with input vector Z ∈ Rn ∈ Ω,
ideal weight vector W∗ ∈ Rq, node number q, and basis function vector S(Z) ∈ Rq.

As reported in [41], RBFNN is utilized to identify unknown nonlinear function f (Z),
and it yields

f (Z) = WTS(Z) + ε(Z), Z ∈ Ω, (2)

where Z ∈ Ω ⊂ Rn is the input vector; ε(Z) is the approximation error; W = [w1, w2, . . . , wq]T ∈ Rq

is the weight vector; and q is the number of RBFNN nodes. And ideal weight vector W∗

can be described as

W∗ = arg min
W∈Rq

{
sup
Z∈Ω

| f (Z)− WTS(Z) |
}

,

where S(Z) = [s1(Z), s2(Z), . . . , sq(Z)]T ∈ Rq is the basis function vector. Throughout

this paper, Gaussian function sl(Z) = e
− ∥Z−cl∥

2

b2
l with cl = [cl1, cl2, . . . , cln]

T is chosen as the



Fractal Fract. 2024, 8, 339 5 of 17

RBFNN basis function sl(Z); for l = 1, 2, . . . , q, i = 1, 2, . . . , n, cli and bl are the centers and
widths of Gaussian functions sl(Z).

Lemma 1 ([42]). For any positive constants m, n and m ≤ n, the basis function of NN satisfies

∥S(Zn)∥2 ≤ ∥S(Zm)∥2,

where Zn = [x1, . . . , xn]T and Zm = [x1, . . . , xm]T are the input vectors of RBFNN.

Proof. For l = 1, 2, . . . , q, i = 1, 2, . . . , n, cli and bl are the centers and widths of Gaussian
functions sl(Z). According to the Definition of the basis function vector and Gaussian

function sl(Z) = e
− ∥Z−cl∥

2

b2
l , one has

∥S(Z)∥2 =
q

∑
1=1

(
n

∏
i=1

exp

[
− 1

b2
l
(xi − cli)

2

])2

≤
q

∑
l=1

(
m

∏
i=1

exp

[
− 1

b2
l
(xi − cli)

2

])2

= ∥S(Zm)∥2.

Remark 4. According to the Proof in Lemma 1, it can be concluded that the characteristics of the
NN basis function are related to the dimensionality of the input vector and that A is independent
of the order of arrangement of state information. That is, m-dimensional vector elements can be
arbitrarily selected from n-dimensional system states x1, x2, . . . , xn.

2.3. Performance Function

To obtain the good tracking performance, TE e1(t) = y1(t)− yd(t) satisfies

−dρ(t) < e1(t) < d̄ρ(t), (3)

where ρ(t) is the designed performance function and d and d̄ are positive constants.

Definition 3. A smooth function ρ(t) is defined as an FTPF if it satisfies four properties: (1) ρ(t) > 0;
(2) ρ̇(t) ≤ 0; (3) ρ(0) is independent on initial error e1(0); and (4) limt→Tf ρ(t) = ρTf > 0 and
ρ(t) = ρTf for any t ≥ Tf with ρTf being an arbitrarily small constant and Tf representing the
settling time.

From Definition 3, an FTPF can be designed as

ρ(t) =

coth(l1t + l2)(1 − l3t
l )

l + ρTf , t ∈
[
0, Tf

)
,

ρTf , t ∈
[

Tf ,+∞
)

,
(4)

where l ≥ n (n denotes the system order), ρTf > 0, l1, l2, l3 are constants, and Tf =
l
l3

.
The relationship between TE e1(t) and the performance function ρ(t) stated above is

clearly shown in Figure 1.
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Figure 1. Performance functions ρ(t) and tracking error e1(t).

Remark 5. It is evident that function (4) satisfies the four properties of Definition 3 mentioned above.

Remark 6. The existing PPC methods require that the accurate initial value of the TE be known in
advance to set the initial value of the performance function to satisfy constrict condition (3) with
t = 0. However, the requirement is difficult to achieve for some practical systems. When only
the rough information of e1(0) is known, the proposed FTPF has an advantage over the reported
performance functions. That is, when t = 0, constrained condition (3) becomes an unconstrained
one that lim

l2→−∞
−dρ(0) < e(0) < lim

l2→∞
d̄ρ(0).

Remark 7. Settling time Tf is dependent on constants l and l3, which is specified according to the
actual system requirements. It is very meaningful for practical models with high convergence time
requirements, such as unmanned aerial vehicles and robotic arm systems. Constant ρTf represents
the prescribed accuracy of TE e1(t) in advance, with the maximum allowable size of TE e1(t) at the
steady state. The value of parameter l2 determines the maximum overshoot of the TE based on the
analysis of Remark 6. Consequently, a different tracking performance can be achieved by selecting
the appropriate parameters of function ρ(t). Likewise, when parameters l, l1, l2, and l3 are given,
the performance function is predetermined.

To represent constrict condition (3) by an unconstrained form, the following state
transformation, as reported in [7], is employed

e1(t) = ρ(t)R
(
ζ̄1
)
,

where

R
(
ζ̄1
)
=

d̄eζ̄1 − de−ζ̄1

eζ̄1 + e−ζ̄1
(5)

and ζ̄1 denotes the transformed error. According to (5), smooth and strictly increasing
function R

(
ζ̄1
)

satisfies that limζ̄1→−∞ R
(
ζ̄1
)
= −d and limζ̄1→+∞ R

(
ζ̄1
)
= d̄. The inverse

transformation of (5) can be obtained

ζ̄1 = R−1
(

e1

ρ

)
=

1
2

ln

( e1
ρ + d

d̄ − e1
ρ

)
.

To deal with the zero equilibrium point inconformity problem in the state transforma-
tion, transformed error ζ̄1 can be rewritten as

ζ1 = ζ̄1 −
1
2

ln
(

d
d̄

)
. (6)
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And then, the derivation of ζ1 is

ζ̇1 = χ1

(
ė1 −

ρ̇

ρ
e1

)
,

where

χ1 =
1

2ρ

(
1

e1
ρ + d

− 1
e1
ρ − d̄

)
> 0,

ρ̇ =(l1 − l1 coth2(l1t + l2))(1 −
l3t
l
)l − l3 coth(l1t + l2)(1 −

l3t
l
)l−1.

3. Adaptive NN Controller Design

In this section, a CF-based adaptive NN control scheme is proposed by using the Back-
stepping technique to ensure the tracking property and prove the stability of the system.

The definition of the error variables is presented below.
Define error variables {

z1 = ζ1,
zi = xi − xi,c, i = 2, 3, . . . , n,

(7)

where xi+1,c(t) and ẋi+1,c(t) are the output of the CF. And as reported in [8], the CF is
defined as {

ϕ̇i,1 = ωnϕi,2, i = 1, 2, . . . , n − 1,
ϕ̇i,2 = −2ζωnϕi,2 − ωn(ϕi,1 − αi),

(8)

where xi+1,c(t) = ϕi,1 and ẋi+1,c(t) = ωnϕi,2 with ϕi,1(0) = 0 and ϕi,2(0) = 0. The design
parameters of filter (8) satisfy ωn > 0 and ζ ∈ (0, 1].

Remark 8. From (8), it can be seen that the CF is a second-order filter, which is more complicated
than the first-order low-pass filter in the DSC method reported in [5–7]. However, in the published
control schemes based on the DSC method [5–7], filtering error xi+1,c − αi is neglected, which makes
the controller difficult to achieve accurate control performance. To achieve good control performance,
the CF method is introduced into the Backstepping technique to solve the EOC problem, where the
filtering error is eliminated by introducing the compensating signal.

Remark 9. Parameters of filter (8) are required to satisfy ωn > 0 and ζ ∈ (0, 1]. The output
signals of the filter and control input are affected by the selection of parameter ωn and ζ, which may
lead to the peak phenomenon. Different filter performance and control performance can be achieved
by selecting appropriate parameters ωn and ζ. Thus, in practical applications, these parameters of
the filter can be selected eclectically for achieving suitable control performance.

Next, we define compensated TE signal νi
ν1 = z1 − ξ1,
νi = zi − ξi, i = 2, . . . , n − 1,
νn = zn,

(9)

where ξi is the compensating signal to be devised.
In what follows, the designed adaptive controllers are presented as follows. The

virtual controllers are designed as

α1 =− η1z1 − ν1χ1 + ẏd +
ρ̇

ρ
e1 − θ̂1a1ν1χ1ST(Z12)S(Z12) (10)

and

αi =− kizi − νi − aiνi θ̂iST(Zi2)S(Zi2) + ẋi,c − χ1(νi−1 − ξi−1), i = 2, . . . , n (11)



Fractal Fract. 2024, 8, 339 8 of 17

The compensating signal laws are constructed as

ξ̇1 = χ1(−η1ξ1 + (x2,c − α1) + ξ2), (12)

and
ξ̇i =− kiξi + (xi+1,c − αi) + ξi+1 − χ1ξi−1, i = 2, 3, . . . , n − 1

ξ̇n =− knξn − ξn−1,
(13)

where η1 > 0 and ki > 0 are constants; Zi2 is the input vector of RBFNN. Additionally,
according to the calculation process, it is easy to find that when i > 2, χ1(νi−1 − ξi−1) of
controller (11) and χ1ξi−1 of controller (13) will be independent of χ1. At the same time,
the corresponding parameter learning laws are developed as

˙̂θi = γiaiν
2
i ST(Zi2)S(Zi2)− σi θ̂i, i = 1, 2, . . . , n, (14)

where σi > 0 i = 1, 2, . . . , n are the coefficients of the modification terms, and modification
terms σi θ̂i are used to increase the robustness of the closed-loop system; θ̂i are the estimate
of constants θ∗i . Throughout this paper, estimation errors θ̃i are defined as θ̃i = θ∗i − θ̂i.

4. Stability Analysis

And the prescribed performance of the TE and the boundedness of the closed-loop
system, are summarized as the theorem below. In what follows, the proof of the theorem
is presented.

Theorem 1. Under Assumptions 1 and 2, system (1), controllers (10) and (11), parameter learning
laws (14), and compensating signal laws (12) and (13), it is concluded that

(1) the closed-loop system is SGUUB;
(2) the fixed-time prescribed performance of the TE is guaranteed, i.e., Ineq. (3) holds.

Proof. In what follows, based on the Lyapunov stability theory, the CF method, and
the proposed FTPF, an adaptive NN PPC strategy is designed to prove the conclusion
of Theorem 1.

Step 1. According to (6), (7), and (9) and following from system description (1), the
dynamic of compensated TE ν1 is

ν̇1 = ζ̇1 − ξ̇1 = χ1

(
x2 + h1(Z11)− ẏd −

ρ̇

ρ
e1 − χ−1

1 ξ̇1

)
, (15)

where h1(Z11) = −x2 + g1(X) + f1(X) is an unknown smooth nonlinear function.
With the help of RBFNN, from (2), function h1(Z11) can be expressed as

h1(Z11) = W∗T
1 S(Z11) + ε1(Z11), (16)

where Z11 = X = [x1, . . . , xn]T ∈ Ω is the input vector of RBFNN with compact set Ω.
According to (15) and (16), the dynamic of 1

2 ν2
1 results in

ν̇1ν1 =ν1χ1(x2 + W∗T
1 S(Z11) + ε1(Z11)− ẏd −

ρ̇

ρ
e1 − χ−1

1 ξ̇1). (17)

Based on Lemma 1 and Young’s inequality xy ≤ x2

2a +
ay2

2 (a > 0 is a positive constant),
we have

χ1ν1W∗T
1 S(Z11) ≤a1ν2

1 χ2
1θ∗1 ST(Z11)S(Z11) +

1
4a1

≤a1ν2
1 χ2

1θ∗1 ST(Z12)S(Z12) +
1

4a1
,

(18)
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and

χ1ν1ε1(Z11) ≤ ν2
1 χ2

1 +
1
4

ε∗2
1 , (19)

where Z12 is only dependent on system state x1; θ∗1 = ∥W∗
1 ∥2 is an unknown constant since

W∗
1 is a constant vector; ε∗1 > 0 is the upper bound of approximation error ε1(Z11); and a1

is a positive constant.

Remark 10. From (16), apparently, the NN input vector Z11 is dependent on all the state signals.
According to the principle of the Backstepping technique and the Lyapunov stability theory, virtual
functions αi are associated with all the system states, which result in the algebraic loop problem [21].
To avoid this issue, the NN input variable Z11 is replaced by Z12 based on Lemma 1, so that the
designed virtual controllers can be designed and implemented directly.

Choose Lyapunov function as

V1 =
1
2

ν2
1 +

1
2γ1

θ̃2
1 ,

where γ1 > 0 is a constant.
In view of (17)–(19), the derivative of function V1 is

dV1

dt
=ν1ν̇1 −

1
γ1

θ̃1
˙̂θ1

≤χ1ν1

(
(x2 − x2,c) + (x2,c − α1) + α1 − ẏd + a1θ̂1ν1χ1ST(Z12)S(Z12) + ν1χ1

− ρ̇

ρ
e1 − χ−1

1 ξ̇1

)
+

1
4

ε∗2
1 +

1
4a1

− 1
γ1

θ̃
(

˙̂θ1 − γ1a1ν2
1 χ2

1ST(Z12)S(Z12)
)

.

(20)

Moreover, by utilizing the completion of the square, it is easy to conclude that

σ1

γ1
θ̃1θ̂1 =

σ1

γ1
θ̃1(θ

∗
1 − θ̃1) = − σ1

γ1
θ̃2

1 +
σ1

γ1
θ̃1θ∗1

⩽ − σ1

2γ1
θ̃2

1 +
σ1

2γ1
θ∗2

1 .
(21)

Substituting (10), (12), and (14) with i = 1 and (21) into (20) yields

dV1

dt
≤ −k1ν2

1 −
σ1

2γ1
θ̃2

1 + ν1χ1ν2 + D1, (22)

where k1 := η1χ1 > 0 since η1 > 0, χ1 > 0; D1 = σ1
2γ1

θ∗2
1 + 1

4 ε∗2
1 + 1

4a1
.

Step i (2 ≤ i ≤ n − 1). Based on (1), (7), and (9), the dynamic of compensated TE
νi satisfies

ν̇i = ẋi − ξ̇i−1

= xi+1 + hi(Zi1)− ẋi,c − ξ̇i,
(23)

where hi(Zi1) = −xi+1 + gi(X) + fi(X) is an unknown smooth function.
In view of approximator (2), the unknown smooth function can be described as

hi(Zi1) = W∗T
i S(Zi1) + εi(Zi1), Zi1 ∈ Ω, (24)

where Zi1 = X = [x1, x2, . . . , xn]T is the input vector of RBFNN.
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Subsequently, from (23) and (24), the dynamic of 1
2 ν2

i is

νi ν̇i =νi

(
xi+1 + W∗T

i S(Zi1) + εi(Zi1)− ẋi,c − ξ̇i

)
≤νi

(
xi+1 + aiνiθ

∗
i ST(Zi2)S(Zi2) + νi − ẋi,c − ξ̇i

)
+

1
4

ε∗2
i +

1
4ai

(25)

with NN input vector Zi2 = [x1, x2, . . . , xi]
T . The following two inequalities are used in

the derivation of (25). Based on Young’s inequality and the property of basis function S(·),
we have

νiW∗T
i S(Zi1) ≤aiν

2
i θ∗i ST(Zi2)S(Zi2) +

1
4ai

, (26)

and

νiεi(Zi1) ≤ ν2
i +

1
4

ε∗2
i , (27)

where θ∗i = ∥W∗
i ∥2 and ε∗i is a positive constant with ε∗i > |εi(Zi1)|.

Consider the Lyapunov function

Vi = Vi−1 +
1
2

ν2
i +

1
2γi

θ̃2
i ,

and its first time derivative is

dVi
dt

=
dVi−1

dt
+ νi ν̇i −

1
γi

θ̃i
˙̂θi, (28)

where γi > 0 is a constant parameter.
According to (22), (25)–(28), it can be obtained that

dVi
dt

≤−
i−1

∑
j=1

k jν
2
j −

i−1

∑
j=1

σj

2γj
θ̃2

j + χ1νi−1νi + Di−1 +
1
4

ε∗2
i +

1
4ai

− 1
γi

θ̃i θ̂i

+ νi

(
xi+1 + aiνiθ

∗
i ST(Zi2)S(Zi2) + νi − ẋi,c − ξ̇i

)
≤−

i−1

∑
j=1

k jν
2
j −

i−1

∑
j=1

σj

2γj
θ̃2

j + Di−1 +
1
4

ε∗2
i +

1
4ai

+ νi

(
(xi+1 − xi+1,c)

+ (xi+1,c − αi) + αi + χ1νi−1 + aiνi θ̂iST(Zi2)S(Zi2) + νi − ẋi,c − ξ̇i

)
− 1

γi
θ̃i

(
˙̂θi − γiaiν

2
i ST(Zi2)S(Zi2)

)
,

(29)

where Di−1 = ∑i−1
j=1(

σj
2γj

θ∗2
j + 1

4 ε∗2
j + 1

4aj
).

Substituting (11), (13), and (14) into (29) leads to

dVi
dt

≤−
i

∑
j=1

k jz2
j −

i−1

∑
j=1

σj

2γj
θ̃2

j + Di−1 +
1
4

ε∗2
i +

1
4ai

+
σi
γi

θ̃i θ̂i. (30)

Similar to the calculation of (21), it yields

σi
γi

θ̃i θ̂i ⩽ − σi
2γi

θ̃2
i +

σi
2γi

θ∗2
i . (31)
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Combining (30) and (31), we obtain

dVi
dt

≤−
i

∑
j=1

k jν
2
j −

i

∑
j=1

σj

2γj
θ̃2

j + Di + νiνi+1, (32)

where Di = ∑i
j=1(

σj
2γj

θ∗2
j + 1

4 ε∗2
j + 1

4aj
).

Step n. Consider

Vn = Vn−1 +
1
2

ν2
n +

1
2γn

θ̃2
n,

where γn and θ∗n = ∥W∗
n∥2 are positive constants.

Then, noticing (32) with i = n − 1 and combining (11) and (14) yields

dVn

dt
≤−

n

∑
i=1

kiν
2
i −

n

∑
i=1

σi
2γi

θ̃2
i + Dn−1 +

σn

2γn
θ∗2

n +
1
4

ε∗2
n +

1
4an

≤− cVn + Dn,

where c = min{2ki, σi : i = 1, . . . , n} and Dn = ∑n
i=1(

σi
2γi

θ∗2
i + 1

4 ε∗2
i + 1

4ai
). Apparently, Dn

is bounded since γi, σi, θ∗i , and ε∗i are constants.
According to the recursive process, Lyapunov function Vn satisfies dVn

dt ≤ 0. Thus,
we can conclude that all the signals (νi and θ̃i, i = 1, . . . , n) are uniformly ultimately
bounded based on the Boundedness Theorem (e.g., Theorem 4.18 in [40]). At the same time,
it is easy to obtain that θ̂i are bounded since θ̃i = θ∗i − θ̂i. Choose the Lyapunov function of
the compensating system as follows:

Vξ =
1
2

n

∑
i

ξ2
i .

According to compensating law (13), the first derivative of Lyapunov function Vξ is

dVξ

dt
=ξ1ξ̇1 + ξ2ξ̇2 + · · ·+ ξn ξ̇n

=− η1χ1ξ2
1 + χ1ξ1(x2,c − α1) + χ1ξ1ξ2 − k2ξ2

2 + ξ2(xi+1,c − αi) + ξ2ξ3

− χ1ξ1ξ2 − kiξ
2
i + ξi(xi+1,c − αi) + ξiξi+1 − ξiξi−1 + · · · − knξ2

n − ξnξn−1.

(33)

As cited in [8], |xi+1,c − αi| ≤ ϖi can be ensured with arbitrarily small positive con-
stants ϖi (i = 1, 2, . . . , n). Therefore, with the help of the inequality that ab ≤ 1/2a2 + 1/2b2,
Equation (33) can be rewritten as

dVξ

dt
≤ −KVξ + 1/2

n−1

∑
i=1

ϖ2
i (34)

where K = 2 min{l1χ1 − 1/2, k2 − 1/2, . . . , kn − 1/2}. Thus, according to the Boundedness
Theorem [40], all the compensating signals are bounded. Thus, according to the bound-
edness of ξi and νi, we can obtain that error signals zi (i = 1, 2, . . . , n) are bounded. As
cited in [29,30], if transformed error ζ1 is bounded, the prescribed performance of the TE is
guaranteed. Thus, according to the boundedness of error signal z1( i.e., ζ1), the fixed-time
prescribed tracking performance is ensured. That is, TE e1(t) enters the prescribed domain
bounded by performance functions within fixed time and stay therein.

Consequently, the proof of Theorem 1 is completed.
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5. Simulation

To verify the effectiveness of the proposed control algorithm, a simulation study for
NSFNSs is performed.

Example 1. Consider the NSFNSs below
ẋ1 = g1(X) + f1(X),
ẋ2 = g2(X, u) + f2(X),
y = x1,

(35)

where X = [x1, x2]
T ; u and y denote the system state vector, input and output, respectively;

system functions are chosen as g1(X) = 4x2 + cos(x1x2), g2(X, u) = 2u(sin(x1 + x2) + 2),
f1(X) = − cos(x2

1x2), and f2(X) = cos(x1x2) + 1; reference trajectory yd(t) is chosen as
yd(t) = cos(1.5t) + cos(t); and performance function

ρ(t) =

coth(0.5t + 0.5)(1 − 4t
4 )

4 + ρTf , t ∈
[
0, Tf

)
,

ρTf , t ∈
[

Tf ,+∞
)

,

where ρTf = 0.05 and settling time Tf = 1.

In what follows, adaptive NN controllers based on CF are developed for system (35) to
ensure the prescribed fixed-time performance of the TE. Similar to the designed controllers
(10) and (11), the controllers for system (35) are formulated as

u =− k2z2 − ν2 − ν2a2θ̂2ST(Z22)S(Z22)− χ1(ν1 − ξ1) + ẋ2,c, (36)

and

α1 =− η1z1 − ν1χ1 + ẏd +
ρ̇

ρ
e1 − a1θ̂1ν1χ1ST(Z12)S(Z12), (37)

where Z12 = x1 and Z22 = [x1, x2]
T are the NN inputs; θ∗1 and θ∗2 are the norm’s squares of

NN ideal weight vectors; and θ̂1 and θ̂2 are their estimates. At the same time, the dynamics
of the compensating signals are

ξ̇1 = χ1(−η1ξ1 + (x2,c − α1) + ξ2), (38)

ξ̇2 = −k2ξ2 − χ1ξ1. (39)

And the parameter learning laws are developed as

˙̂θ1 = γ1a1ν2
1 χ2

1ST(Z12)S(Z12)− σ1θ̂1, (40)

˙̂θ2 = γ2a2ν2
2 ST(Z22)S(Z22)− σ2θ̂2. (41)

The chosen simulation parameters are provided in Table 1, which include the initial
conditions of system (35), the number of NN nodes, and the parameters of (36)–(41).

To verify the effectiveness of the proposed method, this paper compares the de-
signed fixed-time prescribed tracking performance control scheme with the standard
prescribed tracking performance control scheme by selecting the same design parameters
and initial values.
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Table 1. Simulation Parameters.

Initial
conditions

x1(0) 0.5 Parameters Value

x2(0) 1 η1 1

θ̂1(0) 0 k2 200

θ̂2(0) 0 γ1 10

Node number q 9 γ2 20

Performance
function

d̄ 1 σ1 0.05

d 1 σ2 0.05

Command
filter parameters

ωn 100 a1 1

ζ 0.5 a2 1

The obtained simulation results are presented in Figures 2–7. From Figure 2, it can
be seen that the system output tracks reference trajectory yd(t). To clearly display the
prescribed tracking performance, the trajectories of the TE and the performance functions
are provided in Figure 3, which indicates that the TE falls within the prescribed bounds
by the performance functions in settling time Tf = 1. The small figure of Figure 3 further
demonstrates that the tracking error signal converges the prescribed bounds of the perfor-
mance functions within a fixed time. However, the trajectory of the tracking error–based
standard PPC methodology converges asymptotically to a prescribed bounded neighbor-
hood. Additionally, compared to the tracking error obtained without the PPC method, the
transient and steady-state performances of the tracking error are guaranteed by using the
proposed control algorithm simultaneously. Moreover, the trajectories of the control input
u(t), the compensated TE signal, the compensating signal, and the norm’s squares of the
weight estimations are presented in Figures 4–7, respectively. It can be clearly seen that the
trajectories of these estimates are stable in a bounded domain from Figures 4–7.

In summary, these simulation results suggest the fixed-time boundedness of the TE
and the SGUUB of all the signals of the closed-loop system, which accords with Theorem 1.
Furthermore, the obtained control performance verifies the effectiveness of the proposed
control method.
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Figure 2. Reference signal yd(t) and output signal y(t).
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Figure 3. Error signals e1(t) and performance functions ρ(t).
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Figure 4. Control input u(t).
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Figure 5. Compensated tracking error signal ν1(t).
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Figure 6. Compensating signal ξ1(t).
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Figure 7. Estimations of norm’s squares of NN weight vectors.

6. Conclusions

This paper investigates the tracking control problem with prescribed performance for
a class of NSFNSs. A new FTPF is proposed firstly, which does not need to determine the
exact initial values in advance and whose convergence time is specified only according
to the actual system requirements. Moreover, the approximator RBFNN is exploited to
identify the unknown system functions, and the nonstrict-feedback structure is addressed
by using the characteristics of NN basis functions. In this paper, the constructed CF-based
adaptive NN PPC scheme relaxes the assumption on the reference signal and solves the
EOC issue while eliminating the influence of filtering errors. Furthermore, it is proven that
the closed-loop system is SGUUB and the fixed-time prescribed tracking performance is
ensured. That is, the TE converges to the prescribed small neighborhood of origin within a
fixed time.

Author Contributions: Methodology, X.Y., J.L., S.G., X.L. and T.H.; Software, X.Y. and T.H.; Writing—
original draft, X.Y. and X.L.; Writing—review & editing, J.L. and S.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bechlioulis, C.P.; Doulgeri, Z.; Rovithakis, G.A. Neuro-adaptive force/position control with prescribed performance and

guaranteed contact maintenance. IEEE Trans. Neural Netw. 2010, 21, 1857–1868. [CrossRef] [PubMed]
2. Kostarigka, A.K.; Doulgeri, Z.; Rovithakis, G.A. Prescribed performance tracking for flexible joint robots with unknown dynamics

and variable elasticity. Automatica 2013, 49, 1137–1147. [CrossRef]
3. Zong, G.; Sun, H.; Nguang, S.K. Decentralized adaptive neuro-output feedback saturated control for INS and its application to

AUV. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5492–5501. [CrossRef] [PubMed]
4. Zhou, J.; Wen, C.; Wang, W.; Yang, F. Adaptive backstepping control of nonlinear uncertain systems with quantized states. IEEE

Trans. Autom. Control 2019, 64, 4756–4763. [CrossRef]
5. Swaroop, D.; Hedrick, J.K.; Yip, P.P.; Gerdes, J.C. Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom.

Control 2000, 45, 1893–1899. [CrossRef]
6. Wang, C.; Li, W.; Liang, M. Event-Triggered Adaptive Fuzzy Control for Strict-Feedback Nonlinear FOSs Subjected to Finite-Time

Full-State Constraints. Fractal Fract. 2024, 8, 160. [CrossRef]
7. Si, W.; Dong, X. Adaptive neural DSC for nonlinear switched systems with prescribed performance and input saturation.

IEEE/CAA J. Autom. Sin. 2017, 99, 1–9. [CrossRef]
8. Farrell, J.A.; Polycarpou, M.; Sharma, M.; Dong, W. Command Filtered Backstepping. IEEE Trans. Autom. Control 2009,

54, 1391–1395. [CrossRef]
9. Dong, W.; Farrell, J.A.; Polycarpou, M.M.; Djapic, V.; Sharma, M. Command Filtered Adaptive Backstepping. IEEE Trans. Control

Syst. Technol. 2012, 20, 566–580. [CrossRef]

http://doi.org/10.1109/TNN.2010.2076302
http://www.ncbi.nlm.nih.gov/pubmed/20923732
http://dx.doi.org/10.1016/j.automatica.2013.01.042
http://dx.doi.org/10.1109/TNNLS.2021.3050992
http://www.ncbi.nlm.nih.gov/pubmed/33497340
http://dx.doi.org/10.1109/TAC.2019.2906931
http://dx.doi.org/10.1109/TAC.2000.880994
http://dx.doi.org/10.3390/fractalfract8030160
http://dx.doi.org/10.1109/JAS.2017.7510661
http://dx.doi.org/10.1109/TAC.2009.2015562
http://dx.doi.org/10.1109/TCST.2011.2121907


Fractal Fract. 2024, 8, 339 16 of 17

10. Fu, C.; Wang, Q.G.; Yu, J.; Lin, C. Neural Network-Based Finite-Time Command Filtering Control for Switched Nonlinear Systems
with Backlash-Like Hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3268–3273. [CrossRef]

11. Song, S.; Song, X.; Tejado, I. Disturbance Observer-Based Event-Triggered Adaptive Command Filtered Backstepping Control for
Fractional-Order Nonlinear Systems and Its Application. Fractal Fract. 2023, 7, 810. [CrossRef]

12. Ma, R.; Chen, J.; Lv, C.; Yang, Z.; Hu, X. Backstepping Control with a Fractional-Order Command Filter and Disturbance Observer
for Unmanned Surface Vehicles. Fractal Fract. 2024, 8, 23. [CrossRef]

13. Liu, H.; Lu, G.; Zhong, Y. Robust LQR Attitude Control of a 3-DOF Laboratory Helicopter for Aggressive Maneuvers. IEEE Trans.
Ind. Electron. 2013, 60, 4627–4636. [CrossRef]

14. Wang, S.; Na, J.; Chen, Q. Adaptive predefined performance sliding mode control of motor driving systems with disturbances.
IEEE Trans. Energy Convers. 2020, 36, 1931–1939. [CrossRef]

15. Shang, Y.; Li, X.; Qian, H.; Wu, S.; Pan, Q.; Huang, L.; Jiao, Z. A novel electro hydrostatic actuator system with energy recovery
module for more electric aircraft. IEEE Trans. Ind. Electron. 2019, 67, 2991–2999. [CrossRef]

16. Ge, S.S.; Zhang, J. Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE
Trans. Neural Netw. 2003, 14, 900–918. [CrossRef] [PubMed]

17. Liang, H.; Liu, G.; Zhang, H.; Huang, T. Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear
Multiagent Systems with Dynamic Uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2239–2250. [CrossRef] [PubMed]

18. Meng, W.; Yang, Q.; Jagannathan, S.; Sun, Y. Adaptive neural control of high-order uncertain nonaffine systems: A transformation
to affine systems approach. Automatica 2014, 50, 1473–1480. [CrossRef]

19. He, W.; Chen, Y.; Yin, Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern.
2015, 46, 620–629. [CrossRef]

20. Peng, L.; Xun, L.; Han, Y.; Zhang, S.; Liu, J. Extra—Atmospheric Aircraft Control System Design Based on Loop Shaping Method.
In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou,
China, 21–24 July 2018.

21. Li, Y.; Tong, S. Command-Filtered-Based Fuzzy Adaptive Control Design for MIMO-Switched Nonstrict-Feedback Nonlinear
Systems. IEEE Trans. Fuzzy Syst. 2017, 25, 668–681. [CrossRef]

22. Chen, B.; Zhang, H.; Lin, C. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback
Form. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 89–98. [CrossRef] [PubMed]

23. Wang, H.; Liu, X.; Liu, K.; Karimi, H.R. Approximation-Based Adaptive Fuzzy Tracking Control for a Class of Nonstrict-Feedback
Stochastic Nonlinear Time-Delay Systems. IEEE Trans. Fuzzy Syst. 2015, 23, 1746–1760. [CrossRef]

24. Chen, B.; Liu, X.P.; Ge, S.S.; Lin, C. Adaptive Fuzzy Control of a Class of Nonlinear Systems by Fuzzy Approximation Approach.
IEEE Trans. Fuzzy Syst. 2012, 20, 1012–1021. [CrossRef]

25. Liu, Y.; Zhu, Q. Adaptive Fuzzy Finite-Time Control for Nonstrict-Feedback Nonlinear Systems. IEEE Trans. Cybern. 2022,
52, 10420–10429. [CrossRef]

26. Wang, H.; Liu, S.; Yang, X. Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Inf. Sci. 2020,
514, 605–616. [CrossRef]

27. Wang, H.; Xu, K.; Qiu, J. Event-Triggered Adaptive Fuzzy Fixed-Time Tracking Control for a Class of Nonstrict-Feedback
Nonlinear Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3058–3068. [CrossRef]

28. Liu, Y.; Hao, L.Y. Adaptive tracking control for constrained nonlinear nonstrict-feedback switched stochastic systems with
unknown control directions. Appl. Math. Comput. 2024, 473. [CrossRef]

29. Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems with Prescribed
Performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [CrossRef]

30. Bechlioulis, C.P.; Rovithakis, G.A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict
feedback systems. Automatica 2009, 45, 532–538. [CrossRef]

31. Hu, C.; Wang, Z.; Bu, X.; Zhao, J.; Na, J.; Gao, H. Optimal Tracking Control for Autonomous Vehicle with Prescribed Performance
via Adaptive Dynamic Programming. IEEE Trans. Intell. Transp. Syst. 2024, 1–13. [CrossRef]

32. Bu, X.; Wu, X.; Zhu, F.; Huang, J.; Ma, Z.; Zhang, R. Novel prescribed performance neural control of a flexible air-breathing
hypersonic vehicle with unknown initial errors. ISA Trans. 2015, 59, 149–159. [CrossRef] [PubMed]

33. Guo, G.; Zhang, C.L. Adaptive Fault-Tolerant Control with Global Prescribed Performance of Strict-Feedback Systems. IEEE
Trans. Syst. Man Cybern. Syst. 2024. [CrossRef]

34. Song, X.; Sun, P.; Song, S.; Stojanovic, V. Saturated-threshold event-triggered adaptive global prescribed performance control for
nonlinear Markov jumping systems and application to a chemical reactor model. Expert Syst. Appl. 2024, 249, 123490. [CrossRef]

35. Liu, Y.; Yao, D.; Li, H.; Lu, R. Distributed Cooperative Compound Tracking Control for a Platoon of Vehicles with Adaptive NN.
IEEE Trans. Cybern. 2021, 52, 7039–7048. [CrossRef]

36. Ren, Y.; Geng, Y.; Cao, Q.; Wu, F. Finite-time prescribed performance control for approaching non-cooperative target’s feature
surface. Nonlinear Dyn. 2024, 112, 9179–9193. [CrossRef]

37. Wang, Y.; Liu, Y. Global adaptive output-feedback tracking with prescribed performance for uncertain nonlinear systems. Sci.
China Inf. Sci. 2024, 67, 152201. [CrossRef]

38. Ma, C.; Dong, D. Finite-Time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems
with Non-Strict Feedback Based on a Neural Network Observer. IEEE-CAA J. Autom. Sin. 2024, 11, 1039–1050. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2020.3009871
http://dx.doi.org/10.3390/fractalfract7110810
http://dx.doi.org/10.3390/fractalfract8010023
http://dx.doi.org/10.1109/TIE.2012.2216233
http://dx.doi.org/10.1109/TEC.2020.3038010
http://dx.doi.org/10.1109/TIE.2019.2905834
http://dx.doi.org/10.1109/TNN.2003.813823
http://www.ncbi.nlm.nih.gov/pubmed/18238069
http://dx.doi.org/10.1109/TNNLS.2020.3003950
http://www.ncbi.nlm.nih.gov/pubmed/32663131
http://dx.doi.org/10.1016/j.automatica.2014.03.013
http://dx.doi.org/10.1109/TCYB.2015.2411285
http://dx.doi.org/10.1109/TFUZZ.2016.2574913
http://dx.doi.org/10.1109/TNNLS.2015.2412121
http://www.ncbi.nlm.nih.gov/pubmed/25823044
http://dx.doi.org/10.1109/TFUZZ.2014.2375917
http://dx.doi.org/10.1109/TFUZZ.2012.2190048
http://dx.doi.org/10.1109/TCYB.2021.3063139
http://dx.doi.org/10.1016/j.ins.2019.09.043
http://dx.doi.org/10.1109/TCSI.2021.3073024
http://dx.doi.org/10.1016/j.amc.2024.128666
http://dx.doi.org/10.1109/TAC.2008.929402
http://dx.doi.org/10.1016/j.automatica.2008.08.012
http://dx.doi.org/10.1109/TITS.2024.3384113
http://dx.doi.org/10.1016/j.isatra.2015.09.007
http://www.ncbi.nlm.nih.gov/pubmed/26456727
http://dx.doi.org/10.1109/TSMC.2024.3388729
http://dx.doi.org/10.1016/j.eswa.2024.123490
http://dx.doi.org/10.1109/TCYB.2020.3044883
http://dx.doi.org/10.1007/s11071-024-09534-7
http://dx.doi.org/10.1007/s11432-023-3948-y
http://dx.doi.org/10.1109/JAS.2023.123615


Fractal Fract. 2024, 8, 339 17 of 17

39. Bechlioulis, C.P.; Rovithakis, G.A. A low-complexity global approximation-free control scheme with prescribed performance for
unknown pure feedback systems. Automatica 2014, 50, 1217–1226. [CrossRef]

40. Khalil, H.K. Nonlinear Systems; Patience Hall: Upper Saddle River, NJ, USA, 2002.
41. Ge, S.S.; Hang, C.C.; Lee, T.H.; Zhang T. Stable Adaptive Neural Network Control; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2002.
42. Sun, Y.; Chen, B.; Lin, C.; Wang, H.; Zhou, S. Adaptive neural control for a class of stochastic nonlinear systems by backstepping

approach. Inf. Sci. 2016, 369, 748–764. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.automatica.2014.02.020
http://dx.doi.org/10.1016/j.ins.2016.06.010

	Introduction
	Problem Description and Preliminaries
	Problem Formulation
	Radial Basis Function Neural Networks
	Performance Function

	 Adaptive NN Controller Design
	Stability Analysis
	Simulation
	Conclusions
	References

