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Abstract: The time-fractional coupled Drinfel’d–Sokolov–Wilson (DSW) equation is pivotal in soliton
theory, especially for water wave mechanics. Its precise description of soliton phenomena in dis-
persive water waves makes it widely applicable in fluid dynamics and related fields like tsunami
prediction, mathematical physics, and plasma physics. In this study, we present novel soliton
solutions for the DSW equation, which significantly enhance the accuracy of describing soliton
phenomena. To achieve these results, we employed two distinct methods to derive the solutions:
the Sardar subequation method, which works with one variable, and the

(
Ω′

Ω , 1
Ω

)
method which

utilizes two variables. These approaches supply significant improvements in efficiency, accuracy, and
the ability to explore a broader spectrum of soliton solutions compared to traditional computational
methods. By using these techniques, we construct a wide range of wave structures, including rational,
trigonometric, and hyperbolic functions. Rigorous validation with Mathematica software 13.1 ensures
precision, while dynamic visual representations illustrate soliton solutions with diverse patterns such
as dark solitons, multiple dark solitons, singular solitons, multiple singular solitons, kink solitons,
bright solitons, and bell-shaped patterns. These findings highlight the effectiveness of these methods
in discovering new soliton solutions and supplying deeper insights into the DSW model’s behavior.
The novel soliton solutions obtained in this study significantly enhance our understanding of the
DSW equation’s underlying dynamics and offer potential applications across various scientific fields.

Keywords: Sardar subequation method;
(

Ω′

Ω , 1
Ω

)
expansion method; soliton solutions; nonlinear

partial differential equation; time-fractional coupled Drinfel’d–Sokolov–Wilson equation

1. Introduction

Nonlinear equations (NLEs) serve as the cornerstone of scientific inquiry and techno-
logical advancement, enabling the depiction of complex systems and phenomena that elude
linear models. Their application spans numerous disciplines, from physics, mathematics,
and engineering to biology and economics, owing to their unmatched ability to capture
real-world complexities such as fluid dynamics and population dynamics [1–4]. More-
over, nonlinear systems often unveil emergent behaviors, giving rise to intricate patterns
and structures from simple interactions, underscoring the need to explore their dynamics
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comprehensively. In essence, nonlinear equations are indispensable tools for unraveling
nature’s complexities, driving innovation, and expanding scientific horizons. Furthermore,
fractional nonlinear differential equations (FNLDEs) serve as robust mathematical tools
for modeling diverse physical phenomena, accounting for long-range interactions and
non-local effects through fractional-order partial derivatives. Their applications span var-
ious fields including fluid mechanics, optical physics, finance, plasma physics, biology,
and many others. Unlike classical NLEs, FNLDEs pose challenges in solving due to their
non-local nature [5,6]. Nevertheless, researchers employ fractional models to find exact
solutions because they more precisely represent complex systems with memory and heredi-
tary properties. These models are especially advantageous in fields such as viscoelasticity,
anomalous diffusion, and financial markets, where historical states influence current behav-
ior. By extending classical models through fractional calculus, fractional models capture
nuances that integer-order models miss, producing solutions that closely match real-world
data. This greater accuracy and flexibility make fractional models vital for understanding
and predicting the behavior of intricate systems across various scientific and engineering
disciplines [7,8]. Among various NLEs, the conformable time fractional coupled DSW equa-
tions were developed, stemming from shallow-water wave models, originating from the
work of Drinfel’d and Sokolov, with further advancements by Wilson. The DSW equations,
based on the diffusive wave approximation of shallow-water equations, find successful ap-
plications in modeling various phenomena such as wave overtopping, floods, dam breaks,
and flows through vegetated areas, primarily driven by gravitational forces and dominated
by shear stress [9,10]. Additionally, they blend conformable fractional calculus and time-
fractional derivatives, offering a framework for analyzing nonlinear wave propagation with
memory effects. By scrutinizing its traveling wave solutions, researchers glean insights into
various wave dynamics, including shape, speed, and stability during propagation. This
understanding proves vital for comprehending phenomena like soliton propagation, wave
interactions, and pattern formation. With applications spanning fields such as nonlinear
optics, fluid dynamics, and mathematical biology, where fractional-order dynamics prevail,
the coupled time-fractional DSW equations hold significant relevance and potential for
further exploration. By comprehensively studying traveling wave propagation within the
DSW equation, we gain valuable insights into their behavior across these systems, thereby
deepening our understanding of their dynamics. The DSW equations, with fractional
derivative concerning time, are given as follows [6,11]:

Dα
t (Qt) + β00x = 0

Dα
t (0t) + ϱQ0x + δQx0+ σ0xxx = 0

}
, (1)

where Q = Q(x, t) and 0 = 0(x, t) represent the functions of time and space, α is the
fractional order, and β, γ, δ, and σ are all non-zero constants.

Given the substantial interest and importance placed on obtaining exact solutions
for NLEs, numerous researchers have endeavored to employ a diverse array of mathe-
matical techniques to achieve this objective. These techniques encompass a wide spec-
trum of methodologies, including the modified simple equation method [12], the gener-
alized (G′/G)-expansion technique [13], the ( G′

G′+G+A ) technique [14], the Hirota bilinear
method [15], the Riccati equation technique [16], the Lie group approach [17], the extended
Jacobi elliptic function approach [18], the exp {−φ(ξ)} method [19], the functional vari-
able technique [20], the multiple exp-function technique [21], the new auxiliary equation
technique [22], the tanh-function approach [23], the simple equation technique [24], the
tanh–coth technique [25], the generalized Kudryshov technique [26], the unified tech-
nique [27], and so on.

Given the considerable significance of the DSW equations across scientific disciplines,
numerous researchers have dedicated efforts to uncover solutions. For instance, Santillana
and Dawson (2009) explored the soliton solution of the DSW equations by employing the
Galerkin finite element approach [28], while truncated Painlevé and Mobius invariant forms
were utilized for obtaining explicit solutions featuring non-local symmetry, as detailed
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in [29]. The F-expansion technique was used to find the exact solutions to DSW equations,
as outlined in reference [30]. Furthermore, Sahoo and Ray (2017) employed the Jacobi
elliptic function approach to derive double-periodic solutions [31]. Utilizing the Adomian
decomposition approach, [32] applied it to approximate doubly periodic wave solutions of
classical DSW equations. Nonetheless, finding exact solutions for the time-fractional DSW
system poses greater challenges compared to standard DSW equations. While most studies
concentrate on the latter, the focus on fractional DSW equations is yet in its early stages. In
this context, this study concentrated on obtaining novel soliton solutions for the fractional
DSW equation using the most appropriate methods.

Among various methods, the Sardar subequation method stands out as a potent
analytical technique for solving NLEs. This method represents solutions as power series,
with coefficients determined by a single variable. By substituting these series into the
equation and equating coefficients of similar terms, the method systematically derives these
coefficients. This method has proven effective in revealing analytical solutions for various
NLEs [33–38]. In addition, the

(
Ω′
Ω , 1

Ω

)
expansion method is an influential analytical

approach used for tackling NLEs. It involves expressing solutions as power series, with
coefficients determined through two variables ( Ω′

Ω and 1
Ω ). These coefficients are achieved

by replacing the series keen on the equation and aligning coefficients of similar terms. Due
to its effectiveness, numerous researchers [39–45] have utilized this technique to reveal
solutions for various NLEs. As of present, there has been no investigation into Equation (1)
using these specific methods. This study aims to derive precise solutions for the supplied
nonlinear equation employing the designated methodologies. The manuscript is structured
as follows: (i) Section 2 supplies an overview of fractional derivatives; (ii) Section 3 presents
an overview of the methods used; (iii) In Section 4, these methods are applied to the
equation, resulting in the derivation of the requisite solutions; (iv) Section 5 explores
dynamic interpretations, illustrating the fascinating behaviors of various soliton solutions
across 2D, 3D, and contour graphs, along with discussion; (v) Concluding remarks are
offered in Section 6; (vi) Finally, the paper concludes with a comprehensive list of references.

2. Review of Time-Fractional Derivative

A fractional derivative extends differentiation to non-integer orders while adhering
to conventional calculus rules. Unlike integer-order derivatives, which apply to functions
with integer degrees of differentiability, fractional derivatives enable differentiation at
non-integer orders, enhancing the comprehension of function behavior.

Definition 1. The time-fractional derivative of a function F(t) with order α is defined as
follows [46]:

Dα
t F(t) = lim

h→0

{
F
(
t + ht1−α

)
−F(t)

h

}
, (2)

where t is consistently assigned non-negative values, and the derivative’s order remains0 < α ≤ 1.

According to [47], the definition above fulfills the requirements of the following
proposition.

Proposition 1. If α falls within the interval 0 < α ≤ 1, with a, b, and τ as real numbers and
with F = F(t),H = H(t) being fractionally differentiable at a given point t, then the following
characteristics must hold:

1. Dα
t (aF + bH) = aDα

t F + bDα
t H;

2. Dα
t (t

τ) = τtτ−α;
3. Dα

t (FH) = FDα
t H +HDα

t F;

4. Dα
t (F/H) =

HDα
t F−FDα

t H

H2 ;
5. Dα

t (FoH) = t1−αF′{H(t)}H′(t).
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Nonetheless,Dα
t F(t) = t1−α dF

dt = t1−αF′; Dα
t H(t) = t1−α dH

dt = t1−αH
′, where F and

H must be differentiable.

3. Methodology
The Sardar Subequation Approach

In this section, we have discussed the Sardar subequation method, valued for its ability
to supply precise solutions for a variety of NLEs. As we have embarked on this analytical
journey, we have focused on the typical structure of NLEs, often characterized by three
distinct independent variables x, y, and t as follows:

P
(
R,Rx,Rxx,Ry,Ryy,Rxy,Rt,Rtt,Rxt, . . . . . . . . .

)
= 0, (3)

where P corresponds to a polynomial function with its partial derivatives.
To transform this into an ordinary differential equation (ODE), we introduce a new

variable ψ, governed by the following relation:

Q(x, t) = R(ψ),0(x, t) = Y(ψ), where ψ =

(
x − ϑ

tα

α

)
s. (4)

Using Equation (4) in Equation (3), we transform it into an ODE, which takes the
following form:

J
(
R,R′,R′′ ,R′′′ , . . . . . . . . .

)
= 0, (5)

where the symbol J is a novel polynomial alongside its ordinary derivatives (R = R(ψ),
R’ = dR

dψ ,R” = d2R
dψ2 ,R”’ = d3R

dψ3 , . . . . . . . . .).
Therefore, Equation (5) supplies the general solution (GS) as follows:

R(ψ) = ∑N
i=0 ciM

i(ψ), (6)

in which
M′(ψ) =

√
M4(ψ) + ϖM2(ψ) + ϵ, (7)

where ci (i = 1, 2, 3, . . ., n), ϖ and ϵ are arbitrary constants, and N is the balance number
that requires determination.

The solutions derived from Equation (7) are manifested as follows:

Scenario I. When ϖ > 0 but ϵ = 0, then

M±
1 (ψ) = ±

√
glϖ cosechgl

(√
ϖ ψ

)
, (8)

M±
2 (ψ) = ±

√
−glϖ sechgl

(√
ϖ ψ

)
, (9)

where cosechgl(ψ) =
2

geψ−le−ψ and sechgl(ψ) =
2

geψ+le−ψ ;

Scenario II. When ϖ < 0 but ϵ = 0, then

M±
3 (ψ) = ±

√
−glϖ cosecgl

(√
−ϖ ψ

)
, (10)

M±
4 (ψ) = ±

√
−glϖ secgl

(√
−ϖ ψ

)
, (11)

where cosecgl(ψ) =
2i

geiψ−le−iψ and secgl(ψ) =
2

geiψ+le−iψ ;
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Scenario III. When ϖ < 0 but ϵ = ϖ2

4 , then

M±
5 (ψ) = ±

√
−ϖ

2
tanhgl

(√
−ϖ

2
ψ

)
, (12)

M±
6 (ψ) = ±

√
−ϖ

2
cothgl

(√
−ϖ

2
ψ

)
, (13)

M±
7 (ψ) = ±

√
−ϖ

2

{
tanhgl

(√
−2ϖ ψ

)
± i
√

gl sechgl

(√
−2ϖ ψ

)}
, (14)

M±
8 (ψ) = ±

√
−ϖ

2

{
cothgl

(√
−2ϖ ψ

)
±
√

gl cosechgl

(√
−2ϖ ψ

)}
, (15)

M±
9 (ψ) = ±

√
−ϖ

8

{
tanhgl

(√
−ϖ

8
ψ

)
+ cothgl

(√
−ϖ

8
ψ

)}
, (16)

where tanhgl(ψ) =
geψ−le−ψ

geψ+le−ψ and cothgl(ψ) =
geψ+le−ψ

geψ−le−ψ ;

Scenario IV. When ϖ > 0 but ϵ = ϖ2

4 , then

M±
10(ψ) = ±

√
ϖ

2
tangl

(√
ϖ

2
ψ

)
, (17)

M±
11(ψ) = ±

√
ϖ

2
cotgl

(√
ϖ

2
ψ

)
, (18)

M±
12(ψ) = ±

√
ϖ

2

{
tangl

(√
2ϖ ψ

)
±
√

gl secρl

(√
2ϖ ψ

)}
, (19)

M±
13(ψ) = ±

√
ϖ

2

{
cotgl

(√
2ϖ ψ

)
±
√

gl cosecgl

(√
2ϖ ψ

)}
, (20)

M±
14(ψ) = ±

√
ϖ

8

{
tangl

(√
ϖ

8
ψ

)
+ cotgl

(√
ϖ

8
ψ

)}
, (21)

where tangl(ψ) = −i geiψ−le−iψ

geiψ+le−iψ and cotgl(ψ) = i geiψ+le−iψ

geiψ−le−iψ .

4. Method Workflow

First, to find the balance number N, we employ the homogeneous balance method.
Then, substituting the value of N into Equation (6), we incorporate this modified equation
into Equation (5) using Equation (7). This transforms the left-hand side of Equation (5)
into a polynomial. Setting the coefficients of matching power terms to zero establishes
a system of algebraic equations involving ϖ, ϵ, and ci. Solving these systems allows us
to determine the unknown coefficients, denoted as ci. Substituting these coefficients into
Equation (5) provides exact solutions for Equation (1) in the 14 different forms described in
the preceding section.

The
(

Ω′
Ω , 1

Ω

)
-Expansion Approach

Here, we offer an in-depth guide to utilizing the
(

Ω′
Ω , 1

Ω

)
-expansion method. To solve

the NLEs presented in Equation (3), we employ the transformation variable specified in
Equation (4). This transformation aids in converting the NLEs into ODEs, streamlining the
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analytical process. Enabling this analytical journey involves crafting an auxiliary linear
ODE, depicted as follows:

Ω′′ (ψ) + λΩ(ψ) = η, (22)

where the variables are expressed as follows:

Π(ψ) =
Ω′(ψ)

Ω(ψ)
, and L(ψ) =

1
Ω(ψ)

, (23)

where
Π′ = −Π2 + ηL − λ, and L′ = −Π ∗L. (24)

The solution of Equation (22) varies based on the value of λ, which is categorized
as follows:

Case I. Trigonometric solutions

Ω(ψ) = d1sin
(

ψ
√

λ
)
+ d2cos

(
ψ
√

λ
)
+ η/λ, when λ > 0, (25)

which generates L2 =
(

Π2−2ηL+λ

A1λ2−η2

)
λ, where A1 = d2

1 + d2
2 is the arbitrary constant;

Case II. Hyperbolic solutions

Ω(ψ) = d1sinh
(

ψ
√
−λ
)
+ d2cosh

(
ψ
√
−λ
)
+ η/λ, when λ < 0, (26)

which produces L2 = −λ
(

Π2−2ηL+λ

A2λ2+η2

)
, where A2 = d2

1 − d2
2 is an arbitrary constant;

Case III. Rational solutions

Ω(ψ) =
ηψ2

2
+ d1ψ + d2, when λ = 0, (27)

which gives L2 =

(
Π2−2ηL

d2
1−2ηd2

)
.

Thus, Equation (5) has solutions of the following form:

R(ψ) = a0 + ∑P
j=1 ajΠj(ψ) + ∑P

j=1 bjΠj−1(ψ)L(ψ). (28)

where a0, aj, and bj (j = 1, 2, 3,. . ., P) denote arbitrary constants, ensuring that a2
P + b2

P ̸= 0,
and P signifies a positive balance number.

5. Method Roadmap

Initially, we employ the homogeneous balance method to derive the parameter P.
Once P is determined, it is substituted into Equation (28). Then, Equation (5), along
with Equations (23) and (24), is used for further substitution. This process results in a
polynomial on the left-hand side of Equation (28), incorporating terms Π and L. By setting
the coefficients of terms with corresponding powers within the polynomial to 0, a system of
algebraic equations is formulated. These equations involve parameters such as a0, aj, bj, λ,
and η, among others. Solving these algebraic equations yields the values of the parameters.
Subsequently, these parameter values are substituted into Equation (28), enabling the
extraction of soliton solutions to Equation (1) expressed in trigonometric functions (as in
Equation (25)), hyperbolic functions (as in Equation (26)), and rational functions (as in
Equation (27)).
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5.1. Application

In this section, we employ the coupled fractional derivative along with the methods
described in Sections 2 and 3 to obtain the exact solution to Equation (1).

Applying the transformation outlined in Equation (4) to Equation (1) provides

−sϑR′ + sβYY′ = 0
−sϑY′ + sϱRY′ + sδR′Y + s3σY′′′ = 0

}
. (29)

Starting from the first equation of the system, we can express R in terms of Y as follows:

R =
β

2ϑ
Y2. (30)

Substituting Equation (30) into the second equation in Equation (29), we obtain a
transform ODE as follows:

−6ϑ2Y + β(ϱ + 2δ)Y3 + 6σϑs2Y′′ = 0. (31)

Next, we proceed to solve this equation using the method outlined in the preceding
sections.

5.2. For the Sardar Subequation Method

Applying the balancing principle to Equation (31), the balance number N = 1 is found;
therefore, the solution takes on the following form:

Y(ψ) = c0 + c1M(ψ). (32)

Inserting this into Equation (31) yields a series of algebraic equations (see Appendix A).
Solving these equations provides the values of the coefficients as follows:

c0 = 0, c1 = ± 2
√

3s2σ
√

ϖ√
−2δβ − ϱβ

, and ϑ = s2σϖ (33)

Utilizing Equations (4), (6), (7), (32), and (33), the solutions to Equation (1) are derived
as follows:

For Scenario I:

Y±
1 (ψ) = 01(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
glϖcosechgl

(√
ϖ ψ

)
, (34)

R±
1 (ψ) = Q1(x, t) =

β

2s2σϖ

{
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
glϖcosechgl

(√
ϖ ψ

)}2

, (35)

Y±
2 (ψ) = 02(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
−glϖsechgl

(√
ϖ ψ

)
, (36)

R±
2 (ψ)= Q2(x, t) =

β

2s2σϖ

{
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
−glϖsechgl

(√
ϖ ψ

)}2

, (37)

where ψ =
(

x − s2σϖ tα

α

)
s.

For Scenario II:

Y±
3 (ψ) = 03(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−glϖcosecgl

(√
−ϖ ψ

)
, (38)



Fractal Fract. 2024, 8, 352 8 of 19

R±
3 (ψ)= Q3(x, t) =

β

2s2σϖ

{
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−glϖcosecgl

(√
−ϖ ψ

)}2

, (39)

Y±
4 (ψ) = 04(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−glϖsecgl

(√
−ϖ ψ

)
, (40)

R±
4 (ψ)= Q4(x, t) =

β

2s2σϖ

{
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−glϖsecgl

(√
−ϖ ψ

)}2

, (41)

where ψ =
(

x − s2σϖ tα

α

)
s.

For Scenario III:

Y±
5 (ψ) = 05(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2
tanhgl

(√
−ϖ

2
ψ

)
, (42)

R±
5 (ψ)= Q5(x, t) =

β

2s2σϖ

{
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2
tanhgl

(√
−ϖ

2
ψ

)}2

, (43)

Y±
6 (ψ) = 06(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2
cothgl

(√
−ϖ

2
ψ

)
, (44)

R±
6 (ψ)= Q6(x, t) =

β

2s2σϖ

{
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2
cothgl

(√
−ϖ

2
ψ

)}2

, (45)

Y±
7 (ψ) = 07(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2

{
tanhgl

(√
−2ϖ ψ

)
± i
√

glsechgl

(√
−2ϖ ψ

)}
, (46)

R±
7 (ψ)= Q7(x, t) =

β

2s2σϖ

[
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2

{
tanhgl

(√
−2ϖ ψ

)
± i
√

glsechgl

(√
−2ϖ ψ

)}]2

, (47)

Y±
8 (ψ) = 08(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2

{
cothgl

(√
−2ϖ ψ

)
±
√

glcosechgl

(√
−2ϖ ψ

)}
, (48)

R±
8 (ψ)= Q8(x, t) =

β

2s2σϖ

[
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

2

{
cothgl

(√
−2ϖ ψ

)
±
√

glcosechgl

(√
−2ϖ ψ

)}]2

, (49)

Y±
9 (ψ) = 09(x, t) = ±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

8

{
cothgl

(√
−ϖ

8
ψ

)
± tanhgl

(√
−ϖ

8
ψ

)}
, (50)

R±
9 (ψ)= Q9(x, t) =

β

2s2σϖ

[
±2

√
3s2σ

√
−ϖ√

2δβ + ϱβ

√
−ϖ

8

{
cothgl

(√
−ϖ

8
ψ

)
+ tanhgl

(√
−ϖ

8
ψ

)}]2

, (51)

where ψ =
(

x − s2σϖ tα

α

)
s.

For Scenario IV:

Y±
10(ψ) = 010(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2
tangl

(√
ϖ

2
ψ

)
, (52)
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R±
10(ψ)= Q10(x, t) =

β

2s2σϖ

{
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2
tangl

(√
ϖ

2
ψ

)}2

, (53)

Y±
11(ψ) = 011(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2
cotgl

(√
ϖ

2
ψ

)
, (54)

R±
11(ψ)= Q11(x, t) =

β

2s2σϖ

{
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2
cotgl

(√
ϖ

2
ψ

)}2

, (55)

Y±
12(ψ) = 012(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2

{
tangl

(√
2ϖ ψ

)
±
√

glsecgl

(√
2ϖ ψ

)}
, (56)

R±
12(ψ)= Q12(x, t) =

β

2s2σϖ

[
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2

{
tangl

(√
2ϖ ψ

)
±
√

glsecgl

(√
2ϖ ψ

)}]2

, (57)

Y±
13(ψ) = 013(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2

{
cotgl

(√
2ϖ ψ

)
±
√

glcosecgl

(√
2ϖ ψ

)}
, (58)

R±
13(ψ)= Q13(x, t) =

β

2s2σϖ

[
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

2

{
cotgl

(√
2ϖ ψ

)
±
√

glcosecgl

(√
2ϖ ψ

)}]2

, (59)

Y±
14(ψ) = 014(x, t) = ± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

8

{
cotgl

(√
ϖ

8
ψ

)
+ tangl

(√
ϖ

8
ψ

)}
, (60)

R±
14(ψ) = Q14(x, t) =

β

2s2σϖ

[
± 2

√
3s2σ

√
ϖ√

−2δβ − ϱβ

√
ϖ

8

{
cotgl

(√
ϖ

8
ψ

)
+ tangl

(√
ϖ

8
ψ

)}]2

, (61)

where ψ =
(

x − s2σϖ tα

α

)
s.

5.3. For the
(

Ω′
Ω , 1

Ω

)
Method

Applying the balance principle outlined in Equation (31) once more and obtaining
P = 1, the solution adopts the following structure using this method:

Y(ψ) = a0 + a1Π(ψ) + b1L(ψ). (62)

The equation requires deciding the coefficients a0, a1, and b1.

5.4. For Trigonometric Solutions

By following the method described in the methodology section (when λ > 0), we
derive a set of algebraic equations (see Appendix B). Solving this system provides the
coefficients with the following values:

a0 = 0, a1 = ±

√
3
2 s2σ

√
λ√

−2δβ − βϱ
, b1 = ±

√
3s2σ

√
λ2 A1 − η

2√
−4δβ − 2βϱ

, and ϑ =
1
2

s2σλ. (63)

Now, utilizing these determined values in Equation (62), we attain the following
solution to Equation (31):
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Y(ψ) = 0(x, t) = ±

√
3
2 s2σ

√
λ√

−2δβ − βϱ

√
λ

d1cos
(

ψ
√

λ
)
− d2sin

(
ψ
√

λ
)

d1sin
(

ψ
√

λ
)
+ d2cos

(
ψ
√

λ
)
+ η

λ

±
√

3s2σ

√
λ2 A1 − η

2√
−4δβ − 2βϱ

1

d1sin
(

ψ
√

λ
)
+ d2cos

(
ψ
√

λ
)
+ η

λ

, (64)

R(ψ) = Q(x, t) =
β

s2σλ

±

√
3
2 s2σ

√
λ√

−2δβ − βϱ

√
λ

d1cos
(

ψ
√

λ
)
− d2sin

(
ψ
√

λ
)

d1sin
(

ψ
√

λ
)
+ d2cos

(
ψ
√

λ
)
+ η

λ

±
√

3s2σ

√
λ2 A1 − η

2√
−4δβ − 2βϱ

1

d1sin
(

ψ
√

λ
)
+ d2cos

(
ψ
√

λ
)
+ η

λ


2

, (65)

where ψ =
(

x − 1
2 s2σλ tα

α

)
s.

Setting both η and d1 to zero while confirming that d2 is non-zero, Equations (64) and
(65) convert into the following solution format:

0(x, t) = ±

√
3
2 s2σλ√

−2δβ − βϱ
tan
(

ψ
√

λ
)
±

√
3s2σλ√

−4δβ − 2βϱ
sec
(

ψ
√

λ
)

, (66)

Q(x, t) =
β

s2σλ

±

√
3
2 s2σλ√

−2δβ − βϱ
tan
(

ψ
√

λ
)
±

√
3s2σλ√

−4δβ − 2βϱ
sec
(

ψ
√

λ
)

2

, (67)

where ψ =
(

x − 1
2 s2σλ tα

α

)
s.

Setting both η and d2 to zero but confirming that d1 is non-zero, Equations (64) and
(65) transform into the following particular solution structure:

0(x, t) = ±

√
3
2 s2σλ√

−2δβ − βϱ
cot
(

ψ
√

λ
)
±

√
3s2σλ√

−4δβ − 2βϱ
cosec

(
ψ
√

λ
)

, (68)

Q(x, t) =
β

s2σλ

±

√
3
2 s2σλ√

−2δβ − βϱ
cot
(

ψ
√

λ
)
±

√
3s2σλ√

−4δβ − 2βϱ
cosec

(
ψ
√

λ
)

2

, (69)

where ψ =
(

x − 1
2 s2σλ tα

α

)
s.

5.5. For Hyperbolic Solutions

As in the previous case (see Appendix B), when λ < 0, the values of the coefficients
are likewise determined to be as follows:

a0 = 0, a1 = ±

√
3
2 s2σ

√
−λ√

2δβ + βϱ
, b1 = ±

√
3s2σ

√
λ2 A1 + η

2√
4δβ + 2βϱ

, and ϑ =
1
2

s2σλ. (70)

Using these calculated values in Equation (62), we derive the following solution to
Equation (31):

Y(ψ) = 0(x, t) = ±

√
3
2 s2σ

√
−λ√

2δβ + βϱ

√
−λ

d1cosh
(

ψ
√
−λ
)
+ d2sinh

(
ψ
√
−λ
)

d1sinh
(

ψ
√
−λ
)
+ d2cosh

(
ψ
√
−λ
)
+ η

λ

±
√

3s2σ
√

λ2 A1 + η2√
4δβ + 2βϱ

1

d1sinh
(

ψ
√
−λ
)
+ d2cosh

(
ψ
√
−λ
)
+ η

λ

, (71)

R(ψ) = Q(x, t) =
β

s2σλ

±

√
3
2 s2σ

√
−λ√

2δβ + βϱ

√
−λ

d1cosh
(

ψ
√
−λ
)
+ d2sinh

(
ψ
√
−λ
)

d1sinh
(

ψ
√
−λ
)
+ d2cosh

(
ψ
√
−λ
)
+ η

λ

±
√

3s2σ
√

λ2 A1 + η2√
4δβ + 2βϱ

1

d1sinh
(

ψ
√
−λ
)
+ d2cosh

(
ψ
√
−λ
)
+ η

λ


2

, (72)

where ψ =
(

x − 1
2 s2σλ tα

α

)
s.
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In particular, if both η and d2 are set to zero while confirming that d1 is non-zero,
Equations (71) and (72) transform into the following structure:

0(x, t) = ±

√
3
2 s2σλ√

2δβ + βϱ
coth

(
ψ
√
−λ
)
±

√
3s2σλ√

4δβ + 2βϱ
cosech

(
ψ
√
−λ
)

, (73)

Q(x, t) =
β

s2σλ

±

√
3
2 s2σλ√

2δβ + βϱ
coth

(
ψ
√
−λ
)
±

√
3s2σλ√

4δβ + 2βϱ
cosech

(
ψ
√
−λ
)

2

, (74)

where ψ =
(

x − 1
2 s2σλ tα

α

)
s.

5.6. For Rational Solutions

In this case (λ = 0), we have found that the velocity ϑ = 0 is zero, which is not
physically feasible. This shows that there is no valid solution for this particular case.

6. Visual Representation of the Exact Solutions

To visualize the exact solutions to the DSW equations using both methods, we utilized
Mathematica, a sophisticated computational tool. This presentation includes a diverse
range of visualizations, such as 3D renderings, 2D plots, and contour plots. To ensure clarity
and conciseness, we selected four representative solution sets from the Sardar subequation
method for each scenario and two from the

(
Ω′
Ω , 1

Ω

)
-expansion method for two scenarios.

These graphs are depicted over the interval −20 ≤ (x, t) ≤ 20 for each case, with the
corresponding constants provided in the figure captions. In the 2D plots, multiple solutions
are combined within a single figure by varying the parameter t. Additionally, contour plots
for each case are provided. For a better understanding, the fractional parameter α is set to
0.10, 0.50, and 0.90 for each case.

Discussions of the Graphs

In this study, the figures depict various soliton structures obtained using two distinct
methodologies: the Sardar subequation technique and the

(
0′
0 , 1

0

)
method. Concentrating

on Figures 1–4, which utilize the Sardar subequation technique, we observe a range of
soliton behaviors with variations in the fractional parameter. Figure 1 illustrates the
multi-singular type of soliton solution, while Figure 2 showcases the singular soliton.
Additionally, Figure 3 demonstrates the combination of kink and bright solitons, and
Figure 4 reveals a multiple bright-type soliton structure. These visualizations are primarily
influenced by parameters such as ϖ, s, and σ, where higher positive values yield singular-
type solitons, while higher negative values lead to dark-type solitons. The fractional
parameter α plays a crucial role in altering the size and shape of the solitons, especially
when it is close to 1, and vice versa.

Turning our attention to Figures 5 and 6, which are derived using the
(
0′
0 , 1

0

)
method,

we meet a different set of soliton structures. Figure 5 illustrates the multiple dark-type
soliton solution, while Figure 6 shows bell-type soliton characteristics. In this method, the
dominant parameters influencing soliton behavior are λ, s, and σ. Similarly, like the Sardar
subequation method, the fractional parameter α significantly influences the size and shape
of the solitons, with its effects being particularly pronounced when α is near 1. Conversely,
these effects diminish as α moves away from 1.
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Figure 1. Graphical behavior of multiple singular solitons of Q2(x, t) in 3D, 2D, and contour plots,
where β = σ = ϱ = δ = g = l = 1, ϖ = 5.1, and s = 0.7.
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Figure 2. Variation of singular soliton with the fractional parameter of 03(x, t) in 3D, 2D, and contour
plots, where β = ϱ = δ = 3, σ = 0.1, g = l = 0.1, ϖ = −0.5, and s = 7.1.
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Figure 3. The change in kink and bright soliton behavior with the fractional parameter of Q2(x, t) in
3D, 2D, and contour plots, where β = ϱ = δ = 1, σ = 5.0, g = l = 1, ϖ = −0.3, and s = 0.5.
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Figure 4. The variation in behavior of multiple periodic bright-type solitons with the fractional
parameter of Q13(x, t) in 3D, 2D, and contour plots, where β = ϱ = δ = 1, σ = −0.1, g = l = 1,
ϖ = 5, and s = 0.1.
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Figure 5. The evolution of multiple periodic dark-type solitons in response to changes in the 
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Figure 5. The evolution of multiple periodic dark-type solitons in response to changes in the fractional
parameter in Equation (67) in 3D, 2D, and contour plots, where β = −1, ϱ = δ = σ = 0.1, λ = 0.01,
and s = 3.55.
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Figure 6. The variation of bell-type solitons in response to changes in the fractional parameter in
Equation (74) in 3D, 2D, and contour plots, where β = ϱ = δ = σ = 1, λ = −1, and s = 0.3.
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The soliton solutions that we derived from Equation (1) exhibit a variety of forms,
including kink, bright, dark, multiple dark, singular, multiple singular, and bell-shaped
patterns. These solutions are essential in numerous fields, providing profound insights into
system dynamics and fundamental physics. For instance, in condensed matter physics, kink
solitons influence the behavior of magnetic domains, while, in nonlinear optics, dark and
multiple dark solitons are used for high-speed data transmission. Furthermore, multiple
singular, singular, and bell-shaped solitons are valuable in fluid dynamics and plasma
physics, and bright solitons are crucial for predicting extreme wave events. Collectively,
these soliton solutions contribute significantly to science, technology, and engineering,
enhancing our comprehension of natural phenomena and driving technological progress.

7. Comparison

In this section, we examine the novelty and scientific contributions of our paper by
comparing our findings with those in [6]. This comparison is organized into two parts,
focusing on the similarities and differences between our studies. By identifying both the
commonalities and distinctions, we aim to provide a thorough understanding of the unique
insights our research brings to the field.

7.1. Uniformities

i. Both studies center on the conformal time-fractional DSW equations, a crucial nonlin-
ear complex model employed to analyze wave dynamics, particularly phenomena
such as soliton propagation and interactions;

ii. Both studies seek to derive exact solutions through analytical methods.

7.2. Variation and Uniqueness

i. Reference [6] employed the modified extended tanh method (one variable) to derive
exact solutions, whereas this study utilizes two efficient methods: the Sardar subequa-
tion method (one variable) and the

(
Ω′
Ω , 1

Ω

)
-expansion technique (two variables);

ii. While they only obtained multiple singular and bell-shaped solitons, this study in-
cludes a wider variety, such as kink, dark, multi-dark, bell-shaped, bright, multiple
singular, and singular solitons;

iii. This study presents a more diverse range of graphical representations, including 2D,
3D, and contour plots of exact solutions, whereas [6] utilized only 3D and density
diagrams.

8. Conclusions

In this investigation, we uncovered a series of innovative exact solutions to the DSW
equation by employing two versatile methods: the Sardar subequation method (utiliz-
ing one variable) and the

(
Ω′
Ω , 1

Ω

)
-expansion method (employing two variables). These

methodologies enabled the construction of a diverse array of solutions, incorporating
trigonometric, rational, and hyperbolic functions. Rigorous validation procedures con-
ducted with Mathematica software ensured precision, while dynamic visual representations
vividly depicted the soliton solutions, showcasing a rich variety of patterns such as dark,
multiple dark, singular, multiple singular, kink, and bell-shaped solitons. These derived
solutions offer a distinctive perspective, surpassing conventional approaches and present-
ing a more nuanced portrayal of the dynamic behavior inherent in the DSW equations.
Leveraging computational techniques significantly bolstered our understanding of the
equation’s dynamics, underscoring their substantial contribution to our comprehension.
The established solutions, confirmed through contour, 2D, and 3D plots, underscored the
effectiveness of these methods in identifying novel soliton solutions, accurately charac-
terizing their properties and providing deeper insights into the model’s behavior. The
soliton solutions obtained in this study hold promise for advancing technology and en-
gineering, easing a deeper understanding of natural phenomena and driving innovation



Fractal Fract. 2024, 8, 352 16 of 19

within the realm of the DSW equations. These findings not only hold the potential for
enhancing technological capabilities, but also contribute to a more profound understanding
of complex nonlinear dynamics. Looking ahead, these soliton solutions offer exciting
opportunities for fostering innovation and further exploration across various scientific and
engineering disciplines.
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Appendix A

The algebraic equation derived from the Sardar subequation method is presented
below:

−6ϑ2c0 + 2δβc3
0 + ϱβc3

0 = 0, (A1)

12s2σϑc1 + 2δβc3
1 + ϱβc3

1 = 0, (A2)

6δβa0c2
1 + 3ϱβa0c2

1 = 0, (A3)

6s2σϖϑc1 − 6ϑ2c1 + 6δβc2
0c1 + 3ϱβc2

0c1 = 0, (A4)

Following these algebraic equations, obtaining the values of the unknown coefficients
is straightforward.

Appendix B

The algebraic equation resulting from the
(
0′
0 , 1

0

)
method is provided below:

Case I:
For trigonometric solution:

−6ϑ2a0 + 2βδa3
0 + βϱa3

0 −
6s2ηϑλ2σb1
−η2 + A1λ2 +

6βδλ2a0b2
1

−η2 + A1λ2 +
3βλ2ϱa0b2

1
−η2 + A1λ2 −

4βδηλ3b3
1

(−η2 + A1λ2)
2 −

2βηλ3ϱb3
1

(−η2 + A1λ2)
2 = 0, (A5)

12s2ϑσa1 + 2βδa3
1 + βϱa3

1 +
6βδλa1b2

1
−η2 + A1λ2 +

3βλϱa1b2
1

−η2 + A1λ2 = 0, (A6)

6βδa0a2
1 + 3βϱa0a2

1 −
6s2ηϑλσb1

−η2 + A1λ2 +
6βδλa0b2

1
−η2 + A1λ2 +

3βλϱa0b2
1

−η2 + A1λ2 −
4βδηλ2b3

1

(−η2 + A1λ2)
2 −

2βηλ2ϱb3
1

(−η2 + A1λ2)
2 = 0, (A7)

−6ϑ2a1 + 12s2ϑλσa1 + 6βδa2
0a1 + 3βϱa2

0a1 +
6βδλ2a1b2

1
−η2 + A1λ2 +

3βλ2ϱa1b2
1

−η2 + A1λ2 = 0, (A8)

12s2ϑσb1 + 6βδa2
1b1 + 3βϱa2

1b1 +
2βδλb3

1
−η2 + A1λ2 +

βλϱb3
1

−η2 + A1λ2 = 0, (A9)

−18s2ηϑσa1 + 12βδa0a1b1 + 6βϱa0a1b1 −
12βδηλa1b2

1
−η2 + A1λ2 −

6βηλϱa1b2
1

−η2 + A1λ2 = 0, (A10)
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−6ϑ2b1 + 6s2ϑλσb1 +
12s2η2ϑλσb1

−η2 + A1λ2 + 6βδa2
0b1 + 3βϱa2

0b1 −
12βδηλa0b2

1
−η2 + A1λ2 − 6βηλϱa0b2

1
−η2 + A1λ2 +

8βδη2λ2b3
1

(−η2 + A1λ2)2 +
2βδλ2b3

1
−η2 + A1λ2 +

4βη2λ2ϱb3
1

(−η2 + A1λ2)2 +
βλ2ϱb3

1
−η2 + A1λ2 = 0, (A11)

Case II:
For hyperbolic solution:

−6ϑ2a0 + 2βδa3
0 + βϱa3

0 +
6s2ηϑλ2σb1

η2 + A2λ2 −
6βδλ2a0b2

1
η2 + A2λ2 −

3βλ2ϱa0b2
1

η2 + A2λ2 −
4βδηλ3b3

1

(η2 + A2λ2)
2 −

2βηλ3ϱb3
1

(η2 + A2λ2)
2 = 0, (A12)

12s2ϑσa1 + 2βδa3
1 + βϱa3

1 −
6βδλa1b2

1
η2 + A2λ2 −

3βλϱa1b2
1

η2 + A2λ2 = 0, (A13)

6βδa0a2
1 + 3βϱa0a2

1 +
6s2ηϑλσb1

η2 + A2λ2 −
6βδλa0b2

1
η2 + A2λ2 −

3βλϱa0b2
1

η2 + A2λ2 −
4βδηλ2b3

1

(η2 + A2λ2)
2 −

2βηλ2ϱb3
1

(η2 + A2λ2)
2 = 0, (A14)

−6ϑ2a1 + 12s2ϑλσa1 + 6βδa2
0a1 + 3βϱa2

0a1 −
6βδλ2a1b2

1
η2 + A2λ2 −

3βλ2ϱa1b2
1

η2 + A2λ2 = 0, (A15)

12s2ϑσb1 + 6βδa2
1b1 + 3βϱa2

1b1 −
2βδλb3

1
η2 + A2λ2 −

βλϱb3
1

η2 + A2λ2 = 0, (A16)

−18s2ηϑσa1 + 12βδa0a1b1 + 6βϱa0a1b1 +
12βδηλa1b2

1
η2 + A2λ2 +

6βηλϱa1b2
1

η2 + A2λ2 = 0, (A17)

−6ϑ2b1 + 6s2ϑλσb1 −
12s2η2ϑλσb1

η2 + A2λ2 + 6βδa2
0b1 + 3βϱa2

0b1 +
12βδηλa0b2

1
η2 + A2λ2 +

6βηλϱa0b2
1

η2 + A2λ2 +
8βδη2λ2b3

1

(η2 + A2λ2)2 − 2βδλ2b3
1

η2 + A2λ2 +
4βη2λ2ϱb3

1

(η2 + A2λ2)2 − βλ2ϱb3
1

η2 + A2λ2 = 0, (A18)

Case III:
For rational solution:

In this case, Equation (1) has no feasible solution.
Obtaining the values of the unknown coefficients from these algebraic equations

is straightforward.
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