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Abstract: We consider fractional integral operators (I − T)d, d ∈ (−1, 1) acting on functions
g : Zν → R, ν ≥ 1, where T is the transition operator of a random walk on Zν. We obtain the
sufficient and necessary conditions for the existence, invertibility, and square summability of kernels
τ(s; d), s ∈ Zν of (I − T)d. The asymptotic behavior of τ(s; d) as |s| → ∞ is identified following
the local limit theorem for random walks. A class of fractionally integrated random fields X on Zν

solving the difference equation (I − T)dX = ε with white noise on the right-hand side is discussed
and their scaling limits. Several examples, including fractional lattice Laplace and heat operators, are
studied in detail.

Keywords: fractional differentiation/integration operators; tempered fractional operators; fractional
random field; random walk; limit theorems; long-range dependence; negative dependence;
conditional autoregression

1. Introduction

Classical fractional differentiation/integration operators (I − T)d, d ∈ (−1, 1), d ̸= 0 act-
ing on functions g : Z → R, where (I − T)g(t) = g(t)− g(t− 1) is a ‘discrete derivative’ with
respect to ‘time’ t ∈ Z, are defined through the binomial expansion (1− z)d = ∑∞

j=0 ψj(d)zj,
z ∈ C, |z| < 1, viz.:

(I − T)dg(t) :=
∞

∑
j=0

ψj(d)T jg(t) =
∞

∑
j=0

ψj(d)g(t − j), t ∈ Z (1)

with the coefficients

ψj(d) :=
Γ(j − d)

Γ(j + 1)Γ(−d)
, j ∈ N. (2)

Here, Γ denotes the gamma function Γ(z) :=
∫ ∞

0 tz−1e−tdt, z > 0, and Γ(z) := z−1Γ(z+1),
−1 < z < 0. Also, see the end of this section for all unexplained notation. The asymptotics

ψj(d) ∼ Γ(−d)−1 j−d−1 (j → ∞), 0 < |d| < 1 (3)

(which follows by application of Stirling’s formula to (2)) determines the class of functions
g and the summability properties of (1).

Fractional operators in (1) play an important role in the theory of discrete-time stochas-
tic processes—in particular, time series (see, e.g., the monographs [1–5] and the references
therein). The autoregressive fractionally integrated moving-average ARFIMA(0, d, 0) pro-
cess {X(t); t ∈ Z} is defined as a stationary solution of the stochastic difference equation

(I − T)dX(t) =
∞

∑
j=0

ψj(d)X(t − j) = ε(t), t ∈ Z (4)
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with white noise (a sequence of standardized uncorrelated random variables (r.v.s)) {ε(t);
t ∈ Z}. For d ∈ (−1/2, 1/2), the solution of (4) is obtained by applying the inverse
operator, viz.:

X(t) = (I − T)−dε(t) =
∞

∑
j=0

ψj(−d)ε(t − j), t ∈ Z. (5)

Since (3) implies ∑∞
j=0 ψj(d)2 < ∞ (|d| < 1/2), (5) is a well-defined stationary process

with zero mean and finite variance. The ARFIMA(0, d, 0) process is the basic parametric
model in statistical inference for time series with a long memory property (also referred to
as long-range dependence) (see [1–3,5,6] for a discussion of the ARFIMA(0, d, 0) and its
generalization ARFIMA(p, d, q) models). We note that the ARFIMA(0, d, 0) process has an
explicit covariance function and the spectral density

f (x) = (2π)−1|1 − e−ix|−2d, x ∈ Π := [−π, π]

which explodes or vanishes at the origin x = 0 as (2π)−1|x|−2d, depending on the sign of d.
In this paper, we extend fractional operators in (1) to functions g on a regular ν-dimensional

lattice Zν, ν ≥ 1. Whereas generalization of our construction to irregular lattices or more
abstract index sets is an interesting and challenging open problem, our choice of Zν fol-
lows the traditional approach in random field theory, which heavily relies on the Fourier
transform and spectral representation. We consider a rather general form of the operator T:

Tg(t) = ∑
u∈Zν

g(t + u)p(u) = Eg(S1 + t), t ∈ Zν,

where {Sj; j ≥ 0} is a random walk on Zν starting at S0 = 0 with (1-step) probabilities
p = {p(u) := P(S1 = u); u ∈ Zν}. We assume that p(0) < 1, i.e., the random walk is
non-degenerate at 0. Clearly, T jg(t) = ∑u∈Zν g(t + u)pj(u) = Eg(Sj + t), t ∈ Zν, where
pj(u) := P(Sj = u), u ∈ Zν are the j-step probabilities, j = 0, 1, 2, · · · with p0(u) = I(u = 0).
Similarly to (1), we define fractional operators (I − T)d,−1 < d < 1, d ̸= 0 acting on
g : Zν → R by

(I − T)dg(t) =
∞

∑
j=0

ψj(d)T jg(t) = ∑
u∈Zν

τ(u; d)g(t + u), t ∈ Zν

with coefficients

τ(u; d) :=
∞

∑
j=0

ψj(d)pj(u), (6)

expressed through the binomial coefficients ψj(d) and random walk probabilities pj(u).
Let us describe the content and results of this paper in more detail. The main result of

Section 2 is Theorem 1, which provides the sufficient condition∫
Πν

|1 − p̂(x)|−2|d|dx < ∞ (7)

for invertibility (I − T)d(I − T)−d = I and the square summability of fractional coefficients
in (6), in terms of the characteristic function p̂(x) := E exp{i⟨x, S1⟩} (the Fourier transform)
of the random walk. Section 2 also includes a discussion of the asymptotics of (6) as
|u| → ∞, which is important in limit theorems and other applications of fractional inte-
grated random fields. Using classical local limit theorems, Propositions 1 and 2 obtain
‘isotropic’ asymptotics of (6) for a large class of random walk {Sj}, showing that τ(u; d)
decay as O(|u|−ν−2d); hence, ∑u∈Zν |τ(u;−d)| = ∞ (d > 0). The last fact is interpreted as
the long-range dependence [3,4,7] of the fractionally integrated random field {X(t); t ∈ Zν},
defined as a stationary solution of the difference equation,

(I − T)dX(t) = ε(t), t ∈ Zν (8)
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with white noise on the r.h.s. and it is studied in Section 3. Corollary 1 obtains con-
ditions for the existence of the stationary solution of (8) given by the inverse operator
X(t) = (I − T)−dε(t), which is detailed in Examples 1 and 2 for fractional Laplacian and
fractional heat operators. Sections 2 and 3 also include a discussion of tempered fractional
operators (I − rT)d, r ∈ (0, 1) and tempered fractional random fields solving the analo-
gous equation (I − rT)dX(t) = ε(t), which generalize the class of tempered ARFIMA
processes [8] and have short-range dependence and a summable covariance function.

Section 4 is devoted to the scaling limits of moving-average random fields on Zν

with coefficients satisfying Assumption 1, which includes ‘isotropic’ fractional coefficients
τ(u;−d) as a special case. The scaling limits refer to the integrals Xλ(ϕ) =

∫
Rν X([t])ϕ(t/λ)dt

of random field {X(t); t ∈ Zν} for each ϕ : Rν → R from a class of (test) functions as scaling
parameter λ → ∞. The scaling limits are identified in Corollary 3 as self-similar Gaussian
random fields with a Hurst parameter H = (ν − 4d)/2. We note that limit theorems for
random fields with long-range dependence or negative dependence have been studied
in many works. The seminal paper [9] dealt with noncentral limit theorems for Gaussian
subordinated fields. Anisotropic scaling limits of linear and subordinated random fields in
dimensions ν = 2, 3 were discussed in [10–16] and in the references therein, with particular
focus on scaling transition arising under critical anisotropy exponents. Whereas most of
the abovementioned works considered partial sums on rectangular domains, [17] studied
the case of irregular summation regions and ‘edge effects’ arising under strong negative
dependence. Statistical applications for random fields with long-range dependence were
discussed in [2,18,19] and other works.

We expect that this study can be extended in several directions, including anisotropic
scaling, infinite variance random fields, and fractional operators in Rν (see [20–25] for
discussion and the properties of fractional random fields with the continuous argument
t ∈ Rν).

Notation. In what follows, C denotes generic positive constants that may be different

at different locations. We write d−→ and d
= for the weak convergence and equality

of probability distributions. Denote by | · | the absolute-value norm on K, where K is
either R or C and the Euclidean norm on Rν. ⟨·, ·⟩ is the scalar product in Rν. Denote
by ej the vector in Rν with 1 in the jth coordinate and 0’s elsewhere. For p ≥ 1, denote
by Lp(Zν) the space of functions f : Zν → K for which ∑u∈Zν | f (u)|p < ∞ and by
Lp(Rν) the space of measurable functions f : Rν 7→ K for which the p-th power of the
absolute value is integrable with respect to the Lebesgue measure dx on Rν: ∥ f ∥Lp(Rν) :=
(
∫
Rν | f (x)|pdx)1/p < ∞ with the identification of functions f , g, such that f = g almost

everywhere (a.e.). Denote by L∞(Rν) the space of measurable functions f : Rν → K for
which ∥ f ∥L∞(Rν) := inf{C ≥ 0 : | f | ≤ C a.e.} < ∞, with the identification of functions
f , g, such that f = g a.e. Write I(A) for the indicator function of a set A. Write [x] for
the smallest integer greater than or equal to x ∈ R. i :=

√
−1 ∈ C,Zν

0 := Zν \ {0} and
N := {0, 1, 2, . . . }.

2. Invertibility and Properties of Fractional Operators

We start with the properties of the binomial coefficients in (2):

ψj(d) < 0 (j ≥ 1),
∞

∑
j=0

ψj(d) = 0 if 0 < d < 1,

ψj(d) > 0 (j ≥ 1),
∞

∑
j=0

ψj(d) = ∞ if − 1 < d < 0.
(9)

The identity (1 − z)d(1 − z)−d = 1 leads to

1 =
∞

∑
j,k=0

ψj(d)ψk(−d)zj+k =
∞

∑
n=0

zn
n

∑
j=0

ψj(d)ψn−j(−d)
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and the invertibility relation

n

∑
j=0

ψj(d)ψn−j(−d) = I(n = 0), n ∈ N. (10)

The following lemma gives some basic properties of the fractional coefficients τ(u; d)
in (6).

Lemma 1. (i) Let 0 < d < 1. Then, the series in (6) converges for every u ∈ Zν and

τ(0; d) > 0, τ(u; d) ≤ 0 (u ̸= 0), and ∑
u∈Zν

τ(u; d) = 0. (11)

(ii) Let −1 < d < 0. Then, 0 ≤ τ(u; d) ≤ ∞ for every u ∈ Zν and τ(0; d) ≥ 1 and

∑
u∈Zν

τ(u; d) = ∞.

Moreover, τ(0; d) < ∞ implies τ(u; d) < ∞ and

− ∑
u ̸=0

τ(u; d)τ(−u;−d) ≤ τ(0; d) < ∞. (12)

(iii) Let 0 < d < 1 and τ(0;−d) < ∞. Then,

∑
s∈Zν

τ(s; d)τ(t − s;−d) = I(t = 0), t ∈ Zν. (13)

Proof. (i) From (6) and (9) we obtain

τ(0; d) = 1 +
∞

∑
j=1

ψj(d)pj(0) > 1 +
∞

∑
j=1

ψj(d) = 0

since pj(0) = 1(∀j ≥ 1) is not possible. On the other hand, for u ̸= 0 we have p0(u) = 0 and

τ(u; d) =
∞

∑
j=1

ψj(d)pj(u) ≤ 0 (14)

in view of (9).
(ii) Since ψj(d)pj(u) ≥ 0 is obvious from (9), it suffices to show (12), since it implies
τ(u; d) < ∞ by (11). We have

Σ0 := ∑
u ̸=0

τ(u; d)(−τ(−u;−d)) = ∑
u ̸=0

∞

∑
j,k=1

ψj(d)(−ψk(−d))pj(u)pk(−u)

=
∞

∑
n=2

n−1

∑
j=1

ψj(d)(−ψn−j(−d)) ∑
u ̸=0

pj(u)pn−j(−u)

where exchanging the order of summation is legitimate as all summands are non-negative.
Hence, using ∑u ̸=0 pj(u)pn−j(−u) ≤ pn(0) and (10), we obtain

Σ0 ≤
∞

∑
n=2

pn(0)
n−1

∑
j=1

ψj(d)(−ψn−j(−d)) =
∞

∑
n=2

pn(0)(ψn(d) + ψn(−d))

≤
∞

∑
n=2

pn(0)ψn(d) < τ(0; d)

proving part (ii).
(iii) The convergence of the series in (13) and the equality follow as in (12):
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∑
s∈Zν

τ(s; d)τ(t − s;−d) =
∞

∑
j,k=0

ψj(d)ψk(−d) ∑
s∈Zν

pj(s)pk(t − s)

=
∞

∑
n=0

pn(t)
n

∑
j=0

ψj(d)ψn−j(−d)

= p0(t) = I(t = 0).

Lemma 1 is proved.

Remark 1. Let 0 < d < 1. Then, the inequalities are strict: τ(u; d) < 0 and τ(u;−d) > 0, if
pj(u) > 0 for some j, i.e., u is accessible from state 0. Moreover, if state 0 is transient, i.e., the
probability of eventual return to 0 is strictly less than 1, which is equivalent to ∑∞

j=0 pj(0) < ∞,
then τ(0;−d) < ∞.

The main result of this section is Theorem 1, which provides the necessary and
sufficient conditions for the square summability of the fractional coefficients in (6), in terms
of the characteristic function p̂(x) (see (7)). Write f̂ for the Fourier transform of a function
f : Zν → R. For r ∈ (0, 1), d ∈ (−1, 1) introduce the tempered fractional operators

(I − rT)dg(t) =
∞

∑
j=0

rjψj(d)T jg(t) = ∑
u∈Zν

τr(u; d)g(t + u), t ∈ Zν

with coefficients

τr(u; d) :=
∞

∑
j=0

rjψj(d)pj(u), (15)

and the Fourier transform τ̂r(x; d) = (1 − rp̂(x))d.

Theorem 1. For −1 < d < 1, the following conditions are equivalent:∫
Πν

|1 − p̂(x)|−2|d|dx < ∞, (16)

∑
u∈Zν

τ(u;−|d|)2 < ∞. (17)

Either of these conditions implies

τ̂(·;−|d|) = (1 − p̂(·))−|d| in L2(Πν). (18)

Moreover, for 0 < d < 1, the above conditions (16)–(18) hold with d in place of −|d|.

Proof. Let 0 < d < 1. Firstly, we consider τ(u; d) in (6). They satisfy ∑u∈Zν |τ(u; d)| ≤
∑∞

j=0 |ψj(d)| < ∞ because of (3) and ∑u∈Zν pj(u) = 1 with 0 ≤ pj(u) ≤ 1. Then,

∑u∈Zν τ(u; d)2 < ∞ is immediate. Moreover, we have the Fourier transform
τ̂(x; d) = ∑∞

j=0 ψj(d) p̂j(x), where p̂j(x) = p̂(x)j satisfies | p̂(x)| ≤ 1. We see that

τ̂(x; d) = (1 − p̂(x))d, x ∈ Πν, (19)

belongs to L2(Πν).
Now let us prove the implication (16) ⇒ (17). We use approximation by the tempered

fractional coefficients τr(u;−d) in (15) as r ↗ 1. We ascertain that τ̂r(x;−d) = (1 −
rp̂(x))−d → (1 − p̂(x))−d a.e. as r ↗ 1. Next, for z ∈ C, |z| ≤ 1, 0 < r < 1 the inequality
|1 − z| ≤ |1 − rz|+ |rz − z| ≤ |1 − rz|+ 1 − r, where 1 − r ≤ 1 − |rz| ≤ |1 − rz| becomes
|1 − z| ≤ 2|1 − rz|. Using this, we obtain the domination for all 0 < r < 1, x ∈ Πν,

|τ̂r(x;−d)| ≤ 1
|1 − rp̂(x)|d

≤ 2d

|1 − p̂(x)|d
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by a function in L2(Πν) according to (16). Hence, by the dominated convergence the-
orem (DCT), τ̂r(·;−d) → (1 − p̂(·))−d as r ↗ 1 holds in L2(Πν). As a consequence,
τ̂r(·;−d), 0 < r < 1 is a Cauchy sequence in L2(Πν). By Parseval’s theorem, the inverse
Fourier transforms,

τr(u;−d) =
1

(2π)ν

∫
Πν

e−i⟨u,x⟩τ̂r(x;−d)dx, u ∈ Zν, 0 < r < 1,

are a Cauchy sequence in L2(Zν), and so τr(·;−d) converges in L2(Zν) to some f ∈ L2(Zν)
as r ↗ 1. This f must be τ(·;−d) because τr(u;−d) ↗ τ(u;−d) as r ↗ 1 for all u. We
conclude that τ(·;−d) ∈ L2(Zν) or (17).

Let us turn to the implication (17) ⇒ (16). From (17) and τr(u;−d) ↗ τ(u;−d) for
all u it follows that τr(·;−d) → τ(·;−d) as r ↗ 1 holds in L2(Zν). By Parseval’s theo-
rem, τ̂r(·;−d) = (1 − rp̂(·))−d, 0 < r < 1 is a Cauchy sequence in L2(Πν). It follows
that limr↗1

∫
Πν |τ̂r(x;−d)− g(x)|2dx = 0 for some g ∈ L2(Πν). We also have limr↗1(1 −

rp̂(x))−d = (1 − p̂(x))−d for each x ∈ Πν, such that p̂(x) ̸= 1. Since
Lebν(x ∈ Πν : p̂(x) = 1) = 0 (see Lemma 2.3.2(a) in [26]) we conclude that
g(·) = (1 − p̂(·))−d a.e., proving (16).

The above argument also proves (18). On the one hand, τ̂(·;−d) is the limit of τ̂r(·;−d)
in L2(Πν) as r ↗ 1 because τr(·;−d) converges in L2(Zν) to τ(·;−d) as r ↗ 1. On the
other hand, τ̂r(·;−d) = (1 − rp̂(·))−d → (1 − p̂(·))−d in L2(Πν) as r ↗ 1. We conclude
that τ̂(·;−d) = (1 − p̂(·)) a.e. Theorem 1 is proved.

Next, we turn to the asymptotics of the ‘fractional coefficients’ τ(u; d) in (6). The
proof uses the local limit theorem in [26] for random walk probabilities pj(u) = P(Sj = u).
Following the latter work, we assume that

Eec|S1| < ∞ (∃ c > 0) and {Sj} is zero mean, aperiodic, irreducible. (20)

For example, if S1 is symmetric, i.e., S1
d
= − S1, and, moreover, has finite support

that contains 0, ei, i = 1, . . . , ν, then the random walk satisfies our assumption (20). The
conditions in (20) imply that the random walk has zero mean ES1 = ∑u∈Zν up(u) = 0 and
an invertible covariance matrix

Γ := ES1S′
1.

According to the classical (integral) CLT, the normalized sum Sj/
√

j, j → ∞ ap-
proaches a Gaussian distribution on Rν with density

ϕ(z) :=
1

(2π)ν/2
√

detΓ
e−⟨z,Γ−1z⟩/2, z ∈ Rν.

Denote
p̄j(u) :=

1
(2π j)ν/2

√
detΓ

e−⟨u,Γ−1u⟩/2j, u ∈ Rν.

Lemma 2 ([26] Theorem 2.3.11). Under the conditions of (20), there exists C > 0, such that

|pj(u)− p̄j(u)| ≤ Cp̄j(u)
( 1

j1/2 +
|u|3
j2

)
, ∀ |u| < j2, u ∈ Zν. (21)

For ‘very atypical’ values |Sj| > j we use the following bound ([26], Proposition 2.1.2):
for any k ≥ 1 there exists C > 0, such that

P(|Sj| > z
√

j) ≤ Cz−k, ∀ z > 0. (22)

Proposition 1. Let p = {p(u); u ∈ Zν} satisfy (20). The coefficients in (6) are well-defined for
any −(1 ∧ ν

2 ) < d < 1, d ̸= 0 and satisfy
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τ(u; d) = (B1(d) + o(1))⟨u, Γ−1u⟩−(ν/2)−d, |u| → ∞, (23)

where

B1(d) :=
2dΓ(d + (ν/2))

πν/2Γ(−d)
√

detΓ
.

Proof. Let us prove (23). Since Γ is positive-definite, |u|Γ :=
√
⟨u, Γ−1u⟩, u ∈ Rν is

a norm. Note that it is equivalent to the Euclidean norm because any two norms are
equivalent in finite-dimensional real vector space. In particular, the spectral decomposition
Γ−1 = UΛU′—where U is an orthogonal matrix whose columns are the real, orthonormal
eigenvectors of Γ−1, U′ is the transpose of U, and Λ is a diagonal matrix whose entries are
the eigenvalues of Γ−1 with λmax, λmin > 0 denoting the largest and smallest, respectively—
gives |u|Γ = |Λ1/2U′u|2 ≤ λmax|u|2 and, similarly, |u|2Γ ≥ λmin|u|2. Using (6) for a large
K > 0 we decompose |u|ν+2d

Γ τ(u; d) = ∑3
i=1 Ji(u), where

J1(u) := |u|ν+2d
Γ Γ(−d)−1 ∑

j>|u|2Γ/K

j−d−1 pj(u),

J2(u) := |u|ν+2d
Γ ∑

j>|u|2Γ/K

(ψj(d)− Γ(−d)−1 j−d−1)pj(u),

J3(u) := |u|ν+2d
Γ ∑

0≤j≤|u|2Γ/K

ψj(d)pj(u).

It suffices to show that

lim
K→∞

lim
|u|→∞

J1(u) = B1(d), lim
K→∞

lim sup
|u|→∞

Ji(u) = 0, i = 2, 3. (24)

To show the first relation in (24), use (21). We have J1(u) = J′1(u) + J′′1 (u), where, for
each K > 0 fixed, the main term J′1(u) and the remainder term J′′1 (u) asymptotically behave
when |u| → ∞ as

J′1(u) := |u|ν+2d
Γ Γ(−d)−1 ∑

j>|u|2Γ/K

j−d−1 p̄j(u)

=
|u|ν+2d

Γ

(2π)ν/2Γ(−d)
√

detΓ

∫ ∞

0
I(|u|2Γ/K < [y])[y]−d−1−(ν/2)e−|u|2Γ/2[y]dy

∼ 1
(2π)ν/2Γ(−d)

√
detΓ

∫ ∞

1/K
x−d−1−(ν/2)e−1/2xdx

and, for some constants C, c > 0,

|J′′1 (u)| ≤ C|u|ν+2d
Γ K3/2 ∑

j>|u|2Γ/K

j−d−3/2 p̄j(u)

≤ C|u|−1
Γ K3/2

∫ ∞

0
x−d−(3/2)−(ν/2)e−c/xdx = o(1).

Hence, the first relation in (24) follows, using
∫ ∞

0 x−1−τe−1/xdx = Γ(τ), τ > 0. In
view of (3), the same argument also proves the second relation in (24) for i = 2.

Consider (24) for i = 3. Split J3(u) = J′′3 (u) + J′3(u) into two sums over j > 0, where
j2 ≤ |u| and j2 > |u|, respectively. In the sum J′3(u) we also have j ≤ |u|2Γ/K ≤ |u|2, and
Lemma 2 entails the bound

pj(u) ≤ Cp̄j(u)(
|u|3
j2

) ≤ C|u|3 j−(ν/2)−2e−c|u|2/j

for some constants C, c > 0. Hence,
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|J′3(u)| ≤ C|u|ν+2d+3
∫ |u|2

0
[y]−d−3−(ν/2)e−c|u|2/[y]dy

≤ C|u|−1
∫ 1

0
x−d−3−(ν/2)e−c/xdx = o(1)

since the last integral converges for any d. Finally, by (22), given a large enough k > 0, there
exists C > 0, such that pj(u) ≤ Cjk/2/|u|k, which implies J′′3 (u) = o(1). This proves (24)
and completes the proof of Proposition 1.

Lemma 2 does not apply to the simple random walk (which is not aperiodic), in
which case the local CLT takes a somewhat different form (see [26], Theorem 2.1.3). The
application of the latter result and the argument in the proof of Proposition 1 yields the
following result:

Proposition 2. Let p(ej) = p(−ej) =
1

2ν , j = 1, . . . , ν. The coefficients in (6) are well-defined for
any −(1 ∧ ν

2 ) < d < 1, d ̸= 0 and satisfy

τ(u; d) = (B(d) + o(1))|u|−ν−2d, |u| → ∞,

where

B(d) :=
2dΓ(d + (ν/2))

νdΓ(−d)
.

Proposition 1 and Lemma 2 do not apply to random walks with a non-zero mean, as in
Example 2 below (fractional heat operator), in which case the fractional coefficients exhibit
an anisotropic behavior different from (23). Such behavior is described in the following
proposition. We assume that the underlying random walk factorizes into a deterministic
drift by 1 in direction −e1 and a random walk on Zν−1, as in Lemma 2:

p(u) =

{
1 − θ, u = −e1,
θq̃(ũ), u = −e1 + (0, ũ),

(25)

where θ ∈ (0, 1) and q̃(ũ) is a probability distribution concentrated on ũ = (u2, . . . , uν) ∈ Zν−1,
such that ũ ̸= 0. Write {Sj; j ≥ 0} for the random walk starting at 0 with j-step probabilities
P(S̃j = ũ|S̃0 = 0) =: q̃j(ũ), j = 0, 1, . . . , such that q̃1(ũ) := q̃(ũ), ũ ∈ Zν−1. In order to
apply Lemma 2, we make a similar assumption to (20):

Eec|S̃1| < ∞ (∃ c > 0) and {S̃j} is zero mean, irreducible (26)

and we denote Γ̃ := ES̃1S̃′
1, the respective covariance matrix. Let

ρ(x) :=
(
x2

1 + ⟨x̃, Γ̃−1 x̃⟩2)1/2, x = (x1, x̃) ∈ Rν

be a positive function on Rν satisfying the homogeneity property, ρ(λx1, λ1/2 x̃) = λρ(x),
∀λ > 0. As in Example 2, the fractional coefficients for p(u) in (25) we write as

τ(−u; d) = ψu1(d)pu1(−u)I(u1 ≥ 0), u = (u1, ũ) ∈ Zν. (27)

Proposition 3. Let (26) hold and θ ∈ (0, 1). Then,

τ(−u; d) =
u−d−(ν+1)/2

1

Γ(−d)(2πθ)(ν−1)/2
√

detΓ̃
exp

{
− ⟨ũ, Γ̃−1ũ⟩

2θu1

}(
1 + o(1)

)
(28)

as u1 → ∞ and |ũ| → ∞, |ũ| = o(u2/3
1 ). We also have
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τ(−u; d) = ρ(u)−d−(ν+1)/2
(

L0
( u1

ρ(u)
)
+ o(1)

)
, |u| → ∞, (29)

where L0(z), z ∈ [−1, 1] is a continuous function on [−1, 1] given by

L0(z) :=
z−d−(ν+1)/2

Γ(−d)(2πθ)(ν−1)/2
√

detΓ̃
exp

{
− (1/2θ)

√
(1/z)2 − 1

}
for z ∈ (0, 1] and equals 0 for z ∈ [−1, 0].

Proof. Consider the following j-step probabilities of a random walk on Zν−1 starting at
0: qj(ũ) := pj(u), where u = (−j, ũ) for ũ ∈ Zν−1, j = 0, 1, · · · . Let us estimate these by
q̄j(ũ) := (2π j)−(ν−1)/2(detΓ)−1/2 exp{−⟨ũ, Γ−1ũ⟩/2j}, where Γ is the covariance matrix
of the 1-step distribution q1(ũ), ũ ∈ Zν−1. Note Γ = θΓ̃. By Lemma 2,

|qj(ũ)− q̄j(ũ)| ≤ Cq̄j(ũ)
( 1

j1/2 +
|ũ|3
j2

)
, ∀ |ũ| < j2, ũ ∈ Zν−1. (30)

Relation (28) follows directly from (3), (27), and (30). Relation (29) is written as

ρ(u)d+(ν+1)/2τ(−u; d)− L0
( u1

ρ(u)
)
→ 0, |u| → ∞. (31)

The asymptotics in (31) is immediate from (28) for |u| tending to ∞ as in (28). The
general case of (31) also follows from (28), using the continuity of L0. For ν = 2, the details
can be found in [12] (proof of Proposition 4.1).

Remark 2. The approximation in (28) compares with the kernel

hc,−d(t) = c1 t−d− 1+ν
2

1 exp
{
− ct1 −

|t̃|2
4t1

}
I(t1 > 0), t = (t1, t̃) ∈ Rν (32)

of the fractional heat operator (c + ∂1 − ∆̃)−d, ∂1 − ∆̃ := ∂/∂t1 − ∑ν
i=2 ∂2/∂t2

i for all c > 0,
d < 0, and some c1 ∈ R. For ν = 2, Ref. [25] Equation (3.7) has recently derived the analytic
form in (32) of the kernel from the absolute square of its Fourier transform:

|ĥc,−d(z)|2 =
∣∣ ∫

Rν
ei⟨z,t⟩hc,−d(t)dt

∣∣2 (33)

= c2
1(4π)ν−1Γ(−d)2(z2

1 + (c + |z̃|2)2)d, z = (z1, z̃) ∈ Rν,

which is the implicit definition of this kernel in [22]. Similarly to derivations in [25], for
ν ≥ 2, Equations (3.944.5-6) in the table of integrals [27] give

ĥc,−d(z) = c1

∫ ∞

0
eiz1t1−ct1 td− 1+ν

2
1 dt1

∫
Rν−1

exp
{

i⟨z̃, t̃⟩ − |t̃|2
4t1

}
dt̃

= c1(4π)
ν−1

2

∫ ∞

0
eiz1t1−t1(c+|z̃|2)t−d−1

1 dt1

= c1(4π)
ν−1

2 Γ(−d)
(
z2

1 + (c + |z̃|2)2) d
2 exp

{
− id arctan

( z1

c + |z̃|2
)}

,

yielding (33).

Finally, the tempered fractional coefficients in (15) are summable: ∑u∈Zν |τr(u; d)| ≤
∑∞

j=0 rj|ψj(d)| ≤ 2(1 − r)−|d| < ∞ for any d ∈ (−1, 1), r ∈ (0, 1) and any random walk

{Sj}. Assuming the existence of the exponential moment Eeκ|S1| < ∞ for some κ > 0,
(15) decays exponentially,
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|τr(u; d)| ≤ Ce−c|u|, u ∈ Zν, (34)

for some C, c > 0. Indeed, Markov’s inequality gives rj|ψj(d)|pj(u) ≤ P(|Sj| ≥ |u|) ≤
e−κ|u|Eeκ|Sj | ≤ e−κ|u|(Eeκ|S1|)j ≤ e−(κ/2)|u| for any 0 ≤ j < c|u| and large enough |u|.
Moreover, ∑j≥c|u| rj|ψj(d)|pj(u) ≤ ∑j≥c|u| rj = rc|u|/(1 − r), proving (34).

3. Fractionally Integrated Random Fields on Zν

Let {ε(t); t ∈ Zν} be a white noise; in other words, a sequence of r.v.s with Eε(t) = 0,
Eε(t)ε(s) = I(t = s), t, s ∈ Zν. Given a sequence a ∈ L2(Zν) with the above noise we can
associate a moving-average random field (RF),

X(t) = ∑
s∈Zν

a(u)ε(t − u), t ∈ Zν (35)

with zero mean and covariance Cov(X(t), X(s)) = ∑u∈Zν a(u)a(t − s + u), which depends
on t − s alone and characterizes the dependence between values of X at distinct points t ̸= s.

A moving-average RF X in (35) will be said to be

• long-range dependent (LRD) if ∑u∈Zν |a(u)| = ∞;
• short-range dependent (SRD) if ∑u∈Zν |a(u)| < ∞, ∑u∈Zν a(u) ̸= 0;
• negatively dependent (ND) if ∑u∈Zν |a(u)| < ∞, ∑u∈Zν a(u) = 0.

The above classification is important in limit theorems and applications of random
fields. It is not unanimous; several related but not equivalent classifications of dependence
for stochastic processes can be found in [3,4,7,17] and other works.

Many RF models with discrete arguments are defined through linear difference equa-
tions involving white noise [28]. In this paper, we deal with fractionally integrated RFs X
solving fractional equations on Zν,

(I − T)dX(t) = ∑
s∈Zν

τ(s; d)X(t + s) = ε(t), (36)

(I − rT)dX(t) = ∑
s∈Zν

τr(s; d)X(t + s) = ε(t), 0 < r < 1, t ∈ Zν, (37)

whose solutions are obtained by inverting these operators (see below).

Definition 1. Let d ∈ (−1, 1) and τ(u;±d) in (6) be well-defined. By the stationary solution of
equation (36) (respectively, (37)) we mean a stationary RF X, such that for each t ∈ Zν the series
in (36) converges in mean square and (36) holds (respectively, the series in (37) converges in mean
square and (37) holds).

Corollary 1. (i) Let −1 < d < 1. Then,

X(t) = (I − T)−dε(t) = ∑
u∈Zν

τ(u;−d)ε(t + u), t ∈ Zν (38)

is a stationary solution of equation (36) if condition (16) holds (for 0 < d < 1, (16) is also necessary
for the existence of the above X).
(ii) Let 0 < d < 1 and (16) hold. Then, X in (38) is LRD. Moreover, it has a non-negative covariance
function Cov(X(0), X(t)) ≥ 0, and ∑t∈Zν Cov(X(0), X(t)) = ∞.
(iii) Let −1 < d < 0 and (16) hold. Then, X in (38) is ND; moreover, ∑t∈Zν Cov(X(0), X(t)) = 0.
(iv) Let −1 < d < 1, 0 < r < 1. Then,

X(t) = (I − rT)−dε(t) = ∑
u∈Zν

τr(u;−d)ε(t + u), t ∈ Zν (39)

is a stationary solution of equation (37). Moreover, X in (39) is SRD. Furthermore, ∑t∈Zν |Cov(X(0),
X(t))| < ∞, ∑t∈Zν Cov(X(0), X(t)) = (1 − r)−2d > 0.
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Proof. (i) Let 0 < d < 1. X in (38) is well-defined if and only if (17) holds, which is,
therefore, a necessary condition. Let us show that X in (38) is a stationary solution of (36).
We use the spectral representation of white noise,

ε(t) =
∫

Πν
ei⟨t,x⟩Z(dx), t ∈ Zν, (40)

where Z(dx) is a random complex-valued spectral measure on Πν with zero mean and
variance E|Z(dx)|2 = dx/(2π)ν. Then, X(t) is written as

X(t) =
∫

Πν
ei⟨t,x⟩τ̂(x − d)Z(dx) =

∫
Πν

ei⟨t,x⟩ Z(dx)
(1 − p̂(x))d (41)

see (18). Then, (I − T)dX(t) =
∫

Πν ei⟨t,x⟩ ∑s∈Zν τ(s; d)ei⟨s,x⟩(1 − p̂(x))−dZ(dx) = ε(t)
follows by (19) and absolute summability ∑s∈Zν |τ(s; d)| < ∞ (see (11) and (14)).

Next, let −1 < d < 0. Then, X in (38) is well-defined and is written as (41), due to
∑s∈Zν |τ(s;−d)| < ∞. We need to show that the series in (36) converges in mean square
towards ε(t) if and only if (16) or (17) hold. The latter convergence writes as

lim
M→∞

E|sM − ε(t)|2 = 0, where sM := ∑
|s|≤M

τ(s; d)X(t + s).

From (41),

E|sM − ε(t)|2 = (2π)−ν
∫

Πν

∣∣ ∑
|s|≤M

ei⟨s,x⟩τ(s; d)− (1 − p̂(x))d∣∣2 |1 − p̂(x)|2|d|dx

≤ C
∫

Πν

∣∣ ∑
|s|≤M

ei⟨s,x⟩τ(s; d)− (1 − p̂(x))d∣∣2dx

= C
∫

Πν

∣∣ ∑
|s|>M

ei⟨s,x⟩τ(s; d)
∣∣2dx

= C ∑
|s|>M

τ(s;−|d|)2 → 0 (M → ∞)

in view of (17). This proves part (i).
(ii) From (9), (6) we see τ(s;−d) ≥ 0 are non-negative and ∑s∈Zν τ(s;−d) = ∑∞

j=0 ψj(−d)
= ∞. Thus, Cov(X(0), X(t)) = ∑s∈Zν τ(s;−d)τ(t + s;−d) ≥ 0 and ∑t∈Zν Cov(X(0), X(t))
= ∞.
(iii) As in the proof of (i), we obtain ∑s∈Zν |τ(s;−d)| ≤ 1 + ∑∞

j=1 ∑s∈Zν |ψj(−d)|pj(s) =

1 + ∑∞
j=1 |ψj(−d)| = 2 (see (9)) and ∑s∈Zν τ(s;−d) = 0, implying ∑t∈Zν Cov(X(0), X(t))

= ∑t,s∈Zν τ(s;−d)τ(t + s;−d) = 0.
(iv) Using ∑u∈Zν |τr(u; d)| < ∞, ∑u∈Zν τr(u; d) = ∑∞

j=0 rjψj(d) = (1 − r)d, the proof is
similar to the above. Corollary 1 is proved.

The ARFIMA(0,d,0) Equation (4) is autoregressive, since the best linear predictor
(or conditional expectation in the Gaussian case) of X(t), given the ‘past’ X(s), s < t, is
a linear combination ∑∞

j=1 ψj(d)X(t − j) of the ‘past’ observations, due to the fact that
Cov(X(s), ε(t)) = 0 (s < t). For spatial equations, as in (36) or (37), an analogous property
given the ‘past’ X(s), s ̸= t does not hold, since Cov(X(s), ε(t)) ̸= 0 (s ̸= t) as a rule. This
issue is important in spatial statistics and has been discussed in the literature (see [29,30]
and the references therein), distinguishing between ‘simultaneous’ and ‘conditional autore-
gressive schemes’. A recent work [31] discusses some conditional autoregressive models
with LRD property.

Definition 2. Let X be an RF with EX(t)2 < ∞ for each t ∈ Zν. We say that X has:
(i) a simultaneous autoregressive representation with coefficients b(s), s ∈ Zν

0 if for each t ∈ Zν
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X(t) = ∑
s∈Zν

0

b(s)X(t − s) + ξ(t),

where the series converges in mean square and the r.v.s ξ(t), t ∈ Zν satisfy
Cov(ξ(t), ξ(s)) = 0 (∀ s ̸= t).
(ii) a conditional autoregressive representation with coefficients c(s), s ∈ Zν

0 if for each t ∈ Zν

X(t) = ∑
s∈Zν

0

c(s)X(t − s) + η(t), (42)

where the series converges in mean square and the r.v.s η(t), t ∈ Zν satisfy
Cov(η(t), X(s)) = 0 (∀ s ̸= t).

Corollary 2. (i) Let d ∈ (−1, 1) and X be a fractionally integrated RF in (38) and (16) holds. Then,
X has a simultaneous autoregressive representation with coefficients b(s) = −τ(−s; d)/τ(0; d),
s ∈ Zν

0 and ξ(s) = ε(s)/τ(0; d), s ∈ Zν;
(ii) Let d ∈ (0, 1), X be a fractionally integrated RF in (38) and (16) holds. Then, X has a
conditional autoregressive representation with coefficients c(s) = −γ∗(s)/γ∗(0), s ∈ Zν

0 and
η(s) =

∫
Πν ei⟨s,x⟩(1− p̂(−x))dZ(dx)/γ∗(0), where Z(dx) is a complex-valued random measure

given in (40) with zero mean and variance E|Z(dx)|2 = dx/(2π)ν and

γ∗(s) :=
1

(2π)ν

∫
Πν

e−i⟨s,x⟩|1 − p̂(x)|2ddx, s ∈ Zν;

(iii) Let d ∈ (−1, 1), 0 < r < 1 and X be a (tempered) fractionally integrated RF in (39). Then,
X has a simultaneous autoregressive representation with b(s) = −τr(−s; d)/τr(0; d), ξ(t) =
ε(t)/τr(0; d) and a conditional autoregressive representation with c(s) = −γ∗

r (s)/γ∗
r (0), η(t) =∫

Πν ei⟨t,x⟩(1 − rp̂(−x))dZ(dx)/γ∗
r (0), with the same Z(dx) as in part (ii) and

γ∗
r (s) :=

1
(2π)ν

∫
Πν

e−i⟨s,x⟩|1 − rp̂(x)|2ddx, s ∈ Zν.

Proof. (i) is obvious from Corollary 1 and (36), τ(0; d) ̸= 0.
(ii) By (16), c(s) and η(t) are well-defined, η(t) ∈ R and Eη(t)2 < ∞. The orthogonality
relation EX(t)η(s) = 0 (t ̸= s) follows from the spectral representations in (40) and (41):

EX(t)η(s) =
1

(2π)νγ∗(0)

∫
Πν

ei⟨t−s,x⟩ (1 − p̂(−x))d

(1 − p̂(x))d dx

=
1

(2π)νγ∗(0)

∫
Πν

ei⟨t−s,x⟩dx = 0 (t ̸= s).

It remains to show (42), including the convergence of the series. In view of the
definition of c(s), this amounts to showing

∑
s∈Zν

X(t − s)γ∗(s) = γ∗(0)η(t)

or, in spectral terms, to the convergence of the Fourier series

1
(1 − p̂(x))d ∑

s∈Zν

e−i⟨x,s⟩γ∗(s) = (1 − p̂(−x))d =
|1 − p̂(−x)|2d

(1 − p̂(x))d (43)

in L2(Πν). Note γ∗(s) = Cov(X∗(0), X∗(s)), where the RF X∗(t) := (1 − T)dε(t), t ∈ Zν,
results from application of the inverse operator. Since X∗ has negative dependence
(see (41) and the proof of Corollary 1 (iii)) the covariances γ∗(s), s ∈ Zν are absolutely
summable. Therefore, the Fourier series on the l.h.s. of (43) converges uniformly in x ∈ Πν

to |1 − p̂(−x)|2d, proving (43).
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(iii) The proof is analogous to (and simpler than) (i)–(ii), using ∑u∈Zν |τr(u; d)| < ∞.

Example 1. Fractional Laplacian. The (lattice) Laplace operator on Zν is defined as

[∆]g(t) :=
1

2ν

ν

∑
j=1

(g(t + ej) + g(t − ej)− 2g(t)), t ∈ Zν

so that [∆] = T − I, where Tg(t) = 1
2ν ∑ν

j=1(g(t + ej) + g(t − ej)) is the transition operator of
the simple random walk {Sj; j = 0, 1, · · · } on Zν with equal one-step transition probabilities 1/2ν
to the nearest-neighbors t → t ± ej, j = 1, · · · , ν. For −1 < d < 1, the fractional Laplace RF can
be defined as a stationary solution of the difference equation

(−[∆])dX(t) = ε(t), t ∈ Zν (44)

with weak white noise on the r.h.s., written as a moving-average RF:

X(t) = (−[∆])−dε(t) = ∑
u∈Zν

τ(u;−d)ε(t + u). (45)

We find that p̂(x) = (1/ν)∑ν
j=1 cos(xj), x = (x1, · · · , xν) ∈ Πν and

1 − p̂(x) =
1
ν

ν

∑
j=1

(1 − cos(xj)) ≥ C|x|2

for some C > 0 and 1− p̂(x) ∼ (1/2ν)|x|2 (|x| → 0). Hence, condition (16) for (44) translates to∫
Πν

dx
|1 − p̂(x)|2|d|

< ∞ ⇐⇒ |d| < ν

4
.

In particular, a stationary solution of Equation (44) on ν ≥ 4 exists for all
−1 < d < 1. Finally, recall that (16) is equivalent to condition (17). We could have verified
the latter by using Corollary 2, which gives the asymptotics of coefficients τ(u;−d) in (45).

Example 2. Fractional heat operator. For a parameter 0 < θ < 1, we can extend the definition of
the (lattice) heat operator on Zν from ν = 2 in [12] to ν ≥ 2 as follows:

∆1,2g(t) := (1 − θ)(g(t)− g(t − e1))

− θ

2(ν − 1)

ν

∑
j=2

(g(t − e1 + ej) + g(t − e1 − ej)− 2g(t)).

Thus, ∆1,2 = I − T corresponds to the random walk on Zν with 1-step distribution p(−e1) =
1 − θ, p(−e1 ± ej) =

θ
2(ν−1) , j = 2, · · · , ν. We find that

|1− p̂(x)|2 =
(

cos(x1)− 1+
θ

ν − 1

ν

∑
j=2

(1− cos(xj))
)2

+ sin2(x1), x = (x1, · · · , xν) ∈ Πν.

By the Taylor expansion,

|1 − p̂(x)|2 ∼
( θ

2(ν − 1)
)2|x̃|4 + x2

1, x → 0, x̃ := (0, x2, · · · , xν).

We also find that outside the origin |1 − p̂(x)|2 ≥ C for some C > 0 since 0 < θ < 1.
Therefore, ∫

Πν

dx
|1 − p̂(x)|2|d|

≤ C
∫ 1

0

∫ 1

0

yν−2dxdy
(x2 + y4)|d|

< ∞ if |d| < ν + 1
4
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and
∫

Πν |1 − p̂(x)|−2|d|dx = ∞ if |d| ≥ ν+1
4 . The above result agrees with [12] for ν = 2,

0 < d < 3
4 and extends it to the arbitrary ν ≥ 2, −1 < d < 1.

Example 3. Fractionally integrated time series models (case ν = 1). As noted above, the
ARFIMA(0, d, 0) process is a particular case of (38) corresponding to the backward shift Tg(t) :=
g(t − 1) or the deterministic random walk t → t − 1. Another fractionally integrated time series
model is given in Example 1 and corresponds to the symmetric nearest-neighbor random walk on
Z with probabilities 1/2. It is of interest to compare these two processes and their properties. Let
T1g(t) := g(t − 1), T2g(t) := (1/2)(g(t + 1) + g(t − 1)), t ∈ Z be the corresponding operators,

X1(t) := (I − T1)
−d1 ε(t) =

∞

∑
u=0

ψu(−d1)ε(t − u),

X2(t) := (I − T2)
−d2 ε(t) = ∑

u∈Z
τ(u;−d2)ε(t + u), t ∈ Z.

For |d1| < 1/2 and |d2| < 1/4, processes X1 and X2 are well-defined; moreover, they are
stationary solutions of the respective equations (I − T1)

d1 X(t) = ε(t) and (I − T2)
d2 X(t) = ε(t).

The spectral densities of X1 and X2 are given by

f1(x) =
1

2π|1 − e−ix|2d1
=

1
2π · 2d1 |1 − cos(x)|d1

,

f2(x) =
1

2π|1 − (1/2)(e−ix + eix)|2d2
=

1
2π|1 − cos(x)|2d2

We see that when d1 = 2d2 the processes X1 and X2 have the same 2nd order properties up
to a multiplicative constant, so that in the Gaussian case X2 is a noncausal representation of the
ARFIMA(0, 2d2, 0).

4. Scaling Limits

As explained in the Introduction, the isotropic scaling limits refer to the limit distribu-
tion of the integrals

Xλ(ϕ) :=
∫
Rν

X([t])ϕ(t/λ)dt, as λ → ∞, (46)

where X = {X(t); t ∈ Zν} is a given stationary random field (RF) for each ϕ : Rν → R
from a class of (test) functions Φ. We choose the latter class to be

Φ := L1(Rν) ∩ L∞(Rν).

In the following, X is a linear or moving-average RF on Zν:

X(t) = ∑
s∈Zν

a(t − s)ε(s), t ∈ Zν, (47)

where {ε(t); t ∈ Zν} are independent identically distributed (i.i.d.) r.v.s, with Eε(t) = 0,
Eε(t)2 = 1, and a ∈ L2(Zν) being deterministic coefficients. Obviously, stationary
solution (38) of Equation (36) satisfying Corollary 1 is a particular case of linear RF
with a(t) = τ(−t;−d). Our limits results assume an ‘isotropic’ behavior of a(t) as
|t| → ∞, detailed as follows. Let C(Sν−1) denote the class of all continuous functions on
Sν−1 = {t ∈ Rν : |t| = 1}.

Assumption 1. Let {a(t); t ∈ Zν} be a sequence of real numbers satisfying the following properties:
(i) Let 0 < d < ν/4. Then,

a(t) =
1

|t|ν−2d

(
ℓ
( t
|t|

)
+ o(1)

)
, |t| → ∞, (48)
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where ℓ(·) ∈ C(Sν−1) is not identically zero.
(ii) Let −ν/4 < d < 0. Then, a(t) satisfies (48) with the same ℓ(t) and, moreover, ∑t∈Zν a(t) = 0.
(iii) Let d = 0. Then, ∑t∈Zν |a(t)| < ∞ and ∑t∈Zν a(t) ̸= 0.

The class of RFs in (47) with coefficients satisfying Assumption 1 is related but not
limited to the fractionally integrated RFs in (36) and (37). Note that the parameter d is
no longer restricted to being in (−1, 1). By easy observation, Assumption 1 implies the
LRD, ND, and SRD properties of Section 3 in the respective cases d > 0, d < 0, and d = 0.
Following the terminology in time series [3], the parameter d in (48) may be called the
memory parameter of the linear RF X in (47), except that for ν = 1 the memory parameter is
usually defined as 2d ∈ (−1/2, 1/2).

In particular, the covariance function r(t) := Cov(X(0), X(t)) of the linear RF X in
(47) is written as

r(t) = ∑
u∈Zν

a(u)a(t + u), t ∈ Zν

or the lattice convolution of a(t) with itself. We will use the notation [a1 ⋆ a2] for the lattice
convolution and (a1 ⋆ a2) for continuous convolution, viz.:

[a1 ⋆ a2](t) := ∑
u∈Zν

a1(u)a2(t + u), t ∈ Zν,

(a1 ⋆ a2)(t) :=
∫
Rν

a1(u)a2(t + u)du, t ∈ Rν

which is well-defined for any ai ∈ L2(Zν), i = 1, 2 (respectively, for any ai ∈ L2(Rν),
i = 1, 2).

Proposition 4. Let ai ∈ L2(Zν) satisfy Assumption 1 with 0 < d < ν/4 and some
ℓi ∈ C(Sν−1), i = 1, 2. Then,

[a1 ⋆ a2](t) = |t|4d−ν
(

L12
( t
|t|

)
+ o(1)

)
, |t| → ∞, (49)

where the (angular) function L12(·) ∈ C(Sν−1) is given by

L12(t) :=
∫
Rν

ℓ1(s/|s|)ℓ2((t − s)/|t − s|)
|s|ν−2d|t − s|ν−2d ds, t ∈ Sν−1.

Proof. The existence and continuity of L12 follow from the finiteness of the integrals∫
|s|<1 |s|

2d−νds < ∞,
∫
|s|>1 |s|

2(2d−ν)ds < ∞. For (49), it suffices to show that

|t|ν−4d[a1 ⋆ a2](t)− L12(t/|t|) → 0, |t| → ∞. (50)

Let |t|+ := |t| ∨ 1 and a0
i (t) := |t|2d−ν

+ ℓi(t/|t|+), a1
i (t) := ai(t)− a0

i (t) = o(|t|2d−ν),

i = 1, 2 (see (48)). Then, [a1 ⋆ a2](t) = ∑1
i,j=0[a

i
1 ⋆ aj

2](t). Clearly, (50) follows from

|t|ν−4d[a0
1 ⋆ a0

2](t)− L12(t/|t|) → 0, |t| → ∞ (51)

and
[ai

1 ⋆ aj
2](t) = o(|t|4d−ν), |t| → ∞, (i, j) ̸= (0, 0), i, j = 0, 1. (52)

To prove (51), rewrite [a0
1 ⋆ a0

2](t) =
∫
Rν a0

1([u])a0
2(t + [u])du as an integral and change

the variable u → |t|u in it. This leads to |t|ν−4d[a0
1 ⋆ a0

2](t) = L̃t(t/|t|), where

L̃t(z) :=
∫
Rν

a1,t(ũ)a2,t(z + ũ)du, z ∈ Sν−1, (53)
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where

ai,t(ũ) :=
1

(|t|−1 ∨ |ũ|)ν−2d ℓi

( ũ
|t|−1 ∨ |ũ|

)
, ũ :=

[|t|u]
|t| .

Relation (51) follows once we prove the uniform convergence supz∈Sν−1
|L̃t(z) −

L12(z)| → 0 (|t| → ∞). Since Sν−1 is a compact set and L12 is continuous, the last relation
is implied by the sequentional convergence

|L̃t(zt)− L12(z)| → 0 (|t| → ∞) (54)

for any z ∈ Sν−1 and any {zt} convergent to z: |zt − z| → 0 (|t| → ∞). The proof of (54)
uses the bound

|ai,t(ũ)| ≤ C|u|2d−ν, u ∈ Rν, i = 1, 2, (55)

which follows from the boundedness of ℓi and |u| ≤ |ũ|+ |u − ũ| with |u − ũ| ≤ ν1/2/|t|;
hence, |u| ≤ ν1/2(|ũ|+ |t|−1) ≤ 2ν1/2(|ũ| ∨ |t|−1). Note a1,t(ũ)a2,t(z + ũ) → a0

1(u)a
0
2(z + u)

(|t| → ∞) for any u ̸= 0, z and |a1,t(ũ)a2,t(z + ũ)| ≤ C|u|2d−ν|z + u|2d−ν according to (55).
Since h(u) := C|u|2d−ν|z + u|2d−ν does not depend on t and

∫
Rν h(u)du < ∞, Pratt’s

lemma [32] applies to the integral in (53), resulting in (54) and (51). The proof of (52) is
similar and simpler and is omitted.

The question about the asymptotics of the variance of (46) arises, assuming the power-
law asymptotics of the covariance admitting power-law behavior at large lags, which is
tackled in the following proposition:

Proposition 5. (i) For any β > 0, ϕi ∈ Φ, i = 1, 2 as λ → ∞

∫
R2ν

|ϕ1(t1/λ)ϕ2(t2/λ)|(1 ∧ |t1 − t2|−β)dt1dt2 =


O(λν), β > ν,
O(λ2ν−β), β < ν,
O(λν log λ), β = ν.

(56)

(ii) Let r(t), t ∈ Zν satisfy

r(t) = |t|4d−ν
(

L
( t
|t|

)
+ o(1)

)
, |t| → ∞, (57)

where 0 < d < ν/4 and L ∈ C(Sν−1). Then, for any ϕi ∈ Φ, i = 1, 2

lim
λ→∞

λ−ν−4d
∫
R2ν

ϕ1(t1/λ)ϕ2(t2/λ)r([t1]− [t2])dt1dt2 = c(ϕ1, ϕ2), (58)

where
c(ϕ1, ϕ2) :=

∫
R2ν

ϕ1(t1)ϕ2(t2)L
( t1 − t2

|t1 − t2|
) dt1dt2

|t1 − t2|ν−4d . (59)

(iii) Let r ∈ L1(Zν). Then, for any ϕi ∈ Φ, i = 1, 2,

lim
λ→∞

λ−ν
∫
R2ν

ϕ1(t1/λ)ϕ2(t2/λ)r([t1]− [t2])dt1dt2 =
∫
Rν

ϕ1(t)ϕ2(t)dt × ∑
s∈Zν

r(s). (60)

Proof. (i) Write Iλ,β for the l.h.s. of (56). First, let β > ν. Then, Iλ,β ≤ C
∫
Rν |ϕ1(t1/λ)|dt1 ×∫

Rν 1∧|t2 − t1|−βdt2 ≤ C
∫
Rν |ϕ1(t1/λ)|dt1 = Cλν

∫
Rν |ϕ1(t)|dt = O(λν) as

∫
Rν 1∧|t|−βdt <

∞. Next, let β < ν; then, Iλ,β ≤ λ2ν−β Jβ, where Jβ :=
∫
R2ν |ϕ1(t1)ϕ2(t2)||t1 − t2|−βdt1dt2 < ∞

is followed by Jβ ≤ C
∫
Rν |ϕ1(t1)|dt1

∫
|t2−t1|≤1 |t2 − t1|−βdt2 +

∫
R2ν |ϕ1(t1)× ϕ2(t2)|dtdt2 <

∞. Finally, for β = ν we have Iλ,ν = λν Jλ,ν, where Jλ,ν :=
∫
R2ν |ϕ1(t1)× ϕ2(t2)|(λ−1 ∨ |t1 −

t2|)−νdt1dt2 = O(log λ) follows similarly.
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(ii) The convergence of the integral in (59) follows from that of Jβ in part (i), with β = ν− 4d.
Let cλ(ϕ1, ϕ2) denote the integral on the l.h.s. of (58). By a change of variables,

cλ(ϕ1, ϕ2)

λν+4d =
∫
R2ν

ϕ(t1)ϕ(t2)

|t1 − t2|ν−4d L̃λ(t1, t2)dt1dt2,

where L̃λ(t1, t2) → L((t1 − t2)/|t1 − t2|) (λ → ∞) for any t1 ̸= t2. Using Pratt’s lemma [32],
it suffices to prove (58) for L ≡ 1. In the latter case, and with t̃i := [λti]/λ, i = 1, 2, we see
that |L̃λ(t1, t2)| ≤ C

(
|t1 − t2|/(|t̃1 − t̃2| ∨ (1/λ))

)ν−4d ≤ C as in the proof of Proposition 4.
Thus, (58) follows from the DCT.
(iii) Let cλ(ϕ1, ϕ2) be the same as in the proof of (ii). For a large K > 0, write cλ(ϕ1, ϕ2) =

∑3
i=1 ci,λ, where c3,λ :=

∫
|t1−t2|≤K ϕ1(t1/λ)(ϕ2(t2/λ)− ϕ2(t1/λ))r([t1]− [t2])dt1dt2, and

c2,λ :=
∫
|t1−t2|≤K ϕ1(t1/λ)ϕ2(t1/λ)r([t1]− [t2])dt1dt2, and c1,λ :=

∫
|t1−t2|>K ϕ1(t1/λ)×

ϕ2(t2/λ)r([t1] − [t2])dt1dt2. Here, λ−ν|c1,K| ≤ Cλ−ν
∫
Rν |ϕ1(t/λ)|dt × ∑|s|>K |r(s)| ≤

C ∑|s|>K |r(s)| can be made arbitrarily small uniformly in λ ≥ 1 by choosing K large
enough. Next,

λ−ν|c3,λ| ≤ C
∫
Rν

|ϕ1(t)|dt
∫
|s|≤K

∣∣ϕ2
(
t +

s
λ

)
− ϕ2(t)

∣∣ds.

By the boundedness of ϕ2, we see that the integral
∫
|s|≤K |ϕ2(t + s

λ ) − ϕ2(t)|ds →
0 (λ → ∞) a.e. in Rν, and is bounded in t ∈ Rν. Then, since ϕ1 ∈ L1(Rν) we conclude
limλ→∞ λ−ν|c3,λ| = 0 by the DCT. Finally, λ−νc2,λ =

∫
Rν ϕ1(t)ϕ2(t)dt

∫
|s+[λt]−λt|≤K r(−[s])ds,

and we can replace the last integral by the r.h.s. of (60) uniformly in λ provided K is
large enough.

Proposition 5 does not apply to ND covariances satisfying (57) with negative d < 0.
This case is more delicate, since it requires additional regularity conditions of the test
functions and the occurrence of ‘edge effects’. A detailed analysis of this issue in dimension
ν = 2 and for indicator (test) functions of rectangles in R2

+ can be found in [16]. Below, we
present a result in this direction and sufficient conditions on d, ϕi, i = 1, 2 when the limits
take a similar form to (58). We introduce a subclass of test functions:

Φ− :=
{

ϕ ∈ Φ :
∫
Rν

( ∫
Rν

|ϕ(t + s)− ϕ(s)|2ds
)1/2|t|2d−νdt < ∞

}
. (61)

Proposition 6. Let a ∈ L2(Zν) satisfy Assumption 1 with −ν/4 < d < 0. Then, for any
ϕi ∈ Φ−, i = 1, 2 we have

lim
λ→∞

λ−ν−4d
∫
R2ν

ϕ1(t1/λ)ϕ2(t2/λ)[a ⋆ a]([t1]− [t2])dt1dt2 = c−(ϕ1, ϕ2), (62)

where

c−(ϕ1, ϕ2) :=
∫
Rν

2

∏
i=1

( ∫
Rν
(ϕi(t + s)− ϕi(s))|t|2d−νℓ

( t
|t|

)
dt

)
ds. (63)

Proof. The convergence of the integral on the r.h.s. of (63) follows from (61) and the
Minkowski integral inequality: {

∫
Rν(

∫
Rν |ϕ(t + s)− ϕ(s)||t|2d−νdt)2ds}1/2 ≤

∫
Rν ∥ϕ(t +

·)− ϕ(·)∥L2(Rν) ×|t|2d−νdt.
The proof of the convergence in (62) resembles that of (58). Write cλ(ϕ1, ϕ2) for the

integral on the l.h.s. of (62). Using ∑s∈Zν a(s) = 0 we rewrite
∫
Rν ϕi(ti/λ)a([ti]− [s])dti =∫

Rν(ϕi((ti + s)/λ)− ϕi(s/λ))a([ti + s]− [s])dti, i = 1, 2, s ∈ Rν, and

cλ(ϕ1, ϕ2)

λν+4d =
∫
Rν

ds
2

∏
i=1

∫
Rν
(ϕi(ti + s)− ϕi(s))λν−2da([λ(ti + s)]− [λs])dti,
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where the inner integrals tend to those on the r.h.s. of (63) at each s, such that
∫
Rν |ϕi(t+ s)−

ϕi(s)||t|2d−νdt < ∞, i = 1, 2. The remaining details are similar to (58) and are omitted.

Remark 3. The restriction d > −ν/4 in Proposition 6 is not necessary for (63). Indeed, if ϕ ∈ Φ
satisfies the uniform Lipschitz condition |ϕ(t)− ϕ(s)| < C(|t| < 1, s ∈ Rν) then the integral
in (61) converges for 0 > d > −ν/2, implying ϕ ∈ Φ−. On the other hand, for the indicator
functions ϕ(t) = I(t ∈ A) of a bounded Borel set A ⊂ Rν with a ‘regular’ boundary, we typically
have ∥ϕ(t + ·)− ϕ(·)∥L2(Rν) = O(|t|1/2) leading to d > −ν/4.

Relation (48) entails the existence of the scaling limit

lim
λ→∞

λν−2da([λt]) = a∞(t) := |t|2d−νℓ
( t
|t|

)
, λ → ∞, ∀ t ∈ Rν \ {0}, (64)

which is a continuous homogeneous function on Rν: for any λ > 0 we have

a∞(λt) = λ2d−νa∞(t), t ∈ Rν \ {0}. (65)

With the limit function in (64) we associate a Gaussian RF:

Wd(ϕ) :=


∫
Rν(a∞ ⋆ ϕ)(u)W(du), 0 < d < ν/4, ϕ ∈ Φ∫
Rν(a∞ ⋆ ϕ)reg(u)W(du), −ν/4 < d < 0, ϕ ∈ Φ−,∫
Rν ϕ(u)W(du), d = 0, ϕ ∈ Φ,

(66)

where W(du) is a real-valued Gaussian white noise (also called the real-valued Gaussian
random measure) with zero mean and where variance du, (a∞ ⋆ ϕ)(u) =

∫
Rν a∞(t)ϕ(t +

u)dt is the usual and

(a∞ ⋆ ϕ)reg(u) :=
∫
Rν

a∞(t)(ϕ(t + u)− ϕ(u))dt, u ∈ Rν

the ‘regularized’ convolution. For the indicator test function ϕ(t) = I(t ∈ B) of a Borel set
B ⊂ Rν (belonging to Φ−) we see that the latter convolution equals

(a∞ ⋆ ϕ)reg(u) =

{∫
B a∞(t − u)dt, u ̸∈ B,

−
∫
Rν\B a∞(t − u)dt, u ∈ B.

This paper uses the elementary properties of the white noise integrals in (66) only.
Namely,

∫
Rν ϕ(u)W(du) is well-defined for each ϕ ∈ L2(Rν) and has a Gaussian distribu-

tion with zero mean and variance ∥ϕ∥2
L2(Rν)

(see, e.g., [5,7]), implying that
∫
Rν ϕ(u/λ)W(du)

d
= λν/2

∫
Rν ϕ(u)W(du) for each λ > 0. The interested reader is referred to [24] on white

noise calculus on the Schwartz space and to [33] for fractional calculus with respect to
fractional Brownian motion. The existence of stochastic integrals in (66) follows from
Propositions 5 and 6. Particularly, the variances EW2

d (ϕ) = c(ϕ, ϕ) (0 < d < ν/4) and
EW2

d (ϕ) = c−(ϕ, ϕ) (−ν/4 < d < 0) agree with (59) and (63).
Let S(Rν) be the Schwartz space of all infinitely differentiable rapidly decreasing

functions ϕ : Rν → R, i.e., for each p ∈ N and each multi-index α = (α1, . . . , αν) ∈ Nν,

sup
x∈Rν

(1 + |x|)p|∂αϕ(x)| < ∞,

where ∂αϕ(x) := ∂∑ν
i=1 αi ϕ(x)/ ∏ν

i=1 ∂xi (see, e.g., [34] (Section 7) for the properties of
S(Rν) and the dual space S ′(Rν) of tempered Schwartz distributions). Following [35],

we say that a generalized RF Y = {Y(ϕ); ϕ ∈ S(Rν)} is stationary if Y(ϕ) d
= Y(ϕ(·+ a))

(∀ ϕ ∈ S(Rν), a ∈ Rν) and H-self-similar (H ∈ R) if Y(ϕ) d
= λH−νY(ϕ(·/λ))

(∀ ϕ ∈ S(Rν), λ > 0). As noted in Remark 3, S(Rν) ⊂ Φ− ⊂ Φ; hence, (66) is well-defined
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for any ϕ ∈ S(Rν) and represents stationary generalized RFs on S(Rν). By the scaling

property in (65) and a change of variables, we see that Wd(ϕ)
d
= λH(d)−νWd(ϕ(·/λ)) (∀ϕ ∈

S(Rν)); hence, RF Wd in (66) is H(d)-self-similar, with

H(d) := (ν − 4d)/2 ∈ (0, ν), −ν/4 < d < ν/4.

The RF in (66) appear as scaling limits in the following corollary:

Corollary 3. Let X be a linear RF satisfying Assumption 1 and Xλ(ϕ) be defined in (46). Then,

λ−(ν+4d)/2Xλ(ϕ)
d−→


Wd(ϕ), 0 < d < ν/4, ∀ ϕ ∈ Φ,
Wd(ϕ), −ν/4 < d < 0, ∀ ϕ ∈ Φ−,
σW0(ϕ), d = 0, ∀ ϕ ∈ Φ,

where σ2 :=
(

∑t∈Zν a(t)
)2.

Proof. Since (46) writes as a linear form Xλ(ϕ) = ∑u∈Zν ε(u)
∫
Rν ϕ(t/λ)a([t]− u)dt in i.i.d.

r.v.s, we can use the Lindeberg-type condition (see also [3] (Corollary 4.3.1)). Accordingly,
it suffices to show that

sup
u∈Zν

∣∣ ∫
Rν

ϕ(t/λ)a([t]− u)dt
∣∣ = o(

√
Var(Xλ(ϕ))), λ → ∞ (67)

holds in each case, d > 0, d < 0, d = 0, of the corollary. The behavior of the last variance
is detailed in Propositions 5 and 6, and it grows to infinity in each case of d. On the other
hand, the l.h.s. of (67) does not exceed ∥ϕ∥L∞(Rν)∥a∥L1(Zν), which is bounded in cases
d < 0 and d = 0. Finally, in case d > 0 we see that the l.h.s. of (67) does not exceed
∥ϕ(·/λ)∥L2(Rν)∥a∥L2(Zν) = O(λν/2) and (67) holds, since d > 0.

Author Contributions: Conceptualization, D.S.; investigation, V.P.; writing—original draft prepara-
tion, D.S. and V.P.; writing—review and editing, D.S. and V.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We thank two anonymous referees for useful comments. We are grateful to
Maria Eulalia Vares for helpful reference and Rajendra Bhansali for drawing our attention to some
issues discussed in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer: New York, NY, USA, 1991.
2. Doukhan, P.; Oppenheim, G.; Taqqu, M.S. (Eds.) Theory and Applications of Long-Range Dependence; Birkhäuser: Boston, MA,

USA, 2003.
3. Giraitis, L.; Koul, H.L.; Surgailis, D. Large Sample Inference for Long Memory Processes; Imperial College Press: London, UK, 2012.
4. Pipiras, V.; Taqqu, M.S. Long-Range Dependence and Self-Similarity; Cambridge University Press: Cambridge, UK, 2017.
5. Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes; Chapman and Hall: New York, NY, USA, 1994.
6. Beran, J. Statistics for Long-Memory Processes; Monographs on Statistics and Applied Probability; Chapman and Hall: New York,

NY, USA, 1994; Volume 61.
7. Samorodnitsky, G. Stochastic Processes and Long Range Dependence; Springer: New York, NY, USA, 2016.
8. Sabzikar, F.; Surgailis, D. Invariance principles for tempered fractionally integrated processes. Stoch. Processes Appl. 2018,

128, 3419–3438. [CrossRef]
9. Dobrushin, R.L.; Major, P. Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor.

Verwandte Geb. 1979, 50, 27–52. [CrossRef]

http://doi.org/10.1016/j.spa.2017.11.004
http://dx.doi.org/10.1007/BF00535673


Fractal Fract. 2024, 8, 353 20 of 20

10. Damarackas, J.; Paulauskas, V. Spectral covariance and limit theorems for random fields with infinite variance. J. Multivar. Anal.
2017, 153, 156–175. [CrossRef]

11. Damarackas, J.; Paulauskas, V. On Lamperti type limit theorem and scaling transition for random fields. J. Math. Anal. Appl. 2021,
497, 124852. [CrossRef]
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