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Abstract: The epidemic norovirus causes vomiting and diarrhea and is a highly contagious infection.
The disease is affecting human lives in terms of deaths and medical expenses. This study examines the
governing dynamics of norovirus by incorporating Lévy noise into a stochastic SIRWF (susceptible,
infected, recovered, water contamination, and food contamination) model. The existence of a non-
negative solution and its uniqueness are proved after model formulation. Subsequently, the threshold
parameter is calculated, and this number is used to explore the conditions under which disease tends
to exist in the population. Likewise, additional conditions are derived that ensure the elimination of
the disease from the community. It is proved that the norovirus is extinct whenever the threshold
parameter is less than one and it persists for Rs > 1. The work assumes two working examples to
numerically explain the theoretical findings. Simulations of the study are visually presented, and
comparisons are made. The results of this study suggest a robust approach for handling complex
biological and epidemic phenomena.

Keywords: norovirus epidemic model; environmental perturbations; threshold; extinction; persistence
in mean

MSC: 15B51; 26A18; 37H05

1. Introduction

The norovirus (NoV) is a highly contagious viral infection that results in vomiting and
diarrhea. The disease equally infects every individual in the population, irrespective of their
age and sex. It is observed that the epidemic norovirus spreads in the population (i) when
direct contact has been made with an infected person, (ii) by consuming contaminated water
and food, and (iii) by touching dirty objects and then taking the hands in the mouth [1].
Common symptoms of the disease include nausea, diarrhea, stomach pain, and vomiting.
Washing hands at regular intervals reduces the risk of becoming infected, and other known
control strategies are isolation, cleaning fruits and vegetables with water, etc. If the control
strategies are not strictly followed, the disease may transfer very easily and quickly within
the population. The existing literature and fact sheets suggest that NoV is one of the
responsible viruses for transmitting foodborne infections [2,3].

Viral gastroenteritis is an intestine infection caused by numerous viruses. Food does
not directly cause viral gastroenteritis; however, the following three foods are considered
responsible for the occasional cases of the disease [4]:

A1: During the process of marketing, the molluscan shellfish may become infected with
the virus.

A2: The fresh food items may acquire the virus during manufacturing/harvesting
and packaging.

Fractal Fract. 2024, 8, 349. https://doi.org/10.3390/fractalfract8060349 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8060349
https://doi.org/10.3390/fractalfract8060349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-0463-0360
https://doi.org/10.3390/fractalfract8060349
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8060349?type=check_update&version=2


Fractal Fract. 2024, 8, 349 2 of 22

A3: The ready-to-eat food items may be contaminated in the preparation stage.

The packed items of food are usually considered to be the main source of NoV spread,
and they acquire the virus through food workers during food preparation and packing.
The degree to which food workers contribute to contamination depends on several factors,
including their health and hygiene practices, the stage of their clinical infections, the
effectiveness of their efforts to inactivate or remove the virus, and their characteristics.
Hands that have been contaminated and, to a lesser extent, surfaces that have been polluted
are important places for viruses to survive and spread [5].

The disease that follows due to the transmission of NoV might be caused by a variety
of circumstances. The seasonality effect is the most prominent one, and over 50% of
infections took place during the winter period [6]. The seasonal differences in the spread
of norovirus are due to both environmental conditions and human behavior. As per
studies [7,8], norovirus has the tendency to spread more quickly at lower temperatures,
and the transmission rate can be further increased with heavy rainfall. There may be
other community elements that impact how severe the epidemic of norovirus is. Although
this disease can infect anyone at any age under certain circumstances, children five years
of age and under are more likely to have the infection [9]. The findings of serological
research suggest that the disease is most likely to be a childhood disease. A higher risk of
serious complications and death exists for the elderly and those with compromised immune
systems [10,11]. Because of this, even though the illness usually subsides on its own in
healthy people, it can have disastrous effects on high-risk groups. If not properly treated,
the disease may persist for longer and potentially lead to an endemic situation [11–14].

To comprehend the dynamic pattern and control strategies of infectious diseases, it
is highly recommended to utilize the techniques of mathematical modeling [15–18]. Such
models produce a connection between reality and the future or past prediction of the
disease while using the available data. Numerous norovirus models—from single outbreak
analysis to population level—have revealed plenty of illness patterns. Environmental
variations are always critical in biological systems as well as in physical phenomena. The
dynamics of norovirus transmission are significantly impacted by these environmental
variables [19]. Because interpersonal relationships and other aspects of the population are
unexpected, the course and spread of epidemics are also uncertain. Therefore, the pattern
of the disease could be highly disturbed by the unpredictability of the surroundings. Water
and food are major components of the NoV infection and are subject to environmental
changes and person-to-person contact; therefore, modeling NoV with tools that account for
such aspects of the disease is strongly suggested.

The literature on dynamical systems is extensive, and the underlying systems have
been represented using a variety of methodologies such as deterministic and stochastic,
fractional, and fractal–fractional approaches [19–21]. Numerous deterministic systems
were expanded through the use of fractional calculus and various fractional derivative
definitions. The deterministic model assumes only integer ordered derivatives of the state
variables, whereas the fractional models are free in selection and can take any positive
real number as an order. Modeling with stochastic differential equations (SDEs) is far
more realistic than the deterministic modeling modeled either through ODEs or fractional
derivatives [20,21]. The usage of SDEs for experimentally evaluating a genuine scenario
results in a different output each time. To obtain a better understanding, it is necessary to
simulate the model millions of times, with the average results recommended. Like fractional
models, stochastic models can be tested for dynamical properties such as the uniqueness
and existence of positive solutions, optimality, stability, and simulations. Deterministic
systems can be easily transformed into stochastic models by including noise, and these
noises play a significant role in explaining real systems. Among all known noises, Lévy
noise is one of the most severe disruptions because it functions as a threshold parameter
by drifting the velocity. In particular, incorporating this noise into epidemic models yields
solid data and explains previously unknown insights regarding the disease’s dynamics.
Specifically, Lévy noise has numerous advantages over Gaussian noise. Gaussian noise is
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extensively utilized in mathematical modeling; nonetheless, this causes uncertainty in the
modeling [22–24]. Because jumps are incorporated, which diffuses the problem of Lévy
noise, the model beats the extended Lévy model in terms of neuron efficiency development.
Thus, based on the current research, we may conclude that Lévy noise is particularly
advantageous for epidemic problems where the stability of the system fluctuates with
time [25–27].

This work extends the previous models on the transmission mechanism of NoV by
accounting for environmental variations through Lévy noises in the stochastic system. The
work focuses on the forecasting of the long-run behavior of the disease and on the inclusion
of contamination through both food and water. The whole population, including people
and germs, is stratified into five categories. These classes comprise susceptible people
(S(t)), infected individuals (I(t)), and recovered/removed individuals (R(t)). There are
also two bacterial compartments: W(t) indicates the density of bacteria contamination in
water, whereas F (t) indicates the density of NoV bacteria in food. The state variables and
parameters of the disease are related to each other according to the characteristics of the NoV.
The detailed assumption and model formulation are explained in the subsequent section.

The remaining sections of this paper are organized as follows: In Section 2, the NoV
model is established with specific assumptions regarding the system, and the role of Lévy
noise is explained. Section 3.1 presents some fundamental definitions and lemmas on
stochastic modeling. Section 3.2 assesses the certainty and positivity of the suggested
model solution. Section 3.3 examines the behavior of the stochastic model solution near
the disease-free state of the ODE model and presents the extinction theory of the disease.
The work was extended by analyzing the long-run behavior of the stochastic curves in the
vicinity of the endemic fixed point of the ODE model. Section 3.4 explains the persistence
of the infection. Section 4 simulates both stochastic and deterministic systems and provides
graphical demonstrations to validate the theoretical conclusions. Finally, we conclude
our work by discussing the study’s findings, summarizing them, and suggesting future
research directions.

2. Model Formulation

Norovirus is a highly contagious virus that can cause gastroenteritis, an inflammation
of the stomach and intestines. Modeling the spread of an infectious disease like norovirus
can be done using compartmental models. As we know, the incidence rate of infectious
diseases plays a key role in the investigation of mathematical epidemiology. Recently,
Din [28] constructed a mathematical problem using the approach of a stochastic version
of the Nov epidemic model. Motivated by the above discussion, we take the following
epidemic model with general incidence and obtain the below equations to represent the
dynamics of the NoV:

dS(t) =
(

Π −
β fF (t)S(t) + βhI(t)S(t) + βwW(t)S(t)

P(t)
− (µ + σ)S(t)

)
dt + α1SdB1(t),

dI(t) =
(

β fF (t)S(t) + βhI(t)S(t) + βwW(t)S(t)
P(t)

− (µ + κ + γ)I(t)
)

dt + α2IdB2(t),

dR(t) = (γI(t) + σS(t)− µR(t))dt + α3RdB3(t),

dW(t) = (δI(t)− µvW(t))dt + α4WdB4(t),

dF (t) = (λI(t)− µvF (t))dt + α5FdB5(t).

(1)

In the above equations, the notation Bi(t) for i = 1, · · · , 5 stands for the environmental
noises, which are in fact the known Brownian motions satisfying the condition Bi(0) = 0.
The associated intensity with each Bi is denoted with αi, a positive real number. The
description of other parameters of the model is well explained in Table 1.
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Table 1. The description of parameters.

Symbols Description

Π The constant intake into susceptible people via birth
βw The constant rate of infection via water
β f The contamination rate of NoV through food
βh The interaction rate of infected and susceptible populations
γ The rate of recovery from the infection
µ The mortality rate
κ Deaths occurring due to NoV
σ The waning immunity rate of recovered people
λ The generation rate for NoV in food via infected humans
δ The generation rate for NoV in water via infected humans
µv Removal rate of NoV bacteria from food and water

Besides the above-mentioned properties of the Lévy noise, it can also be useful when
the noise-scaled drift velocity falls within a certain range of the threshold values. The use
of both non-local and local Lipschitz conditions implies that integrating Lévy noise might
improve the shared information or bit count in a variety of feedback-related epidemic
scenarios that follow a given, random, stochastic differential equation. According to the
sources [24–26], Lévy noise has advantages over typical Gaussian noise in mathematical
models of epidemics, but at the same time, it also adds more mathematical complexity to
the problem under consideration. Jump-diffusion Lévy noise outperforms the conventional
Lévy model by precisely describing the development of a neuron’s membrane potential.
As a result, Lévy noise improves the stability of time-varying recurrent neural networks.
By applying Lévy noise to the system (1), the model will take the form of the system of Ito’s
stochastic differential Equations [29]:

dS(t) =
(

Π −
β fF (t)S(t) + βhI(t)S(t) + βwW(t)S(t)

P(t)
− (µ + σ)S(t)

)
dt

+ α1SdB1(t) + ∆1,

dI(t) =
(

β fF (t)S(t) + βhI(t)S(t) + βwW(t)S(t)
P(t)

− (µ + κ + γ)I(t)
)

dt

+ α2IdB2(t) + ∆2,

dR(t) = (γI(t) + σS(t)− µR(t))dt + α3RdB3(t) + ∆3,

dW(t) = (δI(t)− µvW(t))dt + α4WdB4(t) + ∆4,

dF (t) = (λI(t)− µvF (t))dt + α5FdB5(t) + ∆5.

(2)

In the above system, we may incorporate the fractal–fractional derivative as it has the
unique capability to model the complex and intricate patterns of the underlying system.
Traditional fractional calculus has already been shown to be useful in explaining compli-
cated behaviors; however, introducing fractal aspects improves it even more by accounting
for the intrinsic fractal aspects seen in chaotic dynamics. This novel technique improves
the accuracy of chaotic system modeling and allows for a more in-depth study of their
underlying structures and dynamics. In the sequel, the inclusion of the fractal–fractional
derivative will add complexity to the analysis, perhaps making it difficult to implement and
analyze chaotic dynamical systems. These methodologies associated with these concepts
could have a substantial influence on the viability of real-world applications as well as the
computer resources needed for simulations. Furthermore, the suggested fractal–fractional
derivative may be parameter-sensitive. Given its complications, this study will concen-
trate primarily on conventional derivatives, leaving the investigation of fractal–fractional
derivatives to future research.
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For the sake of simplicity in calculation and model analysis, let us define

∆1 =
∫
Y

Ω1(y)S
(
t−
)
Ñ(dt, dy),

∆2 =
∫
Y

Ω2(y)I
(
t−
)
Ñ(dt, dy),

∆3 =
∫
Y

Ω3(y)R
(
t−
)
Ñ(dt, dy),

∆4 =
∫
Y

Ω4(y)W
(
t−
)
Ñ(dt, dy),

∆5 =
∫
Y

Ω4(y)F
(
t−
)
Ñ(dt, dy).

(3)

The notation Ñ refers to the compensated Poisson random measure, which is defined
as Ñ(dt, dx) = Ñ(dt, dx)− v(dx)dt. The notation Ω(t) stands for the left limit. All other
parameters have the same meaning. In this context, Ñ is the Poisson random measure,
and v(.) is its intensity measure. Further, the function v is defined on a measurable subset
Y [0, ∞) having the properties ∞ > v(Y) and i = 1, 2, 3, 4, 5 and Ωi ≥ 0. Additionally, v is
defined for the measurable subset Y of [0, ∞) with v(Y) < ∞ and for i = 1, 2, 3, 4, 5 and
Ωi ≥ 0.

By using system (2) as a base for analysis, we investigate answers to the below questions:

Q1: Can the dynamics pattern of the NoV be affected by the Lévy noises?
Q2: Does contaminated water play a role in spreading the NoV?
Q3: Does contaminated food play a role in spreading the NoV?
Q4: What conditions are needed for the existence of NoV throughout infection?
Q5: What condition must be met in order for the infection to subside in the population?

3. Stochastic Analysis
3.1. Basic Concept

Throughout this section, we will establish some basic definitions and Lemmas in the
stochastic sense. The notation used below is consistent with that provided in reference [22]
and will be used in the rest of the manuscript.

⟨H(t)⟩ = 1
t
∫ t

0 H(s)ds.

Lemma 1. To simplify our analysis, we will use two fundamental assumptions provided below and
labeled as (H1) and (H2). These assumptions are essential for proving the existence and uniqueness
of a global positive solution of the model (2) [24–26].

(H1). ∀ M > 0 ∃ LM > 0 such that∫
Y
|Zi(y1, x)−Zi(y2, x)|2v(dy) ≤ LM|x1 − x2|2, i = 1, 2, 3, 4, 5, (4)

with |x1| ∨ |x2| ≤ M, where

Z1(x, y) = Ω1(y)x for x = S
(
t−
)
,

Z2(x, y) = Ω2(y)x for x = I
(
t−
)
,

Z3(x, y) = Ω3(y)x for x = R
(
t−
)
,

Z4(x, y) = Ω4(y)x for x = W
(
t−
)
,

Z5(x, y) = Ω5(y)x for x = F
(
t−
)
.

(5)

where Z denotes the compensated random measure.
(H2). |log(1 + Ωi(x))| ≤ C for Ωi(x) > −1, Ωi = 1, 2, 3, 4, 5 where C is a positive constant.
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Lemma 2. If for system (2), (S , I ,R,W ,F ) is a solution with initial conditions (S(0), I(0),R(0),
W(0),F (0)) ∈R5

+, then a.s.,

lim
t→∞

S(t)+I(t)+W(t)+R(t)+F (t)
t = 0. (6)

Moreover, if max(µ, µv) >
(α2

1∨α2
2∨α2

3∨α2
4∨α2

5)
2 , then

lim
t→∞

∫ t
0 S(s)dB1(s)

t
= 0,

lim
t→∞

∫ t
0 I(u)dB2(u)

t
= 0,

lim
t→∞

∫ t
0 R(s)dB3(s)

t
= 0,

lim
t→∞

∫ t
0 W(s)dB4(s)

t
= 0,

lim
t→∞

∫ t
0 F (s)dB4(s)

t
= 0, a.s.

(7)

Then, the solutions of model (2) have the following properties:

lim sup
t→∞

S(t) = Π
(µ + σ)

, a.s,

lim sup
t→∞

I(t) = 0, a.s,

lim sup
t→∞

R(t) =
σΠ

(µ + σ)µ
, a.s,

lim sup
t→∞

W(t) = 0, a.s,

lim sup
t→∞

F (t) = 0, a.s.

(8)

Proof. Since the proofs for the Lemma are extremely close to those of Lemmas (2.1) and
(2.2) [30], respectively, we opt to ignore them in this context. □

The following definitions for the mean persistence are worth recalling and are outlined
in [22,23].

Definition 1 [24,25]. For model (2) to have the property of durability or persistence, the following
condition must be met

lim inf
t→∞

1
t

∫ t

0
H(r)dr > 0, a.s. (9)

Parallel to the above condition, the following Lemmas employed in [21,22] must hold
for the NoV persistence.

Lemma 3 (Strong Law) [24,26]. For a continuous real process X = {X }0≤t, the property of the
local martingale exists if it vanishes at t → 0 and

lim
t→∞

⟨X ,X ⟩t = ∞, a.s., ⇒ lim
t→∞

Yt

⟨X ,X ⟩t
= 0, a.s.

lim
t→∞

sup
⟨X ,X ⟩t

t
< 0, a.s., ⇒ lim

t→∞

Xt

t
= 0, a.s.

(10)
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Lemma 4. Suppose h ∈ C
(
[0, ∞)× A(0, ∞)

)
and G ∈ C

(
[0, ∞)× AR

)
∋ limt→∞

G(t)
t = 0, a.s.

If ∀ t ≥ 0

log g(t) ≥ λ0t − λ
∫ t

0
h(s)ds + G(t), a.s.

Then
lim inf

t→∞
⟨g(t)⟩ ≥ λ0

λ
a.s.

Here, λ and λ0 represent positive and non-negative real numbers, respectively.

3.2. Positive Global Solution of the Model

As system (2) physiologically depicts the problem of population dynamics, it requires
a positive, global, and bounded solution. In this section, we will investigate the system’s
well-posedness described by Equations (2) by analyzing these properties. For convenience,
we will use two common assumptions, H1 and H2, as explained in Lemma 1. These
assumptions are crucial for demonstrating the uniqueness and existence of a positive global
solution to the model (2).

Theorem 1. There is a unique solution (S(t), I(t),R(t),W(t),F (t)) of system (2) on t ≥ 0 for
any initial value (S(0), I(0),R(0),W(0),F (0)) ∈ R5

+, and the solution will remain in R5
+ with

probability one, namely, (S(t), I(t),R(t),W(t),F (t)) ∈ R5
+ for all t ≥ 0 almost surely.

Proof. The condition (H1) ensures that the drift and diffusion are locally Lipschitz,
resulting in a time t during which the proposed problem has a locally unique solution
within the interval [0, τe). Here, τe represents the explosion time; for further information,
readers are referred to references [22,23]. It must be demonstrated that τe = ∞ is sufficient
to prove that the solution is global. To demonstrate this, assume a sufficiently large positive
real integer k0 such that each solution of the model is contained within the interval [ 1

k0
, k0].

Finally, for k ≥ k0, allow

τk = inf
{

t ∈ [0, τe) : 1
k ≥ min{B}, or, k ≤ max{B}

}
, (11)

where B = (S , I ,R,W ,F ). Throughout this work, we denote the inf of an empty set
by inf ϕ = ∞. By definition, τk grows as k → ∞ . Assuming τk has a limit of τ∞, it is
nearly certain that τ∞ ≤ τe. In other words, it is required to show that τ∞ = ∞ a.s. If this
assumption is untrue, then there would be constants T > 0 and an ϵ in (0, 1) such that

P{τ∞ ≤ T} > ϵ. (12)

So, for a natural number k0 ≤ k1, the following holds

ϵ ≤ P{T ≥ τk}, forall k1 ≤ k.

To prove the remaining part of the theorem, let us define the function:

dV(B) = LV(B)dt + α1(S − C)dB1(t) + α2(I − 1)dB2(t)
+ α3(R− 1)dB3(t) + α3(W − 1)dB4(t) + α3(F − 1)dB5(t)

+
∫
Y
[Ω1(x)S − C log(Ω1(y) + 1)]Ñ(dt, dy) +

∫
Y
[Ω2(x)I − log(Ω2(y) + 1)]Ñ(dt, dy)

+
∫
Y
[Ω3(y)R− log(1 + Ω3(x))]Ñ(dt, dy) +

∫
Y
[Ω4(x)W − log(1 + Ω4(y))]Ñ(dt, dy)

+
∫
Y
[Ω5(x)F − log(1 + Ω5(y))]Ñ(dt, dy).

(13)
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In the above relation, the LV operator is defined from R5
+ to R+ and is given by

LV =

(
1 − C

S

)(
Π −

(
βwW

P
−

β fF
P

− βhI
P

)
S − (σ + µ)S

)
+

(
1 − 1

I

)((
βwW

P
−

β fF
P

− βhI
P

)
S − (γ + κ + µ)I

)
+

(
1 − 1

R

)
(γI + σS − µR) +

1
2

α3
2 +

(
1 − 1

W

)
(δI − µvW) +

1
2

α4
2

+

(
1 − 1

F

)
(λI − µvF ) +

Cα1
2

2
+

1
2

α2
2 +

1
2

α3
2 +

1
2

α4
2 +

1
2

α5
2

+
∫
Y
[CΩ1(y)− C log(1 + Ω1(y))]η(dy) +

∫
Y
[Ω2(y)− log(1 + Ω2(y))]η(dy)

+
∫
Y
[Ω3(y)− log(1 + Ω3(y))]η(dy) +

∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy)

≤ Π +
βwCW

P
+

Cβ fF
P

+ βhC + (γ + κ + µ) + Cµ + (σ + d)− µvW

+ δI + µv − µvF + λI + µv +
Cα2

1 + α2
2 + α2

3 + α2
4 + α2

5
2

+
∫
Y
[CΩ1(y)− C log(1 + Ω1(y))]η(dy) +

∫
Y
[Ω2(y)− log(1 + Ω2(y))]η(dy)

+
∫
Y
[Ω3(y)− log(1 + Ω3(y))]η(dy) +

∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy)

≤ Π + βhC + C +
.

2µ + γ + CβwW + δ + β f CF − (F +W)µv

+ 2µv + λ + δI + λI + κ + σ +
Cα2

1 + α2
2 + α2

3 + α2
4 + α2

5
2

+
∫
Y
[CΩ1(y)− C log(1 + Ω1(y))]η(dy) +

∫
Y
[Ω2(y)− log(1 + Ω2(y))]η(dy)

+
∫
Y
[Ω3(y)− log(1 + Ω3(y))]η(dy) +

∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy).

(14)

Assume that β = max{βF, βw}, then by selecting C = µv
β which shows Cβ − µv = 0.

Further, Equation (11) guarantees the inequality F +R+ S + I +W ≤ 1, thus

LV ≤ Π + Cβh + κ + σ + Cµ + 2µ + γ + λ + 2δ + 2µv + λ +
Cα2

1 + α2
2 + α2

3 + α2
4 + α2

5
2

+
∫
Y
[CΩ1(y)− C log(1 + Ω1(y))]η(dy) +

∫
Y
[Ω2(y)− log(1 + Ω2(y))]η(dy)

+
∫
Y
[Ω3(y)− log(1 + Ω3(y))]η(dy) +

∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy) := M.

(15)

The remainder of the proof roughly follows from the proof of Theorem 2.1 of refer-
ence [22]. As a result, we shall omit it here, bringing the theorem’s proof to completion. □
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3.3. Extinction of the Disease

In this section, we offer supportive conditions for the extinction of the NoV in the
population. Particularly, our emphasis is on the long-term behavior of the model solution.
Our method begins with introducing the threshold number for the model and then pro-
viding the theorem for the extinction of the disease. The threshold number regarding the
stochastic model is given by the expression

Rs =
δβw+β f λ+µv βh

(γ+κ+µ+
α2

2
2 )µv+

∫
Y [Ω2(x)−log(1+Ω2(x))]η(dy)

.

Theorem 2. Let (S , I ,R,W ,F ) be the solution of stochastic system (2) with initial value
(S , I ,R,W ,F )(0) ∈ R5

+. If Rs < 1, then such a system’s solution will have the following
properties:

lim
t→∞

⟨S(t)⟩ = Π
(µ + σ)

, a.s,

lim
t→∞

⟨I(t)⟩ = 0, a.s,

lim
t→∞

⟨R(t)⟩ = σΠ
(µ + σ)

, a.s,

lim
t→∞

⟨W(t)⟩ = 0, a.s,

lim
t→∞

⟨F (t)⟩ = 0, a.s.

(16)

In other words, the above implies the extinction of the NoV in the community with unit probability.

Proof. After integrating the model (2), the following equations may be easily derived:

1
t
(S(t)− S(0)) = Π − βw⟨SW⟩

⟨P⟩ −
β f ⟨SF⟩
⟨P⟩ − βh⟨SI⟩

⟨P⟩ − (µ + σ)⟨S⟩+ α1
∫ t

0 S(r)dB1(r)
t

+
1
t

∫ t

0

[∫
Y

Ω1(y)S
(
t−
)
Ñ(dt, dy)

]
dr,

1
t
(I(t)− I(0)) = βw⟨SW⟩

⟨P⟩ +
β f ⟨SF⟩
⟨P⟩ +

βh⟨SI⟩
⟨P⟩ − (γ + κ + µ)⟨I⟩+ α2

∫ t
0 I(r)dB2(r)

t

+
1
t

∫ t

0

[∫
Y

Ω2(y)I
(
t−
)
Ñ(dt, dy)

]
dr,

1
t
(R(t)−R(0)) = ⟨I⟩γ + σ⟨S⟩ − µ⟨R⟩+ α3

∫ t
0 R(r)dB3(r)

t

+
1
t

∫ t

0

[∫
Y

Ω3(y)R
(
t−
)
Ñ(dt, dy)

]
dr,

1
t
(W(t)−W(0)) = ⟨I⟩δ − µv⟨W⟩+ α4

∫ t
0 W(r)dB4(r)

t

+
1
t

∫ t

0

[∫
Y

Ω4(y)W
(
t−
)
Ñ(dt, dy)

]
dr,

1
t
(F (t)−F (0)) = ⟨I⟩λ − µv⟨F⟩+ α5

∫ t
0 F (r)dB5(r)

t

+
1
t

∫ t

0

[∫
Y

Ω5(y)F
(
t−
)
Ñ(dt, dy)

]
dr.

(17)
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Using the second-last equation in system (17), one may simply derive

⟨W⟩= δ

µv
⟨I⟩ − 1

µv

(−W(0) +W(t)
t

)
+

α4

µv

(∫ t
0 W(r)dB4(r)

t

)

+

1
t
∫ t

0

[∫
Y WΩ4(y)(t−)Ñ(dt, dy)

]
dr

µv
,

= Mw(t) +
δ

µv
⟨I⟩,

(18)

where

Mw(t) = − 1
µv

(W(t)−W(0)
t

)
+

α4

µv

(∫ t
0 W(r)dB4(r)

t

)

+

1
t
∫ t

0

[∫
Y Ω4(y)F (t−)Ñ(dt, dy)

]
dr

µv
.

(19)

The final equation of the model (17) gives us

⟨F⟩ = λ

µv
⟨I⟩ − 1

µv

(−F (0) +F (t)
t

)
+

α5

µv

(∫ t
0 W(r)dB5(r)

t

)

+

1
t
∫ t

0

[∫
Y FΩ5(y)(t−)Ñ(dt, dy)

]
dr

µv
,

= M f (t) +
λ

µv
⟨I⟩,

(20)

where

M f (t) = − 1
µv

(−F (0) +F (t)
t

)
+

α5

µv

(∫ t
0 W(r)dB5(r)

t

)

+

1
t
∫ t

0

[∫
Y FΩ5(y)(t−)Ñ(dt, dy)

]
dr

µv
,

(21)

and
⟨F⟩ = λ

µv
⟨I⟩+M f (t). (22)

where

M f (t) = −
(F (t)−F (0)

t

)
1
dv

+
α5

dv

(∫ t
0 F (r)dB5(r)

t

)
+

1
t
∫ t

0

[∫
Y Ω5(y)S(t−)Ñ(dt, dy)

]
dr

µv
. (23)

Using Itô’s formula, the second equation in the model (2) becomes:

d log I=
[

βwWS
IP

+
β fFS
IP

+
βhS

P
− (γ + κ + µ)− α2

2
2

]
dt + α2dB2(t)

−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy) +

∫
Ω
[log(Ω2(y) + 1)]Ñ(dt, dy)

≤
[

βwW
I +

β fF
I + βh −

(
γ + κ + µ +

α2
2

2

)]
dt + α2dB2(t)

−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy) +

∫
Ω
[log(Ω2(y) + 1)]Ñ(dt, dy).

(24)



Fractal Fract. 2024, 8, 349 11 of 22

Integrating Equation (24) from 0 to t then dividing by t yields the following relation:

log I − log I(0)
t

≤
[

βw⟨W⟩
⟨I⟩ +

β f ⟨F⟩
⟨I⟩ + βh −

(
κ + γ + µ +

α2
2

2

)

−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy)

]
+α2dB2(t) +

∫ t

0

∫
Ω
[log(1 + Ω2(y))]Ñ(dt, dy).

(25)

By substituting Equation (18) and (22) in relation (25), we have

log I(t)
t

≤
 βw

(
δ

µv
⟨I⟩+Mw(t)

)
⟨I⟩ +

β f

(
λ
µv
⟨I⟩+M f (t)

)
⟨I⟩ + βh −

(
γ + µ +

α2
2

2

)

−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy)

]
+

log I(0)
t

+
α2dB2(t)

t

+
∫ t

0

∫
Ω
[log(1 + Ω2(y))]Ñ(dt, dy),

≤
[

βw
δ

µv
⟨I⟩

⟨I⟩ +
β f

λ
µv
⟨I⟩

⟨I⟩ −
(

µ + γ +
α2

2
2

)
−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy) + βh

]

+
β fM f (t)

⟨I⟩ +
βwMw(t)

⟨I⟩ +
log I(0)

t
+

α2dB2(t)
t

+
∫ t

0

∫
Ω
[log(Ω2(y) + 1)]Ñ(dt, dy),

=

[
δβw

µv
+

λβ f

µv
−
(

µ + γ +
α2

2
2

)
−
∫
Y
[Ω2(x)− log(1 + Ω2(x))]η(dy) + βh

]

+
β fM f (t)

⟨I⟩ +
βwMw(t)

⟨I⟩

+
log I(0)

t
+

α2dB2(t)
t

+
∫ t

0

∫
Ω
[log(1 + Ω2(y))]Ñ(dt, dy).

(26)

Further, Mi(t) = αi
t
∫ t

0 dBi(t) for i = 1, · · · 5 are the martingale functions (locally
continuous) and vanishes for t = 0. By letting t → ∞ and using Lemma (2), we have

lim
t→∞

sup
1
t
Mi(t) = 0. (27)

With a similar approach, one can easily prove limt→∞ supMw(t) = 0 and
limt→∞ supM f (t) = 0.

For Rs < 1, relation (26) yields

lim
t→∞

sup
log I(t)

t
≤
(

γ + κ + µ +
α2

2
2

)
(Rs − 1) < 0 a.s. (28)

Consequently, Equation (28) guarantees

lim
t→∞

⟨I⟩ = 0, a.s. (29)

Considering Equation (29) in expressions (18) and (22) and keeping in view
limt→∞ supMw(t) = 0 and limt→∞ supM f (t) = 0, we have

lim
t→∞

⟨W⟩ = 0, a.s, (30)
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and
lim
t→∞

⟨F (t)⟩ = 0, a.s. (31)

Similarly, we can obtain

lim
t→∞

⟨S⟩ = Π
(µ + σ)

, a.s. (32)

Finally

lim
t→∞

⟨R(t)⟩ = σΠ
µ(σ + µ)

, a.s. (33)

completes the proof of the theorem. □

3.4. Persistence of the Disease

This section will examine the long-term survival of the NoV in the community. To
be more specific, we will investigate the conditions on the parameters that assure disease
persistence, which is required before establishing an effective control program. We will
start by studying the concept of average persistence described in [22,23].

Theorem 3. The system (2) is said to be persistent in the mean if:

lim inft→∞⟨(I +W +F )⟩ ≥ 2Π
(√

Rs
0 − 1

)
C1β

, a.s., (34)

where C1 = Π{
µ+σ+

α2
1
2 +

∫
Y [Ω1(y)−log(Ω1(y)+1)]η(dy)

} , and it assures the existence of the disease at

all times t within the population.
Let us define

Rs
0 =

Π2β f βwδλ

x1(x2)
2x3x4

. (35)

Proof. Let us suppose

G = −C1lnS − C2lnI − C3lnW −C4lnF , (36)

where C1, C2, C3, and C4 are real numbers to be calculated.
By using the Itô formula to relation (36), we obtain

dG = LG − C1α1dB1(t)− C2α2dB2(t)− C3α3dB4(t)− C4α5dB5(t)

−C1

∫
Y
[Ω1(y)S − log(Ω1(x) + 1)]Ñ(dt, dy)− C2

∫
Y
[Ω2(y)I − log(Ω2(y) + 1)]Ñ(dt, dy)

−C3

∫
Y
[Ω4(y)W − log(1 + Ω4(y))]Ñ(dt, dy)− C4

∫
Y
[Ω5(y)F − log(1 + Ω5(y))]Ñ(dt, dy),

(37)

where
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LG = −C1L(lnS)− C2L(lnI)− C3L(lnW)− C4L(lnF ),

= −C1Π
S +

C1

(
β fF + βhI + βwW

)
P

+ C1(µ + σ)

+ C1

{
α2

1
2

+
∫
Y
[Ω1(y)− log(Ω1(y) + 1)]η(dy)

}

− C2

(
β fFS + βhIS + βwWS

PI

)
+ C2(κ + µ + γ)

+ C2

{
α2

2
2

+
∫
Y
[Ω2(y)− log(Ω2(y) + 1)]η(dy)

}

− C3δI
W + C3µv + C3

{
α4

1
2

+
∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

}
− C4λI

F + C4µv + C4

{
α5

1
2

+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy)

}

≤ −4
√
C1C2

2C3C4Πβ f βwδλ + C1

{
µ + σ +

α2
1

2
+
∫
Y
[Ω1(y)− log(Ω1(y) + 1)]η(dy)

}

+ C2

{
κ + µ + γ +

α2
2

2
+
∫
Y
[Ω2(y)− log(Ω2(y) + 1)]η(dy)

}

+ C3

{
µv +

α4
1

2
+
∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

}

+ C4

{
µv +

α5
1

2
+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy)

}
+ C1

(
β fF + βhI + βwW

)
.

(38)

Let β = max
{

β f , βw, βh

}
, and

C1 =
Π{

µ + σ +
α2

1
2 +

∫
Y [Ω1(y)− log(Ω1(y) + 1)]η(dy)

} ,

C2 =
Π{

κ + µ + γ +
α2

2
2 +

∫
Y [Ω2(y)− log(Ω2(y) + 1)]η(dy)

} ,

C3 =
Π{

µv +
α4

1
2 +

∫
Y [Ω4(y)− log(1 + Ω4(y))]η(dy)

} ,

C4 =
Π{

µv +
α5

1
2 +

∫
Y [Ω5(y)− log(1 + Ω5(y))]η(dy)

} .

(39)
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For the sake of simplicity, let

x1 =

{
µ + σ +

α2
1

2
+
∫
Y
[Ω1(y)− log(1 + Ω1(y))]η(dy)

}
,

x2 =

{
κ + µ + γ

α2
2

2
+
∫
Y
[Ω2(y)− log(1 + Ω2(y))]η(dy)

}
,

x3 =

{
µv +

α4
1

2
+
∫
Y
[Ω4(y)− log(1 + Ω4(y))]η(dy)

}
,

x4 =

{
µv +

α5
1

2
+
∫
Y
[Ω5(y)− log(1 + Ω5(y))]η(dy)

}
.

By using these xis, we have

LG ≤ −4

√
Π4Π2β f βwδλ

x1(x2)
2x3x4

+ 4Π + C1

[
β fF + βhI + βwW

]
= −4Π

[√
Rs

0 − 1
]
+ C1β[F + I +W ].

(40)

Substituting Equation (40) into Equation (36), then integrating both side of the stochas-
tic NoV epidemic model (2), we obtain

G(S(t), I(t),W(t),F (t))− G(S(0), I(0),W(0),F (0))
t

≤ −4Π
[√

Rs
0 − 1

]
+ C1β[F + I +W ]

C1α2
1B1(t)
t

− C2α2
2B2(t)
t

−
C1
∫
Y [Ω1(y)S − log(1 + Ω1(y))]Ñ(dt, dy)

t

−
C2
∫
Y [Ω2(x)I − log(1 + Ω2(x))]Ñ(dt, dy)

t

−
C3
∫
Y [Ω4(y)W − log(1 + Ω4(y))]Ñ(dt, dy)

t

−
C4
∫
Y [Ω5(x)I − log(1 + Ω5(x))]Ñ(dt, dy)

t

≤ −4Π
[√

Rs
0 − 1

]
+ C1β[⟨(F + I +W)⟩] + Ψ(t),

(41)

where

Ψ(t) = − C1
∫
Y [Ω1(y)S−log(1+Ω1(y))]P̃(dt,dy)+C2

∫
Y [Ω2(x)I−log(1+Ω2(x))]P̃(dt,dy)+C3

∫
Y [Ω4(y)W−log(1+Ω4(y))]Ñ(dt,dy)+C4

∫
Y [Ω5(x)I−log(1+Ω5(x))]Ñ(dt,dy)

t .

By virtue of strong law presented in Lemma 3, we obtain

lim
t→∞

Ψ(t) = 0, (42)

From Equation (41), we have

⟨(F + I +W)⟩ ≥ 4Π
(√

Rs
0 − 1

)
C1β

− 1
C1β

Ψ(t) +
1

C1β

(G(S(t), I(t),W(t),F (t))− G(S(0), I(0),W(0),F (0))
t

)
.

(43)
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By suing Lemma 4 and relation (42), the inferior limit of relation (43) is given by

lim inf
t→∞

⟨(F + I +W)⟩ ≥ 2Π
(√

Rs
0 − 1

)
C1β

, a.s, (44)

and likewise, lim inft→∞⟨(F + I +W)⟩ ≥ 0. These results complete the proof of Theo-
rem 3. □

4. Numerical Simulations and Discussion

The validation of theoretical results via simulations, an integral part of epidemic
modeling, and forecasting the future behavior of the disease under various circumstances
are presented in this section. To create a strategy for a numerically solving system (2),
we employed the conventional numerical approach established in [31]. To successfully
implement the algorithm, we took n = 0, 1, 2, .., N∗, where N∗ ∈ N and x∗ ∈ Y. To
describe the time period [0, T], we considered the constant step size ∆t = T

N∗ . Further,
for i ∈ 1, 2, 3, 4, 5, and Nn

i = Sn
i + In

1 +Rn
i +Wn

i +Fn
i , and ∆Zi,n ≜ W(tn+1)−W(tn) =√

∆tαi,n, where αi,n stands for the Gaussian noises having the distributions N(0, 1). In
addition, ∆Ln, defined as L(tn+1)− L(tn), follows a Poisson distribution with intensity
v when considering Y = (0,+∞) with v(Y) = 1. As a result, the Milstein algorithm for
obtaining the numerical solution of the model (2) takes the following form:

Sn+1 = Sn +

[
Π −

β fFnSn + βhInSn + βwWnSn

Pn − (µ + σ)Sn
]

∆t

+ α1SnB1,n +
α2

1
2
Sn
(

∆B2
1,n − ∆t

)
− Ω1(x∗)Sn∆n,

In+1 = In +

[
β fFnSn + βhInSn + βwWnSn

Pn − (κ + µ + γ)In
]

∆t

+ α2InBn,2 +
α2

1
2
In
(

∆B2
2,n − ∆t

)
− Ω2(x∗)In∆n,

Rn+1 = Rn + [γIn + σSn − µRn]∆t + α3RnBn,3 +
α2

3
2
Rn
(

∆B2
3,n − ∆t

)
− Ω3(x∗)Rn∆n,

Wn+1 = Wn + [δIn − µvWn]∆t + α4WnBn,4 +
α2

4
2
Wn

(
∆B2

4,n − ∆t
)
− Ω4(x∗)Wn∆n,

Fn+1 = Fn + [λIn − µvFn]∆t + α5FnBn,5 +
α2

5
2
Fn
(

∆B2
5,n − ∆t

)
− Ω5(x∗)Fn∆n.

In addition to the aforementioned technique, one can use an alternate numerical
method, such as the positive preserving truncated Euler–Maruyama (PPTEM) method [32],
to obtain numerical solutions to the model. Several writers have employed PPTEM ap-
proaches to address complicated physical phenomena (e.g., ref. [33] and references men-
tioned therein). In this particular case, the reasons for selecting this specific method include
its simplicity and efficacy in controlling Lévy jumps.

We need certain parameter values for the model (2) to numerically validate the the-
oretical results. Two sets of parameter values, which are presented in Table 2, were used
while simulating the model. These sets also contain the initial populations of humans and
microorganisms. For every combination of parameters, the model was simulated for the
time interval [0, 600], and each aspect was studied with detailed graphical illustrations.
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Table 2. The value of the parameters of model (2).

Symbols Test 1 Test 2 Test 3

Π 10.0 05.0 05.0
βw 0.02 0.20 0.20
β f 0.02 0.23 0.23
βh 0.05 0.50 0.30
γ 0.04 0.43 0.44
µ 0.05 0.05 0.05
κ 0.05 0.50 0.50
σ 0.03 0.30 0.32
λ 0.02 0.20 0.20
δ 0.03 0.35 0.30

µv 0.20 0.20 0.25
α1 0.15 0.25 0.55
α2 0.20 0.25 0.24
α3 0.40 0.75 0.47
α4 0.25 0.43 0.43
α5 0.22 0.25 0.30

S(0) 70.0 70.0 70.0
I(0) 60.0 70.0 70.0
R(0) 30.0 30.0 30.0
W(0) 50.0 50.0 50.0
F (0) 30.0 30.0 30.0

4.1. Numerical Simulations of the Extinction

In the preceding sections, we have investigated conditions under which the disease
is extinct in the population and the condition that ensures the survival of the disease in
the long term. Based on the condition of Rs < 1, we proved Theorem 2. The theorem
biologically explains the elimination of the NoV from the population with unit probability
whenever the required conditions are met. The disease will be eliminated from the com-
munity irrespective of the fact that the initial size of the infection is very high. To verify
these facts numerically, we simulated the model based on Example 1 and present visual
representations in Figure 1. One can easily notice that the curves generated by the stochastic
system gradually approach the infection-free state of the associated deterministic system.

Example 1. In this example, values of the parameter are assumed from Table 2 Test 1. By using
these values of the parameter, the threshold parameter Rs was calculated, which is surely less than
unity. Thus, the premise of Theorem 2 holds true, and hence the conclusion must follow. In other
words, each component of the solution to the model will satisfy the following expressions:

lim
t→∞

sup
log I(t)

t
≤ 0, a.s.

lim
t→∞

sup
logW(t)

t
≤ 0, a.s.

and

lim
t→∞

sup
logF (t)

t
≤ 0, a.s.

These inequalities represent the extinction of the infection within the population, and numeri-
cally Figure 1 verifies these conclusions. Consequently, the analytical findings showing extinction
have been validated and can be deemed reliable.
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Figure 1. Sample solution profiles of stochastic model (2) along with the solution of the associated
deterministic system explaining extinction of the NoV. (a) Susceptible individuals. (b) Infected
individuals. (c) Recovered individuals. (d) Bacteria contaminated NoV through water. (e) Bacteria
contaminated NoV through food.

4.2. Numerical Simulations of the Persistence

Likewise in this part, we attempt to quantify the persistence of NoV in the population.
Theoretically, Theorem (3) explains the mean presence of infection throughout the popula-
tion at all times. The theorem states that if the hypothesis is correct, the conclusion follows.
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4.2. Numerical Simulations of the Persistence

Likewise in this part, we attempt to quantify the persistence of NoV in the population.
Theoretically, Theorem 3 explains the mean presence of infection throughout the population
at all times. The theorem states that if the hypothesis is correct, the conclusion follows.
To demonstrate the numerical verification of the theorem, we have considered data from
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Table 2 Test 2, and it was found that Rs
0 > 1. Both the stochastic and deterministic models

were simulated with these data, and the findings are presented in Figure 2. The figure
depicts that the norovirus tends to exist in the population as long as the threshold exceeds
the value of one. Thus, in such cases, the stakeholders must look for a control program to
control the infection.
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Figure 2. Sample solution profiles of the stochastic model (2) along with the solution of the associated
deterministic system explaining the persistence of the NoV. (a) Susceptible individuals. (b) Infected
individuals. (c) Recovered individuals. (d) Bacteria contaminated NoV through water. (e) Bacteria
contaminated NoV through food.
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Example 2. To numerically validate the findings of Theorem 3 related to the persistence of the
disease, we have assumed values of the parameters from Table 2 Test 2. Based on the studied data,
we found that the value of Rs

0 is greater than one. Further study indicated that the parameters
in this example satisfy the assumptions specified in Theorem 3. The model was simulated using
these settings, and the results are visualized in Figure 2. The graph indicates that the infection will
survive within the population, in which case the model will have a uniform stationary distribution.

4.3. The Impact of βh, βw, and β f on the Infected Individual

To show the effect of βh, βw, and β f on the dynamic pattern of the NoV (specifically on
the infected compartments), we considered values of the parameters in Table 2 Test 3. The
dynamic behavior of the infected classes I(t), W(t), and F (t) as well as the mean-relative
infections are displayed in Figures 3 and 4 and were obtained from simulating the stochastic
system. Reducing the levels of βh, βw, and β f accelerates disease extinction in the relevant
populations. To promote disease extinction, it is required to lower the values of these
parameters. Furthermore, the simulations show that including nonlinear stochastic noises
is critical for a better understanding of the disease dynamics.
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Figure 3. Sample trajectories for the compartments I , W , and F obtained from simulating both the
deterministic and stochastic models with variations in the transmission coefficients. (a) (βh, βwβ f ) =
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Figure 4. The impact of the transmission coefficients on the dynamics of the compartments I , W ,
and F obtained from simulating both the deterministic and stochastic models. (a) (βh, βwβ f ) =

(0.70, 0.45, 0.60). (b) (βh, βwβ f ) = (0.30, 0.45, 0.70). (c) (βh, βwβ f ) = (0.40, 0.40, 0.30).

5. Concluding Remarks and Future Research Directions

Norovirus is a highly infectious disease causing vomiting and diarrhea and affects hu-
manity both in terms of deaths and health expenditure. In this manuscript, we investigated
the dynamics of norovirus via the inclusion of Lévy noise in stochastic modeling. After
the formulation of a stochastic SIRWF model, we studied the existence and uniqueness
of a global solution of the model. We calculated the threshold number and the number
was used in investigating the long-term behavior of the norovirus. The results show that
when another threshold parameter exceeds one, the norovirus survives in the community.
However, for the reproductive number (in a stochastic sense) less than one, the disease
tends toward extinction. Furthermore, the paper uses simulated examples to demonstrate
the real-world implications of these findings, providing important insights into norovirus
transmission dynamics. We employed the usual Milstein technique to numerically verify
the stability-based analytical conclusions. It has been found that the disease can only be
eliminated if the values of all of the transmission coefficients are reduced significantly. Over-
all, this study adds to our understanding of complicated biological and epidemiological
events, providing a solid foundation for studying and managing infectious diseases.

The research findings further recommend that the dynamic pattern of norovirus in-
creases through contaminated water and food compared with human-to-human NoV trans-
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5. Concluding Remarks and Future Research Directions

Norovirus is a highly infectious disease causing vomiting and diarrhea and affects hu-
manity both in terms of deaths and health expenditure. In this manuscript, we investigated
the dynamics of norovirus via the inclusion of Lévy noise in stochastic modeling. After
the formulation of a stochastic SIRWF model, we studied the existence and uniqueness
of a global solution of the model. We calculated the threshold number and the number
was used in investigating the long-term behavior of the norovirus. The results show that
when another threshold parameter exceeds one, the norovirus survives in the community.
However, for the reproductive number (in a stochastic sense) less than one, the disease
tends toward extinction. Furthermore, the paper uses simulated examples to demonstrate
the real-world implications of these findings, providing important insights into norovirus
transmission dynamics. We employed the usual Milstein technique to numerically verify
the stability-based analytical conclusions. It has been found that the disease can only be
eliminated if the values of all of the transmission coefficients are reduced significantly. Over-
all, this study adds to our understanding of complicated biological and epidemiological
events, providing a solid foundation for studying and managing infectious diseases.

The research findings further recommend that the dynamic pattern of norovirus in-
creases through contaminated water and food compared with human-to-human NoV trans-
mission. Further, it was noted that to considerably reduce the risk, all three components
must be simultaneously addressed. The authors plan to incorporate other disease-related
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characteristics into the model in the future, such as age and the temporal dynamics of
the disease.

Author Contributions: Methodology, Y.S. and P.L.; Software, A.D.; Investigation, data curation,
Y.S. and P.L.; Writing—original draft, Y.S., P.L., and A.D.; Writing—review & editing, A.D.; Project
administration, Y.S. and P.L.; Funding acquisition. All authors have read and agreed to the published
version of the manuscript.

Funding: Research on Key parameters of structure design of petal vortex shaft torsional section
(No. JG523001), Development of Optimization Algorithm for 3D Data of Light Field (No. 3630019001),
Hunan Provincial Educational Foundation of China (Grant No. 23B0569), and Hunan Provincial
Natural Science Foundation of China (2024JJ7162), and the National Natural Science Foundation of
China (No. 11901114).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

References
1. Koopmans, M.; Duizer, E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 2004, 90, 23–41. [CrossRef] [PubMed]
2. Widdowson, M.A.; Sulka, A.; Bulens, S.N.; Beard, R.S.; Chaves, S.S.; Hammond, R.; Salehi, E.D.P.; Swanson, E.; Totaro, J.; Woron,

R.; et al. Norovirus and foodborne disease, United States, 1991–2000. Emerg. Infect. 2005, 11, 95–102. [CrossRef] [PubMed]
3. Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, F.; Bresee, J.S.; Shapiro, C. Food-related illness and death in the United States. Emerg.

Infect. Dis. 1999, 5, 607–625. [CrossRef]
4. Amirhossein, M.; Jaykus, L. Quantitative exposure model for the transmission of norovirus in retail food preparation. Int. J. Food

Microbiol. 2009, 133, 38–47.
5. Bean, N.H.; Goulding, J.S.; Daniels, M.T.; Angulo, F.J. Surveillance for foodborne disease outbreaks—United States, 1988–1992.

J. Food Prot. 1997, 60, 1265–1286. [CrossRef] [PubMed]
6. Ahmed, S.M.; Lopman, B.A.; Lévy, K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE

2013, 8, e75922. [CrossRef] [PubMed]
7. Marshall, J.A.; Bruggink, L.D. The dynamics of norovirus outbreak epidemics: Recent insights. Int. J. Environ. Res. Public Health

2011, 8, 1141–1149. [CrossRef]
8. Rohayem, J. Norovirus seasonality and the potential impact of climate change. Clin. Microbiol. Infect. 2009, 15, 524–527. [CrossRef]
9. Carmona-Vicente, N.; Fernández-Jiménez, M.; Ribes, J.M.; Téllez-Castillo, C.J.; Khodayar-Pardo, P.; Rodríguez-Diaz, J.; Buesa, J.

Norovirus infections and seroprevalence of genotype GII. 4-specific antibodiesin a Spanish population. J. Med. Virol. 2015, 87,
675–682. [CrossRef]

10. Honma, S.; Nakata, S.; Numata, K.; Kogawa, K.; Yamashita, T.; Oseto, M.; Jiang, X.; Chiba, S. Epidemiological study of prevalence
of genogroup II human calicivirus (Mexico virus) infections in Japan and Southeast Asia as determined by enzyme-linked
immunosorbent assays. J. Clin. Microbiol. 1998, 36, 2481–2484. [CrossRef]

11. Simmons, K.; Gambhir, M.; Leon, J.; Lopman, B. Duration of immunity to norovirus gastroenteritis. Emerg. Infect. Dis. 2013, 19,
1260–1267. [CrossRef] [PubMed]

12. Hall, A.J.; Lopman, B.A.; Payne, D.C.; Patel, M.M.; Gastañaduy, P.A.; Vinjé, J.; Parashar, U.D. Norovirus disease in the United
States. Emerg. Infect. Dis. 2013, 19, 1198–1205. [CrossRef] [PubMed]

13. Lai, C.-C.; Wang, Y.-H.; Wu, C.-Y.; Hung, C.-H.; Jiang, D.D.-S.; Wu, F.-T. A norovirus outbreak in a nursing home: Norovirus
shedding time associated with age. J. Clin. Virol. 2013, 56, 96–101. [CrossRef] [PubMed]

14. Murata, T.; Katsushima, N.; Mizuta, K.; Muraki, Y.; Hongo, S.; Matsuzaki, Y. Prolonged norovirus shedding in infants 6 months of
age with gastroenteritis. Pediatr. Infect. Dis. J. 2007, 26, 46–49. [CrossRef] [PubMed]

15. Muhammad, K.F.; Khan, Z.U. Numerical analysis of fractional order drinking mathematical model. J. Math. Tech. Model. 2024, 1,
11–24.

16. Ali, K.W.; Zarin, R.; Zeb, A.; Khan, Y.; Khan, A. Navigating food allergy dynamics via a novel fractional mathematical model for
antacid-induced allergies. J. Math. Tech. Model. 2024, 1, 25–51.

17. Yassine, S.; Khan, A.; Tilioua, M. New method to investigate the impact of independent quadratic stable Poisson jumps on the
dynamics of a disease under vaccination strategy. Fractal Fract. 2023, 7, 226.

18. He, Y.; Wang, Z. Stability analysis and optimal control of a fractional cholera epidemic model. Fractal Fract. 2022, 6, 157. [CrossRef]
19. Cui, T.; Liu, P.; Din, A. Fractal–fractional and stochastic analysis of norovirus transmission epidemic model with vaccination

effects. Sci. Rep. 2021, 11, 24360. [CrossRef]
20. Shah, S.M.A.; Tahir, H.; Khan, A.; Arshad, A. Stochastic Model on the Transmission of Worms in Wireless Sensor Network. J. Math.

Tech. Model. 2024, 1, 75–88.
21. Ain, Q.T. Nonlinear stochastic cholera epidemic model under the influence of noise. J. Math. Tech. Model. 2024, 1, 52–74.

https://doi.org/10.1016/S0168-1605(03)00169-7
https://www.ncbi.nlm.nih.gov/pubmed/14672828
https://doi.org/10.3201/eid1101.040426
https://www.ncbi.nlm.nih.gov/pubmed/15705329
https://doi.org/10.3201/eid0505.990502
https://doi.org/10.4315/0362-028X-60.10.1265
https://www.ncbi.nlm.nih.gov/pubmed/31207736
https://doi.org/10.1371/journal.pone.0075922
https://www.ncbi.nlm.nih.gov/pubmed/24098406
https://doi.org/10.3390/ijerph8041141
https://doi.org/10.1111/j.1469-0691.2009.02846.x
https://doi.org/10.1002/jmv.24112
https://doi.org/10.1128/JCM.36.9.2481-2484.1998
https://doi.org/10.3201/eid1908.130472
https://www.ncbi.nlm.nih.gov/pubmed/23876612
https://doi.org/10.3201/eid1908.130465
https://www.ncbi.nlm.nih.gov/pubmed/23876403
https://doi.org/10.1016/j.jcv.2012.10.011
https://www.ncbi.nlm.nih.gov/pubmed/23153821
https://doi.org/10.1097/01.inf.0000247102.04997.e0
https://www.ncbi.nlm.nih.gov/pubmed/17195705
https://doi.org/10.3390/fractalfract6030157
https://doi.org/10.1038/s41598-021-03732-8


Fractal Fract. 2024, 8, 349 22 of 22

22. El Fatini, M.; Sekkak, I. Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding
effect. Physica A 2020, 541, 123315. [CrossRef]

23. Dong, Y.; Lin, T. Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise.
Chin. Phys. B 2021, 30, 080201. [CrossRef]

24. Berrhazi, B.-e.; Fatini, M.E.; Garrido, T.C.; Pettersson, R. A stochastic SIRI epidemic model with Lévy noise. Discret. Contin. Dyn.
Syst.-Ser. B 2018, 23, 3645–3661. [CrossRef]

25. Din, A.; Li, Y. Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal–fractional
Atangana–Baleanu order model. Phys. Scr. 2021, 96, 124008. [CrossRef]

26. Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B. Effects of Lévy noise on the dynamics of sine-Gordon solitons in long
Josephson junctions. J. Stat. Mech. 2016, 2016, 054012. [CrossRef]

27. Caraballo, T.; Fatini, M.E.; Khalifi, M.E.; Rathinasamy, A. Analysis of a stochastic coronavirus (COVID-19) Lévy jump model with
protective measures. Stoch. Anal. Appl. 2023, 41, 45–59. [CrossRef]

28. Din, A. Optimal control theory of a novel stochastic human norovirus model and vaccine development. Int. J. Mod. Phys. B 2022,
36, 2250238. [CrossRef]

29. Gikhman, I.I.; Skorokhod, A.V.; Gikhman, I.I.; Skorokhod, A.V. Stochastic Differential Equations; Springer: Berlin/Heidelberg,
Germany, 2007.

30. Zhang, X.-B.; Wang, X.-D.; Huo, H.-F. Extinction and stationary distribution of a stochastic SIRS epidemic model with standard
incidence rate and partial immunity. Phys. A Stat. Mech. Its Appl. 2019, 531, 121548. [CrossRef]

31. Zhu, Y.; Wang, L.; Qiu, Z. Dynamics of a stochastic cholera epidemic model with Lévy process. Physica A 2022, 595, 127069.
[CrossRef]

32. Ain, Q.T.; Din, A.; Qiang, X.; Kou, Z. Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise. Fractal
Fract. 2024, 8, 293. [CrossRef]

33. Mao, X.; Wei, F.; Wiriyakraikul, T. Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra
competition model. J. Comput. Appl. Math. 2021, 394, 113566. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.physa.2019.123315
https://doi.org/10.1088/1674-1056/ac0423
https://doi.org/10.3934/dcdsb.2018057
https://doi.org/10.1088/1402-4896/ac1c1a
https://doi.org/10.1088/1742-5468/2016/05/054012
https://doi.org/10.1080/07362994.2021.1989312
https://doi.org/10.1142/S0217979222502381
https://doi.org/10.1016/j.physa.2019.121548
https://doi.org/10.1016/j.physa.2022.127069
https://doi.org/10.3390/fractalfract8050293
https://doi.org/10.1016/j.cam.2021.113566

	Introduction 
	Model Formulation 
	Stochastic Analysis 
	Basic Concept 
	Positive Global Solution of the Model 
	Extinction of the Disease 
	Persistence of the Disease 

	Numerical Simulations and Discussion 
	Numerical Simulations of the Extinction 
	Numerical Simulations of the Persistence 
	The Impact of h , w , and f  on the Infected Individual 

	Concluding Remarks and Future Research Directions 
	References

