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Abstract: The main purpose of this article is to investigate the dynamic behavior and optical soliton for
the M-truncated fractional paraxial wave equation arising in a liquid crystal model, which is usually
used to design camera lenses for high-quality photography. The traveling wave transformation is ap-
plied to the M-truncated fractional paraxial wave equation. Moreover, a two-dimensional dynamical
system and its disturbance system are obtained. The phase portraits of the two-dimensional dynamic
system and Poincaré sections and a bifurcation portrait of its perturbation system are drawn. The
obtained three-dimensional graphs of soliton solutions, two-dimensional graphs of soliton solutions,
and contour graphs of the M-truncated fractional paraxial wave equation arising in a liquid crystal
model are drawn.
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1. Introduction

Fractional partial differential equations (FPDEs) are partial differential equations [1,2]
that involve fractional derivatives and are commonly used to describe complex systems
with memory effects. FPDEs have wide applications in fluid mechanics, biology, signal
processing, and financial mathematics [3]. In general, due to the widespread application of
fractional derivatives in multiple fields [4–8], many researchers have proposed many differ-
ent fractional derivatives from different perspectives. For example, the Riemann–Liouville
fractional derivative, the conformable fractional derivative, the Caputo fractional deriva-
tive, and the Grünwald–Letnikov fractional derivative. Therefore, with the continuous
development of fractional derivative theory, researchers have also delved deeper into the
theory of fractional derivatives. Additionally, many different types of FPDEs have been
proposed. Due to the complexity and diversity of fractional derivatives, on the one hand,
many experts use the finite element method, the spectral method, and the finite difference
method to solve the numerical solutions of these equations. On the other hand, many
researchers use mathematical analysis methods to construct exact solutions [9,10] to these
equations. The main purpose of this article is to study the dynamic behavior and soliton
solutions of a very important class of FPDEs.

In this study, the M-truncated fractional paraxial wave equation arising in a liquid
crystal model is presented as follows [11]:

i
∂ψ

∂y
+

a1

2 κ
D2α,d

M,t ψ +
a2

2
∂2ψ

∂x2 + a3|ψ|2ψ = 0, (1)

where a1, a2, a3 are real constants, which represent the coefficients of the dispersal effect,
the Kerr nonlinearity effect, and the diffraction effect, respectively. κD2α,d

M,t stands for the
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M-fractional derivative, which was proposed by Oliveira and Sousa [12]. ψ = ψ(x, y, t),
where the variables x, y, t represent the transverse, longitudinal, and temporal propagation,
respectively. In [13,14], Hamood, et al. used the ϕ6 model expansion technique and the
Sardar subequation method to study the optical solitons of the paraxial wave model,
respectively. In [11], Mannaf et al. studied the optical soliton solutions of Equation (1) by
using the extended tanh method and the modified extended tanh method, respectively.
However, despite our best efforts, there is still an insufficient body of literature on the
dynamic behavior and soliton solutions of Equation (1). Solitons are a special wave
phenomenon that occurs in nonlinear physics. Solitons were first proposed in the study of
shallow water waves, but were later widely applied in fields such as optics, acoustics, and
quantum physics. The optical soliton solution is usually used to describe the mathematical
solution of the propagation of optical solitons under specific conditions, for example, the
solution to the Schrödinger equation. This article will conduct research from two aspects.
On the one hand, by using the method of planar dynamical systems, the dynamic behavior
of two-dimensional dynamical systems and their disturbance systems are studied. On
the other hand, the optical soliton solution of Equation (1) is constructed using the planar
dynamical system method.

The remaining part of this article is arranged as follows: In Section 2, the phase
portrait of the two-dimensional dynamical system and its perturbed system are discussed.
In Section 3, the optical soliton solutions of Equation (1) are constructed. Finally, a brief
conclusion is given.

2. Bifurcation and Chaotic Behaviors
2.1. Preliminary

Definition 1 (M-truncated fractional derivative [15]). For α ∈ (0, 1], the M-truncated fractional
derivative of f : [0,+∞) → (−∞,+∞) is defined as

κD2α,d
M,t ( f ) = lim

h→0

f (tκEd(htα))− f (t)
h

, 0 < α < 1, d > 0.

In Definition 1, Ed(z) represents the truncated Mittag-Leffler function of one parameter,
which is defined as

κEd(z) =
κ

∑
j=0

zj

Γ(dj + 1)
, z ∈ [0,+∞).

M-truncated fractional derivative has very important properties, and relevant conclusions
can be referenced in reference [15].

2.2. Mathematical Derivation

Firstly, let us introduce the the wave transformation

ψ(x, y, t) = Ψ(ξ)eiη , ξ = m1x + m2y + Γ(d+1)
α ωtα, η = r1x + r2y + Γ(d+1)

α τtα + δ. (2)

Inserting Equation (2) into Equation (1), we obtain the real and imaginary components
of the resultant expression

{
(a1ω2 + a2m2

1)Ψ
′′
(ξ)− 2a3Ψ3(ξ)− (a1τ2 + a2r2

1 + 2r2)Ψ(ξ) = 0,
(2a1τω + 2a2m1r1 + 2m2)Ψ

′
(ξ) = 0,

(3)

where Ψ
′
(ξ) ̸= 0.

From the second equation of Equation (3), we have

m2 = −(a1τω + a2m1r1). (4)
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In order to further analyze the dynamic behavior and soliton solutions of Equation (1),
under the conditions satisfied by Equation (3), we can transform the first equation of
Equation (3) into the following ordinary differential equation:

Ψ
′′ −ℑ1Ψ3 −ℑ2Ψ = 0, (5)

Here, ℑ1 = 2a3
a1ω2+a2m2

1
and ℑ2 =

a1τ2+a2r2
1+2r2

a1ω2+a2m2
1

, where a1ω2 + a2m2
1 ̸= 0.

2.3. Qualitative Analysis

The two-dimensional dynamic system of Equation (5) can be described as follows:
{

dΨ
dξ = u,
du
dξ = ℑ1Ψ3 +ℑ2Ψ,

(6)

with its first integral

H(Ψ, u) =
1
2

u2 − ℑ1

4
Ψ4 − ℑ2

2
Ψ2 = h. (7)

Let F(Ψj) = 0 ( j = 0, 1, 2) be the abscissa of the equilibrium point, where F(Ψj) =

ℑ1Ψ3
j +ℑ2Ψj. Assume that M(Ψj, 0) =

(
0 1

3ℑ1Ψ2
j +ℑ2 0

)
is the coefficient matrix of (6)

at the equilibrium point. Then, we obtain

det(M(Ψj, 0)) = −F′(Ψj), j = 0, 1, 2. (8)

If ℑ1ℑ2 > 0, system (6) has one equilibrium point (0, 0) (see Figure 1a,b). If ℑ1ℑ2 < 0,

the system (6) has three equilibrium points: (0, 0), (
√
−ℑ2

ℑ1
, 0), and (−

√
−ℑ2

ℑ1
, 0) (see

Figure 1c,d).
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2.4. Qualitative Analysis with Perturbation Term

In this section, we add the following small perturbation term to system (6):
{

dΨ
dξ = u,
du
dξ = ℑ1Ψ3 +ℑ2Ψ + f (ξ),

(9)

where f (ξ) = A sin(ϖξ) and f (ξ) = Ae−0.05ξ are the perturbed terms. A stands for the
amplitude of system (9). ϖ is the frequency of system (9).

By fixing the parameters ℑ1,ℑ2, A, ϖ, we have drawn the two-dimensional, three-
dimensional, and Paincaré section diagrams of system (9), as shown in Figures 2–5. Specifi-
cally, when drawing two-dimensional and three-dimensional phase diagrams, we consider
the graphs under different initial values. In Figure 6, we plotted the branch phase diagram
of system (9) when ϖ takes different values. Obviously, it can be seen from Figure 6 that
when A reaches a critical point, the phase diagram of system (9) exhibits chaotic behavior.
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3. Optical Soliton Solution of Equation (1)

Let be h0 = H(0, 0) = 0, h1 = H(±
√
−ℑ2

ℑ1
, 0) = ℑ2

2
4ℑ1

.

3.1. ℑ1 > 0, ℑ2 < 0, 0 < h <
ℑ2

2
4ℑ1

Then, system (7) becomes

u2 =
ℑ1

2
(Ψ4 +

2ℑ2

ℑ1
Ψ2 +

4h
ℑ1

) =
ℑ1

2
(ϱ2

1h − Ψ2)(ϱ2
2h − Ψ2), (10)

where ϱ2
1h =

−ℑ2+
√

ℑ2
2−4ℑ1h

ℑ1
and ϱ2

2h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (10) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ1(x, y, t) = ±ϱ1hsn(ϱ2h

√
ℑ1

2
(m1x + m2y +

Γ(d + 1)
α

ωtα),
ϱ1h
ϱ2h

)ei(r1x+r2y+ Γ(d+1)
α τtα+δ). (11)

3.2. ℑ1 > 0, ℑ2 < 0, h =
ℑ2

2
4ℑ1
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1h = ϱ2

2h = −ℑ2
ℑ1

, we can obtain the soliton solution of (1)
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√
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ℑ1
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√
−ℑ2
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tanh(
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−ℑ2

2 (m1x + m2y + Γ(d+1)
α ωtα))ei(r1x+r2y+ Γ(d+1)

α τtα+δ). (12)

3.3. ℑ1 < 0, ℑ2 > 0, − ℑ2
2

4ℑ1
< h < 0

Then, system (7) becomes

u2 = −ℑ1

2
(−Ψ4 − 2ℑ2

ℑ1
Ψ2 − 4h

ℑ1
) = −ℑ1

2
(Ψ2 − ϱ2

3h)(ϱ
2
4h − Ψ2), (13)

where ϱ2
3h =

−ℑ2+
√

ℑ2
2−4ℑ1h

ℑ1
and ϱ2

4h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.
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Substituting (13) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ3(x, y, t) = ±ϱ4hdn(ϱ4h

√
−ℑ1

2 (m1x + m2y + Γ(d+1)
α ωtα),

√
ϱ2

4h−ϱ2
3h

ϱ4h
)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(14)

3.4. ℑ1 < 0, ℑ2 > 0, h = 0

When ϱ2
3h = 0, ϱ2

4h == − 2ℑ2
ℑ1

, we can obtain the soliton solution of (1)

ψ4(x, y, t) = ±
√
− 2ℑ2

ℑ1
sech(

√ℑ2(m1x + m2y + Γ(d+1)
α ωtα))ei(r1x+r2y+ Γ(d+1)

α τtα+δ). (15)

3.5. ℑ1 < 0, ℑ2 > 0, h > 0

Then, system (7) becomes

u2 = −ℑ1

2
(−Ψ4 − 2ℑ2

ℑ1
Ψ2 − 4h

ℑ1
) = −ℑ1

2
(ϱ2

5h + Ψ2)(ϱ2
6h − Ψ2), (16)

where ϱ2
5h =

ℑ2−
√

ℑ2
2−4ℑ1h

ℑ1
and ϱ2

6h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (16) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ5(x, y, t) = ±ϱ6hcn(
√
−ℑ1(ϱ

2
5h+ϱ2

6h)
2 (m1x + m2y + Γ(d+1)

α ωtα), ϱ6h√
ϱ2

5h+ϱ2
6h

)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(17)

3.6. Numerical Simulations

In this section, we plotted the solutions ψ1(x, y, t), including the three-dimensional
graph, two-dimensional graph, and counter graph, when a1 = 1, a2 = 1, ω = 1, m1 = 1,
m2 = 6, τ = −7, r1 = 1, r2 = − 3

2 , α = 1
2 , d = 1, h = 3

16 as shown in Figure 7. Obviously, the
solution ψ1(x, y, t) of Equation (1) is a periodic function solution. We plotted the solutions
ψ2(x, y, t), including the three-dimensional graph, two-dimensional graph, and counter
graph, when a1 = 1, a2 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1, r2 = 1, α = 1

2 , as
shown in Figure 8. Obviously, the solution ψ2(x, y, t) of Equation (1) is a kink-like soliton.
Moreover, we also plot solutions ψ3(x, y, t), ψ4(x, y, t), and ψ5(x, y, t) of Equation (1), as
shown in Figures 9–11.
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where ϱ2
3h =

−ℑ2+
√

ℑ2
2−4ℑ1h

ℑ1
and ϱ2

4h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (13) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ3(x, y, t) = ±ϱ4hdn(ϱ4h

√
−ℑ1

2
(m1x + m2y +

Γ(d + 1)
α

ωtα),

√
ϱ2

4h − ϱ2
3h

ϱ4h
)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(14)

3.4. ℑ1 < 0, ℑ2 > 0, h = 0

When ϱ2
3h = 0, ϱ2

4h == − 2ℑ2
ℑ1

, we can obtain the soliton solution of (1)

ψ4(x, y, t) = ±
√
−2ℑ2

ℑ1
sech(

√
ℑ2(m1x + m2y +

Γ(d + 1)
α

ωtα))ei(r1x+r2y+ Γ(d+1)
α τtα+δ). (15)

3.5. ℑ1 < 0, ℑ2 > 0, h > 0

Then, system (7) becomes

u2 = −ℑ1

2
(−Ψ4 − 2ℑ2

ℑ1
Ψ2 − 4h

ℑ1
) = −ℑ1

2
(ϱ2

5h + Ψ2)(ϱ2
6h − Ψ2), (16)

where ϱ2
5h =

ℑ2−
√

ℑ2
2−4ℑ1h

ℑ1
and ϱ2

6h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (16) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ5(x, y, t) = ±ϱ6hcn(

√

−ℑ1(ϱ
2
5h + ϱ2

6h)

2
(m1x + m2y +

Γ(d + 1)
α

ωtα),
ϱ6h√

ϱ2
5h + ϱ2

6h

)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(17)

3.6. Numerical Simulations

In this section, we plotted the solutions ψ1(x, y, t), including the three-dimensional graph,
two-dimensional graph, and counter graph, when a1 = 1, a2 = 1, ω = 1, m1 = 1, m2 = 6, τ =
−7, r1 = 1, r2 = −3

2 , α = 1
2 , d = 1, h = 3

16 as shown in Figure 7. Obviously, the solution
ψ1(x, y, t) of Equation (1) is a periodic function solution. We plotted the solutions ψ2(x, y, t),
including the three-dimensional graph, two-dimensional graph, and counter graph, when
a1 = 1, a2 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1, r2 = 1, α = 1

2 , as shown in Figure 8.
Obviously, the solution ψ2(x, y, t) of Equation (1) is a kink-like soliton. Moreover, we also plot
solutions ψ3(x, y, t), ψ4(x, y, t), and ψ5(x, y, t) of Equation (1), as shown in Figures 9–11.

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 7. The solution ψ1(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = −25, α = 1
2 , d = 1, h = 3

16 .

Figure 7. The solution ψ1(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −25, α = 1

2 , d = 1, h = 3
16 .
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(a) 3D graph (b) 2D graph (c) Contour graph

Figure 8. The solution ψ2(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = 1, d = 1, α = 1
2 , h = 1

4 .

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 9. The solution ψ3(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = −24, d = 1, α = 1
2 , h = − 3

16 .

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 10. The solution ψ4(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = −24, d = 1, α = 1
2 , h = 0.

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 11. The solution ψ5(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = − 49
2 , d = 1, α = 1

2 , h = 3
4 .

Figure 8. The solution ψ2(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = 1, d = 1, α = 1

2 , h = 1
4 .
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Figure 11. The solution ψ5(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 =

1, r2 = − 49
2 , d = 1, α = 1

2 , h = 3
4 .

Figure 9. The solution ψ3(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −24, d = 1, α = 1

2 , h = − 3
16 .
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Figure 10. The solution ψ4(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −24, d = 1, α = 1

2 , h = 0.
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1, r2 = −24, d = 1, α = 1
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Figure 11. The solution ψ5(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = − 49

2 , d = 1, α = 1
2 , h = 3

4 .

4. Conclusions

In this article, we use the theory of dynamical systems to study the dynamic behavior
and optical soliton for Equation (1) in a liquid crystal model. Furthermore, we used
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mathematical software to draw a planar phase diagram of a two-dimensional dynamical
system, and we can easily obtain the characteristics of some equilibrium points of the planar
dynamical system from the planar phase diagram. And by adding small perturbations,
the dynamic behavior of the two-dimensional system is analyzed. Based on different
initial values, we have drawn planar phase diagrams using red and blue colors in the
same coordinate system. From the perspective of plane dynamics theory, we have drawn
a bifurcation phase diagram and Poincaré sections of a disturbance system. And we
separately considered the dynamic behavior under periodic and small disturbances. In
future research, we will consider the dynamic behavior and optical soliton solutions of
more complex FPDEs.
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