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Abstract: A novel analytical model based on the generalized ubiquitiformal Sierpinski carpet is
proposed which can more accurately obtain the normal contact stiffness of the grinding joint surface.
Firstly, the profile and the distribution of asperities on the grinding surface are characterized. Then,
based on the generalized ubiquitiformal Sierpinski carpet, the contact characterization of the grinding
joint surface is realized. Secondly, a contact mechanics analysis of the asperities on the grinding
surface is carried out. The analytical expressions for contact stiffness in various deformation stages are
derived, culminating in the establishment of a comprehensive analytical model for the grinding joint
surface. Subsequently, a comparative analysis is conducted between the outcomes of the presented
model, the KE model, and experimental data. The findings reveal that, under identical contact
pressure conditions, the results obtained from the presented model exhibit a closer alignment with
experimental observations compared to the KE model. With an increase in contact pressure, the
relative error of the presented model shows a trend of first increasing and then decreasing, while the
KE model has a trend of increasing. For the relative error values of the four surfaces under different
contact pressures, the maximum relative error of the presented model is 5.44%, while the KE model is
22.99%. The presented model can lay a solid theoretical foundation for the optimization design of
high-precision machine tools and provide a scientific theoretical basis for the performance analysis of
machine tool systems.

Keywords: generalized ubiquitiformal Sierpinski carpet; grinding joint surface; contact stiffness;
analytical model

1. Introduction

In high-precision machine tool equipment, there exist numerous mechanical joint
surfaces, and the contact stiffness characteristics of these joint surfaces constitute a critical
weak link that affects the machining accuracy [1]. According to statistics, the stiffness of
the joint surface accounts for 60%~80% of the overall stiffness of the machine tool sys-
tem [2]. The accurate normal contact stiffness is crucial for describing the contact behavior
of mechanical joint surfaces, as it significantly impacts the performance of mechanical
connections [3]. However, the absence of precise normal contact stiffness parameters poses
a challenge in designing high-precision machine tool equipment. Consequently, there is an
urgent need to develop effective methods for accurately determining the normal contact
stiffness of mechanical joint surfaces [4,5].

The analytical method of contact stiffness acquisition for rough joint surfaces has been
a pivotal topic in tribology [3,6]. Two commonly used analytical methods are based on
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statistical theory and fractal theory. Research on statistical-theory-based models dates
back to the 1960s [7]. Greenwood and Williamson [8] pioneered the GW model, assuming
hemispherical asperities. Bush [9] employed a parabola to mimic rough surface asperities
and studied normal contact stiffness accordingly. Komvopoulos [10] viewed machined
surface asperities as cylindrical and investigated normal contact stiffness based on this
assumption. Horng [11] extended the GW model with semi-elliptical asperities, while
An [12] proposed a model based on sinusoidal asperities fitted to measured profiles. During
compression, asperities undergo elastic, elastic—plastic, and plastic deformation. Chang [13]
considered elastic—plastic contact based on volume conservation theory, leading to the CEB
model. Zhao [14,15] utilized a template function to model the transition from elastic to
plastic deformation, resulting in a ZMC model that encompasses all three deformation
stages. Ciavarella [16] enhanced the GW model by incorporating asperity interactions on
rough surfaces.

Analytical model research based on statistical theory has the following disadvantages.
For the profile of single asperity, different assumptions of the asperity profile will lead to
different contact stiffness results. For the process of contact calculation, the acquisition of
the initial parameters for the statistical contact model requires the topographical analysis of
the measured surface, and the process is cumbersome. Moreover, due to the limitations of
the contact mechanics theory, the profile of the asperities in the analytical model does not
fit well with the profile of the measured surface asperities. For the applicable scope of the
model, most of the existing models are universal analytical models, which fail to correlate
with the actual machined surface. The surface topographies under different machining
modes are quite different. Using the universal model to calculate the contact stiffness under
different rough joint surfaces will inevitably cause calculation errors.

The study of analytical models using fractal theory started a bit later. Sayles [17] ob-
served that machined surfaces exhibit fractal characteristics. Majumdar and Bhushan [18]
introduced fractal theory into tribology, characterizing rough surfaces using the 2D W-M
function and analyzing contact features of rough joint surfaces. Ausloos and Berman [19]
then extended the 2D W-M function to 3D space, deriving its generalized form. Yan and
Komvopoulos [20] further deduced the generalized 3D W-M function in the Cartesian
coordinate system. This fractal expression has become a standard for characterizing rough
surfaces [21,22], leading to numerous insights into rough joint surface contact character-
istics [22-24]. However, as research progressed, limitations of fractal modeling emerged,
particularly regarding fractal measurement [25-27]. Ou highlighted that fractal’s integer
dimension measure is divergent, and its fractal dimension is discontinuous concerning the
measurement scale. Describing physical objects with fractal approximations is unreason-
able when considering measurement. The Hausdorff dimension’s mutation from integer to
fractal during infinite self-similar or self-affine iterations creates singularities in the fractal’s
integer dimension measure. To address these challenges, Ou [28] introduced the concept
of “ubiquitiform”, based on fractal theory. The ubiquitiform, defined as a self-similar or
self-affine structure with finite levels generated by a finite number of iterations under
specific rules, has since been applied to various fields [28]. These include characterizing the
equivalent elastic modulus of bimaterial bars [29], modeling one-dimensional steady-state
conduction in cellular material rods [30], studying concrete softening behavior [31,32],
researching material fracture energy parameters [33], crack propagation in quasi-brittle
materials [34], and mesostructural characterization of polymer-bonded explosives [35].
Furthermore, the drawbacks of the fractal modeling approach have become increasingly
apparent, particularly regarding fractal measurement. In an infinite number of iterations,
the initial element undergoes a sudden change in dimension, and the integral dimension
measure of the fractal is singular. In contrast, the ubiquitiform theory can make up for the
shortcomings of fractal theory.

The generalized ubiquitiformal Sierpinski carpet is a self-similar fractal set. As a
typical fractal set, it is often used in the simulation of the complex and chaotic nature of the
grinding of rough surfaces. Moreover, the generalized Sierpinski carpet is actually a special
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fractal theory that inherently possesses the basic characteristics of fractals, including self-
similarity and complex detailed structures. This theory is an inheritance and development
of fractal theory. It not only retains the advantages of fractals in processing irregular
graphics but also resolves issues such as the singularity of fractals and certain contradictions
with traditional Euclidean space. Scholars have also incorporated ubiquitiform theory into
analyzing rough joint surface contact characteristics. Shang studied contact parameters
based on this theory [36], and pointed out that this theory may have stronger advantages
in simulating and describing joint surfaces with complex and irregular surface topography.

Based on the above research, the generalized ubiquitiformal Sierpinski carpet is intro-
duced into the calculation of the contact stiffness of the rough joint surface. Combined with
the characterization of the grinding joint surface and the contact mechanics analysis of the
asperities on the joint surface, a novel analytical model of contact stiffness for grinding a
joint surface will be proposed. The model can provide a solid theoretical foundation for
optimizing the design of high-precision machine tools and establish a scientific analytical
framework for analyzing the performance of machine tool systems.

2. Characterization of the Grinding Surface

The description of the uneven surface serves as the foundation for determining the
contact rigidity of the rough joint surface. Initially, this section outlines the profile and
arrangement of irregularities on the ground surface. Subsequently, utilizing the broadly
applicable and uniformly patterned Sierpinski carpet, the contact features of the ground
joint surface are delineated.

2.1. Characterization of Simulated Surface

To accurately obtain the normal contact stiffness, constructing a simulated surface that
closely mimics the measured surface is crucial. The construction of a simulated surface
includes two aspects: the profile of a single asperity and the distribution of asperities.

For the profile of a single asperity, there are hemispherical [13-16], cylindrical [11],
semi-elliptical [37], and other assumptions. However, the above profile assumptions are
not suitable for a grinding surface. In our team’s previous research [12], the data fitting
method was used to fit the data points of the asperity profile on the grinding surface.
The fitting result shows that compared with other profiles, the asperity profile on the
grinding surface is closer to the sinusoidal shape, and the fitting results can be found in
the Supplementary Materials Figure S1. Therefore, the axisymmetric sinusoid is used to
simulate the profile of a single asperity. Figure 1 shows the schematic diagram of the
axisymmetric sinusoidal asperity.

74
T ® i
i
i I

! X

Figure 1. The schematic diagram of the axisymmetric sinusoidal asperity: (a) the three-dimensional
view; (b) the vertical cross-sectional view.

Based on the above analysis, the geometric definition formula of the profile of a single
asperity can be obtained, as shown in Formula (1).

Tt

z(x) = hcos(Tx) 1)
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where [ is the wavelength of the asperity; & is the height of the asperity; x is the data point
of the profile; and —1/2 <x <1/2.

Figure 2 shows the schematic diagram of a two-dimensional rough surface. Here, R,
is the maximum peak height of the grinding surface; R, is the maximum valley height of
the grinding surface; and Ry is the root mean square height of the grinding surface. From
this, the maximum height hnax of the asperities can be defined, as shown in the following
equation [36].

hmax = Rp + Ry (2)

Contact surface

4

Central surface

Figure 2. Schematic diagram of a two-dimensional rough surface.

For a single grinding surface, the maximum heights of the asperities on the two grind-
ing surfaces are fmax1 and fmaxp, Tespectively, and fhmaa = Rpr + Rep,
hmax2 = Rp2 + Ryz. A grinding joint surface composed of two grinding surfaces can
be transformed into contact between a single grinding surface and a rigid plane. At this
time, the maximum height of the asperities on the grinding joint surface can be represented
by Equation (3). Similarly, the root mean square height of the grinding joint surface can be
expressed by Equation (4).

hmax = h%naxl + h? (3)

max2

Rg = \/R3, +RZ, (4)

For the distribution of asperities on the grinding surface, the Gaussian distribution is
used for approximation. A relevant work has proved [36] that the height distribution of
asperities on the grinding surface obeys Gaussian distribution. The distribution function is
shown in Equation (5).

1 —(h—p)

Vot ©

where ¢ is the root mean square of the rough surface and y is the mean value of the
rough surface.

For Gaussian distribution, it can be considered that the values of the independent
variables are almost all concentrated in the interval (4 — 30, i + 30). Therefore, combined
with Equation (2), the following equation can be obtained.

®(h) =

ﬂ:hmax*30':Rp+Rv*30' (6)

In the above equation, o = R;. Therefore, the distribution function of the asperities on
the grinding surface is shown in the following equation [2].

—(h—hmax+3Rg)?
1 BTy — .

®O(h) = que q )

2.2. Contact Characterization of the Grinding Joint Surface

After defining the profile of the single asperity and the distribution of asperities on
the grinding surface, a simulated surface which is more similar to the measured surface
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can be obtained. In this section, the contact characterization of the grinding joint surface
will be carried out based on the generalized ubiquitiformal Sierpinski carpet.

As evident from Figure 2, with an increase in contact pressure, a higher number of
irregularities on the grinding surface engage in contact. Concurrently, the contact regions
of the previously engaged irregularities progressively expand.

Khezrzadeh [11] has pointed out that the contact process of a rough joint surface
conforms to the generalized ubiquitiformal Sierpinski carpet. Therefore, the generalized
ubiquitiformal Sierpinski carpet is introduced to describe the contact characterization
of the grinding joint surface. Figure 3 shows the schematic diagram of the generalized
ubiquitiformal Sierpinski carpet.

& max

. K X N i

Figure 3. The generalized ubiquitiformal Sierpinski carpet: (a) unit division; (b) first-order Sierpinski

carpet; (c) second-order Sierpinski carpet.

Figure 3a shows the unit division of the generalized ubiquitiformal Sierpinski carpet,
which divides the area by length L. The maximum length of each divided area is assumed
to be dmax, while there is a minimum length éin. The dmax and the dpyin correspond to the
upper bound of the measuring yardstick and the lower bound of the measuring yardstick,
respectively.

The dmax X dmax unit area can be divided into p2 equal parts, the qu small squares
removed and the remaining p? — 54> small squares kept, and then the first-order generalized
ubiquitiformal Sierpinski carpet can be obtained. It is worth mentioning that p and g satisfy
p > 3q. After iterative processing according to the above process, generalized ubiquitiformal
Sierpinski carpets under different orders can be obtained. Figure 3b,c show the first-order
and second-order generalized ubiquitiformal Sierpinski carpets, respectively.

Combined with the definition of fractal dimension, Khezrzadeh [38] obtained the
ubiquitiformal dimension of the generalized ubiquitiformal Sierpinski carpet, as shown in
Equation (8).

In(p* — 5¢%)

D= np (8)

In a single ubiquitiformal unit, the relationship between the upper and the lower
bounds of the measuring yardstick is as follows,

1 N 5min
=) =3 ©)
p max
After using the dmax X dmax unit area for division, the number of units can be obtained
using the following equation.

2
ng= floor((szL ) (10)

max

where floor is the rounding function.

Moreover, if the asperity is determined by the i-th iteration of the generalized ubiquiti-
formal Sierpinski carpet, the diameter of the bottom circle for the single asperity can be
obtained with Equation (11).

*
dy = 1o a



Fractal Fract. 2024, 8, 351

6 of 16

Combined with the location distribution of asperities in Figure 3, the number of
asperities with the diameter d; on a single unit can be obtained.

n; = 5(;92 - 5(12)1'71 (12)

It is worth noting that the circular units assumed in this paper do not occupy the
square area of the generalized ubiquitiformal Sierpinski carpet. Therefore, a correction
factor 1 needs to be added to the upper bound of the measuring yardstick. Based on
reference [36], the upper bound of the measuring yardstick for the grinding joint surface is
OF axs and

Omax = 1Omax (13)

where 7 is the correction coefficient, and the expression is as follows.

2 =2 N_%
-

The above description is the contact characterization of a single grinding surface. For
the grinding joint surface composed of two grinding surfaces, it can be transformed into
the contact between a single grinding surface and a rigid plane. Based on reference [36],
the ubiquitiformal dimension of the grinding joint surface can be expressed as

D = max(D;, D) —1 (15)

where D and D; are the ubiquitiformal dimensions of the two grinding surfaces, respec-
tively, and (2 < Dq < 3,2 <D, <3).

3. Contact Analysis

Using the analysis from Section 2, the representations of the simulated surface and
the grinding joint surface’s contact properties can be achieved. In this segment, drawing
on contact mechanics theory, the formulas for calculating the contact stiffness of both
an individual surface irregularity and the joint surface within elastic, elastic—plastic, and
plastic deformation regions will be derived. This comprehensive approach then allows us
to construct a rigorous analytical model for contact stiffness.

3.1. Contact Analysis of a Single Asperity

The contact deformation process of a single asperity is analyzed in this section. The
deformation process of the axisymmetric sinusoidal asperity can be referred to [7]. Under
the contact pressure, the schematic diagram of a single asperity before and after deformation
is shown in Figure 4. As shown in Figure 4, when subjected to external load, an indentation
depth 6 will be generated on the grinding surface. At this time, due to the non-uniformity
of the heights of the asperities, the indentation depth ¢’ for a single asperity has the
following form.

8 =h+06— hmax (16)

With the increase in contact pressure, the asperity will undergo three deformation
stages: elastic deformation, elastic—plastic deformation, and plastic deformation. For the
elastic—plastic deformation stage, the deformation is more complicated and cannot be
described accurately and quantitatively. Therefore, the elastic deformation stage and plastic
deformation stage of the asperity are analyzed first. By obtaining the critical point of
initial plastic deformation and complete plastic deformation of the asperity, the division in
the complete elastic deformation stage and the complete plastic deformation stage can be
realized. For the elastic—plastic deformation stage, the method of constructing a template
function will be used for transition. Each deformation stage is described in detail below in
combination with Figure 4.
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Contact
surface

hmax

Figure 4. The contact model of a single asperity.

(1) Elastic deformation stage

In the elastic deformation stage, based on the Hertz contact theory, the relationship
between the contact pressure and the indentation depth is as follows [3].

4F'
F/ _ ?7’3/25/3/2 (17)

where E’ is the comprehensive elastic modulus, 1/E' = (1 —v2)/E; + (1 —v3) /Ep; vy and
1, are the Poisson’s ratio of the material; E; and E, are the elastic modulus of the material;
te is the radius of curvature of in the elastic deformation stage; and ¢’ is the indentation
depth of the asperity.

Combined with the profile assumption of the asperity, when the diameter of the
bottom circle is d; and the height of the asperity is &, the radius of curvature of the asperity
at the vertex can be defined as

) hr? cos (7 ) hm?
dxZ | x=0 x=0

Combined with Equations (11), (13), (16), and (17), the analytical equation of the
contact pressure F} and indentation depth ¢’ for a single asperity can be obtained.
1 4E"  qy0max

_ 3/2
= (h+ 6 — Mmay) (19)

According to Hertz contact theory, the average contact pressure fy;. in the elastic
deformation stage can be written as follows.

E/ 5/ 1/2
fme:éﬂ< ) (20)

Te

When the average contact pressure fy, is equal to the yield strength of the material o,
the material will begin to undergo plastic deformation. In addition, the d; in Equation (18)
corresponds to the radius of curvature when the diameter of the bottom circle is dmax.
Thus, the critical indentation depth &}, at which the asperities begin to enter the plastic
deformation stage can be obtained.

3my, \ 2 62
! Y
se= () s 1)
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(2) Plastic deformation stage

The relationship between the contact pressure and the indentation depth in the plastic
deformation stage is as follows [7].

F, = 6mr 0,6’ (22)

The contact radius r, in the plastic deformation stage can be obtained from the follow-

ing equation.
4 h—46"\  d Bmax — 0
rp = 7tarccos( p ) = ﬂarccos(h (23)

Combined with Equations (11), (13), (16), and (22), the analytical equation of the
contact pressure F; and indentation depth ¢’ for a single asperity can be obtained.

Pl 6q17(5maxay

v i (h + 6 — hmax )arccos (hmax—(5> (24)

h

The relationship between the real contact area A, and the indentation depth ¢’ in the
plastic deformation stage can be expressed by the following equation [12].

Ap =271 (25)

Similarly, based on the theory of contact mechanics, when the average pressure f,
is equal to three times the yield strength ¢y, [7], the material will enter fully into plastic
deformation:

fmp = 30y (26)

For the critical point of complete plastic deformation, the relationship between the
average pressure and the yield strength of the asperity can be expressed by the following

equation.
dz
fﬂzgprln EEM =3 (27)
oy 3 3 oy drpe
where ;. is the contact radius with complete plastic deformation, and dz;r;ic) is the

absolute value of the slope at point 7.

Based on the above equation, the contact radius 7, of the critical point with complete
plastic deformation for a single asperity can be obtained.

Combined with Equations (21) and (22), the critical indentation depth of complete
plastic deformation can be obtained. In addition, the d; in Equation (23) corresponds to
the radius of curvature when the diameter of the bottom circle is dmax. Thus, the critical
indentation depth . at which the asperities completely enter the plastic deformation stage

can be obtained.

6 7
/ _ “max . z
Ope = oy aresin 3e2

% (Sma} (28)

E' mh
(3) Elastic—plastic deformation stage

Based on the above analysis, the analytical expressions of the asperities in the elastic
and the plastic deformation stages are obtained. Meanwhile, the critical points of initial
plastic deformation and complete plastic deformation of asperities are obtained. For the

elastic—plastic deformation stage, the method of constructing a template function will be
used for transition. The template function can be found in the following equation.

8 — e \° 8 — 6 \2
) = — (“) +3<“> 29
f( ) 5pc*fsec 5pc*56c ( )
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Fl

F, =

q’?émax
p|3m

8+/5E’

4F'
hl/z

f‘smax

B 3/2
(40 — hmax )™ + [ arccos(ihmaﬁ_‘s)

Using the template function, the equation of the contact pressure 1—"61,[7 in the elastic—
plastic deformation stage can be obtained, as shown below.

f@:ﬁ+(@—3y@q (30)

Combined with Equations (19), (24), and (30), the analytical equation of the contact
pressure F), and indentation depth ¢’ for a single asperity can be obtained.

ep 60-]/ (h +6— hmax) ]
f(h+ 6 — hmax) (31)

(i + 6 — hmax)*?

3.2. Contact Analysis of the Joint Surface

Drawing from the analysis presented in Section 3.1, the process of contact deformation
for a single asperity irregularity can be understood. In this current section, we will delve
into the contact deformation process of the entire joint surface, ultimately deriving the
expression for the contact stiffness of this joint surface. Combined with the generalized
ubiquitiformal Sierpinski carpet, the total contact pressure of the asperities on a single
unit with height & and diameter of the bottom circle d; is Fln;¢(h)dh. Within this, ¢(h)dh
represents the proportion of the number of asperities with height / in n;, and n;¢(h)dh
represents the number of asperities with height # and the diameter of the bottom circle d;
on a single unit.

The joint surface is composed of 717 units, and the number of iterations of the ubiquiti-
formal units on the joint surface is N, so the total contact pressure F; on the grinding joint
surface can be obtained.

a_ —M—Z/ gl () (32)

max

where F, and F}! are the contact pressure of the joint surface and the single asperity, re-
spectively. Since there are three deformation stages of asperity under contact pressure, the
symbol “ *” is used to comprehensively represent the different deformation stages. That is,
F. and F! are applicable to the three deformation stages. Based on the above derivation,
the analytical expressions between the contact pressure and the indentation depth of the
joint surface under different deformation stages are deduced.

(1) Elastic deformation stage

From Equation (32), the total contact pressure of the joint surface in the elastic defor-
mation stage can be obtained.

max 5@5
Z M—Z/ nEln; ®(h)dh (33)

max

Combined with Equations (9), (12), (14), (19), and (33), the analytical equation of the
contact pressure F, and indentation depth ¢’ for the joint surface can be obtained.

5 [(5 D-1
max _ 1
2 _ p»D fsmin) ] Timax—dgc — 3\ /2
PP A (Mh5%m> omdh  (34)

1 <5max ) b2 P h
(Smin

max 75
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»=

(2) Plastic deformation stage

Similarly, from Equation (32), the total contact pressure of the joint surface in the
plastic deformation stage can be obtained.
1: N rhmax 1
—dh = Z/h , nyEm () (35)

i=1 Y max—O%pc

Combined with Equations (9), (12), (14), (24), and (34), the analytical equation of the
contact pressure F, and indentation depth ¢’ for the joint surface can be obtained.

2 <5max>0*1 1
12v/51 f6max0y p? — pP dmin

_ 2 \/E(Smax ng

/hhmax (h+6 — hmax) {arccos(hm);l;(sﬂ D (h)dh (36)

max *0‘;75

VT L (zsmax>’3*2 p

Omin
(3) Elastic—plastic deformation stage

Similarly, from Equation (32), the total contact pressure of the joint surface in the
elastic—plastic deformation stage can be obtained.

Fp = 2 / maxf(séc n; ©(h)dh (37)

Combined with Equations (9), (12), (14), (31), and (37), the analytical equation of the
contact pressure F,, and indentation depth ¢’ for the joint surface can be obtained.

1
5 <5max ) D-1 i 4E
pz — pD §min

NG

Sz (6= Bimax)>/ 2+
~hmax—5;7¢ ( hmax — 6 )
46— i) - N @ (h)dh 38
- <?“¢) EA P /;,maxfagc { 4E/ y - ( Imax) * AICCOS 5 45— ) (h) (38)
Based on the above analysis, the relationship between the contact pressure and the
indentation depth of the joint surface at different deformation stages can be obtained. The

37thl/2
total contact pressure F on the joint surface includes the contact pressure of all asperities on
the grinding surface in different deformation stages.

(h+ 6 — hmay)®"?

F=F+Fy+F, (39)

The analytical expression of the contact stiffness can be obtained by derivation of the
above equation, and the analytical model of contact stiffness for the grinding joint surface

is finally established.
dF
K=— 4
T (40)
4. Experiment

4.1. Specimen Preparation

To achieve grinding surfaces with varying ubiquitiformal dimensions, specimens were
produced using grinding wheels of differing abrasive grain sizes. The chosen material
for these specimens was 40Cr steel. Specifically, the abrasive grains used on the grinding
wheels ranged from 60# to 120#, with increments of 20#. The symbol ‘# represents the
grit size of the grinding wheel. Once the specimens were shaped through machining, the
surface contours of the ground areas were captured using ZYGONex-View measurement
technology. The surface topography of the measured area can be found in Figure S2. This
precision measurement process established the surface profiles essential for the subsequent
quantification of ubiquitiformal dimensions. Visual representations of the ground surfaces
resulting from the various grinding wheels can be accessed in Figure S3 of the Supplemen-
tary Information. Subsequently, the fractal characteristic parameters of these measured
surfaces were derived through the application of the box counting method, as outlined
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in [39]. The comprehensive fractal characteristic data for each distinct grinding surface
is tabulated in Table 1, where D; and D, designate the ubiquitiformal dimensions for the
upper and lower specimens, respectively.

Table 1. The fractal characteristic parameters of different grinding surfaces.

Ubiquitiformal Grinding Joint Grinding Joint Grinding Joint Grinding Joint

Dimension Surface 1 Surface 2 Surface 3 Surface 4
D, 2.553 2.517 2.497 2.491
D, 2.536 2.522 2.501 2.496

For the calculation of the analytical model, it is also necessary to obtain the roughness
parameters of the surface. Based on the definition of the roughness parameter, the topogra-
phies of the measured surfaces are analyzed. The roughness parameters of the grinding
joint surface are shown in Table 2.

Table 2. The roughness parameters of the grinding joint surface.

Roughness Grinding Joint Grinding Joint Grinding Joint Grinding Joint

Parameters Surface 1 Surface 2 Surface 3 Surface 4
Rp1/pm 0.540 2.532 3.508 8.895
Ry1/um 0.375 1.796 3.082 7.847
Rg1/pum 0.132 0.288 0.441 0.733
Rpp/um 0.574 2.519 3.582 8.884
Ryp/um 0.388 1.758 3.134 7.766
Rgo/pm 0.144 0.279 0.459 0.731

In addition, 40Cr steel is taken as the research object, and the material parameters of
40Cr steel are tested by the universal testing machine. The material parameters include
an elastic modulus E; = E; = 211 GPa, a Poisson’s ratio v = v, = 0.29, a yield strength
oy =785 MPa, and a hardness H = 2070 MPa.

4.2. Test Rig

To validate the precision of the model presented in this paper, an experimental test rig
is built to conduct experimental research on the normal contact stiffness of the grinding joint
surface. The schematic diagram of the test rig is shown in Figure 5. The test rig is composed
of five parts: the loading system, the measuring shaft system, the sensor conditioning
circuit, and the data analysis system. Among them, the measuring shaft system consists
of six parts: the support frame, the pressure transducers, the upper specimen, the lower
specimen, the eddy current sensor, and the bottom support plate. The grinding joint surface
to be measured is located between the upper and lower specimens.

Loading system

Support frame

Pressure transducers 1

[
[ 1
Upper specimen
Sensor conditioning

circuit
Data analysis
system
Contact stiffness of
the joint surface

Grinding joint surface —_|

Eddy current sensor Eﬂj

Lower speci ! |

bottom support plate

Figure 5. The schematic diagram of the test rig.
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The test rig was designed in a vertical configuration, with all loading units serially
connected within the support frame. For vibration isolation at the base, a rubber mat was
employed. The system was subjected to a targeted load of 6000 N, applied via a hydraulic
jack. To monitor the contact load on the test surface, a KAP-TC pressure sensor from Kewill
GmbH in Hamburg, Germany, was utilized. Additionally, three KD2306-1S eddy current
displacement sensors from Kaman in Bloomfield, CT, USA, were mounted on the upper
specimens in a uniform arrangement to measure the normal displacement of the contact
surface under load.

By collecting data, we were able to generate a curve that illustrates the relationship
between contact load and displacement. Further data analysis allowed us to derive a
curve depicting the correlation between contact stiffness and contact load. Each set of
experiments involved two specimens of identical material and roughness. To ensure data
reliability and reproducibility, we conducted three replicate experiments for each test group
and calculated the average values as the final dataset.

5. Results and Analysis

To validate the precision of the model proposed in this study, a comparative analysis
will be conducted between the outcomes of the presented model, the KE model, and the
experimental results.

Based on the analysis in Section 4.1, the ubiquitiformal dimensions, roughness pa-
rameters, and material parameters of the specimen can be obtained. In order to obtain
the simulation results of the presented model, it is necessary to determine the values of
the upper and the lower bounds of the measuring yardstick of the joint surface. For the
upper bound of the measuring yardstick, dmax =1 X 10! hmax. The iterative parameter
p of the generalized ubiquitiformal Sierpinski carpet should satisfy the condition 1 < p <
(9/4)P =2 [40], which is taken as 5 in this paper. For the lower bound of measuring yardstick,
Smin = 1 X 107% Smax [36]. Based on the above initial values, MATLAB 2018b software
was used to carry out numerical simulation, and the analytical results of the presented
model could be obtained. In addition, in order to avoid the influence of the contact area
on the contact stiffness, the contact stiffness results under the condition of unit area are
presented. Figure 6 shows the relationship between the contact stiffness and the contact
pressure under different grinding joint surfaces. Moreover, the contact stiffness values can
be found in Tables S1-54 in the Supplementary Information.
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Figure 6. The relationship between the contact stiffness and the contact pressure under different
grinding joint surfaces: (a) grinding joint surface 1; (b) grinding joint surface 2; (c) grinding joint
surface 3; (d) grinding joint surface 4.
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Synthesizing the results in Figure 6, the contact stiffness increased gradually with the
increase in the contact pressure. Moreover, the contact stiffness of the four joint surfaces
had the same change trend. It is worth noting that the results of the presented model are
closer to the experimental results than the KE model.

When F = 70 MPa, the contact stiffness reaches the maximum value. In joint surface 1,
the contact stiffness results of the experimental test, presented model, and the KE model
are 122.20 MPa/um, 118.71 MPa/um, and 103.01 MPa/um, respectively. In joint surface 2,
the contact stiffness results of the experimental test, presented model, and the KE model
are 107.98 MPa/um, 105.38 MPa/um, and 88.52 MPa/um, respectively. In joint surface 3,
the contact stiffness results of the experimental test, presented model, and the KE model
are 80.01 MPa/um, 81.88 MPa/um, and 63.23 MPa/pum, respectively. In joint surface 4,
the contact stiffness results of the experimental test, presented model, and the KE model
are 69.70 MPa/um, 68.41 MPa/um, and 53.67 MPa/um, respectively. With the increase in
the contact pressure, more and more asperities on the grinding joint surface participate in
the contact, resulting in a gradual increase in the stiffness with the increase in the contact
pressure. Moreover, with the increase in the contact pressure, the difference between the
KE model and the presented model gradually increases, and the specific reasons will be
analyzed in combination with the relative errors later.

In addition, with the increase in the contact pressure, the change rate of the contact
stiffness shows a decreasing trend. With the increase in the contact pressure, more and
more asperities on the joint surface enter the plastic deformation stage. Under the condition
of the same contact pressure, the indentation depth increases, resulting in a decrease in the
contact stiffness.

Finally, under the same contact pressure, the contact stiffness has a decreasing trend
with the increase in surface roughness. When F = 70 MPa, the contact stiffnesses of the four
joint surfaces are 122.20 MPa/um, 107.98 MPa/pum, 80.01 MPa/um, and 69.70 MPa/pum,
respectively. With the decrease in roughness, the size of asperities decreases and the number
of asperities increases. Under the same contact pressure, more asperities will participate
in the contact. As a result, the ability of the joint surface to resist deformation will be
enhanced, which eventually leads to an increase in the contact stiffness.

Since the results of the presented model are close to the experimental results, the
relative error is analyzed below. Figure 7 shows the The relative errors of the contact
stiffness under different grinding joint surfaces. Moreover, the relative error values can be
found in Tables S1-54 in the Supplementary Information.

Interestingly, with the increase in contact pressure, the relative error of the presented
model increases first and then decreases. Synthesizing the relative errors of the four
joint surfaces, the maximum errors are 4.77%, 5.04%, 3.91%, and 5.44%, respectively. By
incorporating the deformation analysis of surface asperities on the grinding surface, the
aforementioned phenomena are comprehensively analyzed. When the contact pressure
is small, the asperities are in the elastic deformation stage, and the deformation of the
asperities in the presented model is closer to the actual working conditions. As contact
pressure increases, the asperity transitions into the elastic—plastic deformation stage. The
elastic—plastic deformation stage of the asperity is transitioned by the sample function,
which results in an increasing trend of the relative error. With the further increase in the
contact pressure, the asperities on the joint surface will enter the plastic deformation stage.
At this time, the deformation law of asperity is more in line with the plastic deformation
theory in contact mechanics, so the relative error has a decreasing trend.

In contrast with the presented model in this paper, with the increase in the contact
pressure, the relative error of the KE model has a gradually increasing trend. When
F =70 MPa, the relative error of the four joint surfaces reaches the maximum value. At this
time, the maximum values of the relative error are 15.71%, 18.02%, 20.97%, and 22.99%,
respectively. By incorporating the deformation analysis of surface asperities on the grinding
surface, the aforementioned phenomena are comprehensively analyzed. When the contact
pressure is small, the asperities are in the elastic deformation stage, and the deformation of
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the asperities in the presented model is closer to the actual working conditions. As contact
pressure increases, the asperity transitions into the elastic—plastic deformation stage. The
aforementioned results are analyzed in conjunction with the assumption of the profile
assumption of the single asperity. Compared with the axisymmetric sinusoidal asperities in
the presented model, the profile of the asperities in the KE model is hemispherical. Under
the same contact pressure, the radius of curvature of the hemispherical asperities is smaller.
As a result, the ability of the joint surface to resist deformation will be reduced, which
will eventually lead to an increase in the contact stiffness. With the further increase in the
contact pressure, the above factors become more obvious, which results in the relative error
gradually increasing with the increase in the contact pressure. In addition, the relative
error increases gradually with the increase in the roughness of the joint surface. With
the decrease in surface roughness, the distribution of asperities in the grinding surface
are closer to the Gaussian distribution, which makes the simulated surface closer to the
measured grinding surface. Therefore, under the same contact pressure, the relative error
will decrease with the decrease in the surface roughness.

@) ()
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Figure 7. The relative errors of the contact stiffness under different grinding joint surfaces: (a) grinding
joint surface 1; (b) grinding joint surface 2; (c) grinding joint surface 3; (d) grinding joint surface 4.

To sum up, under the same contact pressure, the results of the presented model are
closer to the experimental results than the KE model. Moreover, under the same contact
pressure, the relative error of the presented model is smaller than that of the KE model.
Combined with the relative error of the four surfaces under different contact pressures,
the maximum value of the presented model is 5.44%, while the maximum value of the KE
model is 22.99%. The comparison results verify the accuracy of the presented model in
this paper.

6. Conclusions

Based on the generalized ubiquitiformal Sierpinski carpet theory, a novel contact
stiffness model for grinding joint surface is proposed in this paper. The main conclusions
are summarized as follows:

(1) Combined with generalized ubiquitiformal Sierpinski carpet, the characterization of
the grinding surface is realized. The profile of a single asperity is simulated using
an axisymmetric sinusoid, while the distribution of asperities is represented using a
Gaussian distribution. Based on the generalized ubiquitiformal Sierpinski carpet, the
contact characterization of the grinding joint surface is realized. Then, a simulated
surface which is more similar to the measured grinding surface is established, which
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provides the surface basis for the construction of the analytical model of normal
contact stiffness.

(2) A novel contact stiffness model for the grinding joint surface is proposed. Based on
the simulated surface and contact mechanics analysis, the analytical expressions of
contact stiffness in elastic deformation stage, elastic—plastic deformation stage, and
plastic deformation stage are deduced, and the analytical model of contact stiffness
for the grinding joint surface is eventually established.

(8) The accuracy of the presented model is verified well. The results of the presented
model, the KE model, and the experimental test are compared. The comparison
results show that under the same contact pressure, the presented model is closer to
the experimental results than the KE model. The rationality of the results is explained
based on the distribution of the asperities and the contact deformation law of the
asperities on the grinding surface.

However, the presented model in this paper is validated by the experiments on the
grinding joint surface. Whether or not the presented model is suitable for the rough joint
surface under other machining modes will be studied in future work.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fractalfract8060351/s1, Figure S1: (a) Fitting results of measured data points
using different fitting methods. (b) Vertical section image of a single asperity; Figure 52: Measured
grinding surfaces under different grinding wheels: (a) surface 1; (b) surface 2; (c) surface 3; (d) surface 4;
Table S1: The values and the relative errors of contact stiffness—grinding joint surface 1; Table S2: The
values and the relative errors of contact stiffness—grinding joint surface 2; Table S3: The values and the
relative errors of contact stiffness—grinding joint surface 3; Table S4: The values and the relative errors
of contact stiffness—grinding joint surface 4.
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