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Abstract: In this paper, a fractional active disturbance rejection control (FADRC) scheme is proposed
for remotely operated vehicles (ROVs) to enhance high-precision positioning and docking control
in the presence of ocean current disturbances and model uncertainties. The scheme comprises a
double closed-loop fractional-order PIλDµ controller (DFOPID) and a model-assisted finite-time
sliding-mode extended state observer (MFSESO). Among them, DFOPID effectively compensates
for non-matching disturbances, while its fractional-order term enhances the dynamic performance
and steady-state accuracy of the system. MFSESO contributes to enhancing the estimation accuracy
through the integration of sliding-mode technology and model information, ensuring the finite-time
convergence of observation errors. Numerical simulations and pool experiments have shown that the
proposed control scheme can effectively resist disturbances and successfully complete high-precision
tasks in the absence of an accurate model. This underscores the independence of this control scheme
on accurate model data of an operational ROV. Meanwhile, it also has the advantages of a simple
structure and easy parameter tuning. The FADRC scheme presented in this paper holds practical
significance and can serve as a valuable reference for applications involving ROVs.

Keywords: fractional active disturbance rejection control (FADRC); double closed-loop fractional-
order PIλDµ controller (DFOPID); model-assisted finite-time sliding-mode extended state observer
(MFSESO); remotely operated vehicle (ROV); remotely operated vehicle (ROV)

1. Introduction

ROVs play a significant role in the realm of underwater robotics due to their cost-
effectiveness, safety features, and robust operational capacities. These devices have found
extensive application in diverse fields, including marine environmental surveillance, seabed
topography assessments, underwater search-and-rescue operations, marine resource collec-
tion, etc. [1]. The above tasks require ROVs to have excellent control performance. This
enables them to carry out high-precision docking operations with underwater devices
to facilitate ROV submarine operations, underwater recovery, underwater device data
backhaul, fault inspection, and power supply replacement, among other functions. How-
ever, challenges arise in achieving high-precision control of ROVs due to difficulties in
accurately acquiring the ROV model and external disturbances like ocean currents in the
marine environment.

In recent years, many researchers have dedicated themselves to studying the position-
ing and docking control of underwater vehicles. Hiroshi proposed the linear parameter-
varying model predictive control (MPC) method for the docking operation, and simulation
results show that this control method can effectively handle the influence of various ocean
current disturbances [2]. Ohrem designed a nonlinear robust adaptive backstepping con-
troller to ensure the dynamic positioning of ROVs in environments with model uncertainty
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and unknown disturbances. Extensive field trials in aquaculture applications have been
successfully conducted using this controller [3]. Xie proposed a 3D mobile docking control
method based on backstepping sliding mode control (SMC), which efficiently completed
the underactuated autonomous underwater vehicle (AUV) mobile docking task in the
presence of unknown ocean current disturbances [4]. Wu proposed a hybrid proportional
integral derivative (PID) controller for a work-class ROV to achieve high-performance
maneuvering [5]. Song developed an improved model-based PI robust controller using a
nominal model for the precise positioning control of a hexagonal multi-vector propulsion
ROV with communication time-delay constraints [6]. Li utilized a linear ADRC scheme
that combines a reduced-order extended state observer and approximate time-optimal con-
trol; simulation results confirmed its effective control performance [7]. Zhang developed
a model-free docking controller using deep reinforcement learning to complete three-
dimensional docking tasks under disturbances [8]. Wang proposed a two-step adaptive
control method to solve the planar-type docking problem, seamlessly combining horizontal
dynamic positioning and visual servo docking [9].

From the above discussion, it can be seen that the control methods for the positioning
and docking of underwater vehicles can be roughly divided into model-based control
paradigms, such as SMC, MPC, and backstepping, and data-based control paradigms, such
as PID. Model-based control paradigms are mathematically rigorous and demonstrate
excellent theoretical control performance, but their application is limited. The key point
is that the mathematical model of the system object may not be entirely accurate in most
scenarios. Operational ROVs are often subject to unknown disturbances from umbilical
cables and ocean currents. Additionally, depending on the operation’s content, ROVs often
require the replacement of manipulators and other work tools, making it more difficult to
obtain an accurate dynamic model. A data-based control paradigm has a simple structure,
allows easy parameter tuning, and is economical and practical. Employing data-based
control paradigms is still the most widely used strategy in control. Traditional PID control
is based on feedback error correction, which inherently exhibits a hysteresis effect and a
limited anti-disturbance capability [10]. This characteristic makes it less ideal for control
scenarios demanding high accuracy. Therefore, the proposal of a control paradigm that can
combine the advantages of both is urgently needed.

As a new nonlinear robust control technique, ADRC can unify the above two control
paradigms by incorporating the nominal model of the system in the observer design.
Nonlinear ADRC mainly consists of a tracking differentiator, an extended state observer,
and a nonlinear-state error feedback control law. The core idea is to consider the nominal
model or integral series type of the system as the standard type. Simultaneously, the
components of the system dynamics that differ from the standard type, such as system
uncertainty and external disturbances, are considered as total disturbances. An observer
is used to estimate the total disturbance in real time and eliminate it. Finally, the error is
eradicated through the application of a nonlinear-state error feedback control law [11]. This
technique exhibits good robustness, gives a fast response, has a strong anti-disturbance
ability, and does not rely on the accurate mathematical model of the controlled object. It
can be used when the model is completely unknown or when some information about
the model is known. In light of the limitations of nonlinear ADRC due to its complex
structure, numerous control parameters, and challenging tuning process, the linear ADRC
method simplifies the structure by converting all controllers and extended state observers
into a linear form. This approach allows for individual adjustments to be made to the
controller bandwidth and observer bandwidth, thereby enhancing the effectiveness of
ADRC in engineering applications [12]. Therefore, ADRC has attracted the attention of
many researchers in the field of underwater vehicle motion control. Liu introduced the
ADRC technique to achieve depth control for autonomous underwater vehicle (AUV). He
utilized an improved speed saturation tracking differentiator to enhance the controller’s
adaptability to control instructions [13]. Wang utilized ADRC-based dynamic controllers in
AUV formations to ensure that followers and leaders consistently maintained the desired
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distance [14]. Gao proposed an ADRC method based on dynamic inversion to achieve
motion control of underwater vehicle-manipulator systems (UVMSs) [15]. Zhou designed
a robust dynamic heading-tracking control method based on an improved ADRC method
and an enhanced anti-convolution compensator. Zhou’s study confirmed that the proposed
control method can achieve high accuracy in heading tracking [16]. Li utilized ADRC
technology to develop a tandem-level ADRC controller for a water–air multi-rotor vehicle.
Additionally, Li introduced the particle swarm optimization (PSO) algorithm to efficiently
adjust the controller parameters, ensuring that the controller meets the performance criteria
in challenging underwater environments [17]. Liu proposed a depth-tracking method
for underactuated AUVs, using an ADRC framework to compensate for the complex
unknown pitch dynamics by approximating them into an integral series; the effectiveness
and strong disturbance rejection capabilities of the proposed method were verified with
field comparison experiments [18]. Nevertheless, many of the research studies referenced
here fail to consider the effects of non-matching disturbances, while the conventional
ADRC’s PID controller encounters challenges in achieving precise control performance at a
high level.

Fractional calculus is an extension of traditional calculus that describes the fractal
dimension of a space. Podlubny first applied the concept of fractional order to controller
design and proposed the fractional-order PIλDµ controller [19]. Compared with the integer
PID controller, a fractional-order PIλDµ controller has two additional adjustable parameters,
namely integral order λ and differential order µ, which can obtain more flexible amplitude–
phase characteristics, so as to achieve high-precision and fast-response control performance.
At the same time, the fractional-order PIλDµ controller exhibits greater adaptability to
parameter changes in the controlled object of the system. When the parameter of the con-
trolled object changes within a certain allowable range, the system characteristics remain
basically unchanged, indicating that the fractional-order PIλDµ controller exhibits strong
robustness. Fractional-order PIλDµ controllers have been extensively researched in the field
of underwater vehicle control. For AUV heading control, Liu designed a robust fractional-
order PIλDµ controller that effectively resists parametric uncertainty and demonstrates
good robustness and dynamic performance [20]. Zhu proposed a fractional-order control
method based on fuzzy logic and achieved good dynamic and steady-state characteristics
through an AUV depth control simulation [21]. Li proposed an adaptive fractional-order
non-singular terminal sliding-mode trajectory-tracking controller for an underwater robot,
which can achieve fast switching gain, avoid over-tuning, and effectively improve the accu-
racy and robustness [22]. Zhang proposed a nonlinear fractional-order PDµ controller based
on saturation, which exhibits good dynamic performance and robustness. Additionally, it
offers the advantages of a simple structure and easy implementation [23]. Cui designed a
single-input fractional fuzzy logic controller for an unmanned underwater vehicle (UUV)
motion control system. Simulation results demonstrate that Cui’s control algorithm ex-
hibits good stability and transient performance [24]. Liu proposed a fractional-order PIλ

controller for UUVs that guarantees both frequency-domain and time-domain behavior, of-
fering greater flexibility in enhancing the system robustness and transient performance [25].
Hansan designed an adaptive neural network with a nonlinear fractional-order PIλDµ

controller for the path-tracking problem of underwater vehicles [26]. ROV positioning and
docking operations have high requirements for the robustness and dynamic performance
of the control system. The application of fractional-order PIλDµ control in this task has not
been reported. Simultaneously, the faster dynamic response of fractional-order PIλDµ can
more effectively reduce the observation error of the observer in ADRC. Therefore, FADRC
can combine the advantages of ADRC and fractional-order PIλDµ control, resulting in
superior control performance. At the same time, it also ensures the simple structure of the
controller and is easy to implement in practice.

Aiming to address the challenges of high-precision positioning and docking control of
ROVs under ocean current disturbances and model uncertainties, this paper proposes an
FADRC scheme. The proposed scheme consists of a double closed-loop fractional-order
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PIλDµ controller and a model-assisted finite-time sliding-mode extended state observer.
Regarding the existing research on ADRC for ROVs, compared to previous studies focusing
on improving the observer and the tracking differentiator algorithms themselves, this paper
innovatively introduces a fractional-order PIλDµ controller and adds the observation of the
velocity term in the kinematic channel, enhancing the robustness of high-precision ROV
operations and effectively reducing the impact of matching and non-matching disturbances.
Its main contributions are as follows:

1. In order to better compensate for the non-matching disturbance caused by ocean
currents on the kinematics of ROVs and to generate a smooth and ideal transition
process, a double closed-loop control structure composed of a position control loop
and a velocity control loop is adopted. In order to effectively enhance the robustness
and dynamic performance of high-precision positioning and docking control of ROVs,
a fractional-order PIλDµ controller is introduced in the velocity control loop. Its
integral and differential orders can be arbitrarily selected, providing more flexibility
than an integer-order controller. At the same time, the fractional-order controller
exhibits strong robustness to changes in the parameters of the controlled object;

2. The ROV nominal model is integrated into the extended state observer, and a model-
assisted finite-time sliding-mode extended state observer is designed to eliminate the
dependence on the accurate model. A Lyapunov function is formulated to demon-
strate the finite-time convergence of the observation error. The introduction of this
nominal model can effectively reduce the gain of the observer and improve the es-
timation accuracy. The sliding-mode technology can enhance the robustness of the
observer, accelerate error convergence [27], and further improve the performance of
the ROV positioning and docking control;

3. Numerical simulations and pool experiments are conducted on the ROV to perform
positioning and docking tasks in the presence of ocean current disturbances and
model uncertainties. Compared to the currently most widely used PID and ADRC
method, the control scheme proposed in this paper has advantages in high-precision
operations.

The remainder of this paper is arranged as follows: Section 2 introduces the kinematic
and dynamic models of an operational ROV in the presence of ocean currents and describes
the control objectives. Section 3 introduces the FADRC scheme, discusses the double closed-
loop fractional-order PIλDµ controller, and elaborates on the model-assisted finite-time
sliding-mode extended state observer. Section 4 elaborates on numerical simulations and
pool experiments, which verify the advantages of the proposed scheme. The conclusions
are provided in Section 5.

2. ROV Modeling and Problem Formulation

This section provides a detailed analysis of the kinematics and dynamics of an oper-
ational ROV in an ocean current environment. It also outlines the control objectives for
positioning and docking.

2.1. ROV Kinematics

As shown in Figure 1, the inertial coordinate system {I} and the body coordinate
system {B} are established to describe the ROV’s spatial motion. Among them, η =

[x, y, z, ϕ, θ, ψ]T ∈ R6 represents the position and direction angle of the ROV in the inertial
coordinate system {I} and the body coordinate system {B}, and v = [u, v, w, p, q, r]T ∈ R6

represents the linear velocity and angular velocity of the ROV under the body coordinate
system {B}, while τ = [X, Y, Z, K, M, N]T ∈ R6 represents the external force and moment
acting on the ROV under the body coordinate system {B}. The kinematic model of the ROV
considering the current field is

.
η = J(η)vr + v f (1)
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In Equation (1), J(η) ∈ R6×6 represents the velocity transformation matrix of the ROV
between the inertial coordinate system and the body coordinate system, and vr ∈ R6

represents the velocity vector of the ROV relative to the ocean current under the body
coordinate system {B}, while v f ∈ R6 represents the velocity vector of the ocean current
under the inertial coordinate system {I}. The relationship between vr, v f , and v is described
as follows: 

.
η = J(η)vr + v f
v = vr + vc
v f = J(η)vc

(2)

vc ∈ R6 represents the velocity vector of the ocean current in the body coordinate system {B}.
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ROVs can obtain vr using their own inertial guidance equipment, but it is usually
difficult to obtain v f . When an ROV performs high-precision tasks, v f needs to be estimated
and compensated. Since v f and

.
v f satisfy the law of conservation of fluid energy [28], the

following reasonable assumption can be made:

Assumption 1. The ocean current velocity v f and its derivative
.
v f satisfy the bounded condition

∥v f ∥2 ≤ k f , ∥ .
v f ∥2 ≤ kd f , where ∥·∥2 represents the Euclidean norm. k f and kd f are definite

constants.

2.2. ROV Dynamics

The dynamic model of the ROV is depicted in Equation (3):

M
.
vr + C(vr)vr + D(vr)vr + g(η) = τT + τD (3)

M ∈ R6×6, C ∈ R6×6, D ∈ R6×6, g ∈ R6, τT ∈ R6, and τD ∈ R6 represent the inertial
matrix; the Coriolis and centripetal force matrix; the damping matrix; the restoring force
matrix; the control force and moment vector; and the lumped disturbance vector under
the nominal model, respectively. Among them, τD = τF + τE. τF ∈ R6 represents the
disturbance vector caused by ocean currents. Since it is difficult to obtain an accurate model
of the ROV, τE ∈ R6 represents the system model uncertainty caused by umbilical cables,
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etc., which is the error between the accurate model and the nominal model. τF is given by
calculating Equation (4):

τF = −MRB
.
vc − CRB(vr + vc)vc − CRB(vc)vr (4)

where MRB ∈ R6×6 represents the rigid-body inertia matrix and CRB ∈ R6×6 represents the
rigid-body Coriolis force and centripetal force matrix.

Assumption 2. The lumped disturbance τD and its derivative
.
τD satisfy the bounded condition

∥τD∥2 ≤ kD,
∥∥ .

τD
∥∥

2 ≤ kdD, where kD and kdD are definite constants.

2.3. Distribution of Thrust Forces

The operational ROV studied in this paper is equipped with four horizontal thrusters
and four vertical thrusters. The distribution relationship between the control force and
moment τT and the thrust of each thruster is

τT = BU, (5)

where U ∈ R8 represents the thrust vector generated by the thruster and B ∈ R6×8

represents the ROV thrust distribution matrix. The thrusters can provide a thrust range of
±4000 N.

2.4. Control Objectives

The control objectives of this paper are to design a high-precision motion control
scheme for an operational ROV that is affected by ocean current disturbance and cannot
obtain an accurate model. The aim is to enable the ROV to achieve precise positioning
and docking with the underwater tool platform. Due to the structural requirements of the
underwater tool platform, the positioning error of the ROV should be less than 0.05 m, and
the error of each attitude angle should be less than 1◦.

3. Model-Assisted Finite-Time Sliding-Mode Extended State Observer

This section provides a detailed description and proof of the model-assisted finite-
time sliding-mode extended state observer. First, the operational ROV nominal model is
integrated into the extended state observer. The known model information can reduce the
computational burden of the extended state observer and improve the estimation accuracy
of disturbance and uncertainty. At the same time, sliding-mode technology is introduced
to further enhance the robustness and convergence velocity of the observer.

3.1. Design of MFSESO

From the above discussion on modeling the kinematics and dynamics of the opera-
tional ROV, it can be seen that the ocean current velocity v f and the lumped disturbance
τD are unknown disturbance quantities that need to be estimated. Therefore, these two
variables are set as the extended state variables of the system, and the ROV extended state
equation is established as follows:

.
x1 = x2 + f1(x1) + hu(t)
.
x2 =

.
x2

y = x1

(6)

In Equation (6), x =
[
xT

1 , xT
2
]T ∈ R24. x1 =

[
ηT , vT

r
]T ∈ R12 represents the state vector of

the system, which can be measured with sensors; x2 =
[
vT

f , τT
MD

]T
∈ R12 represents the

extended state vector of the system, which needs to be estimated using the observer. The
lump-like disturbance vector τMD = M−1τD ∈ R6. f1(x1) =

[
J(η)vr,−M−1f(vr, η)

]T ∈
R12 is the known function vector of the system, where f(vr, η) = C(vr)vr + D(vr)vr +
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g(η) ∈ R6. h =
[
06×6, M−1]T ∈ R12×6 is the known function matrix of the system.

u(t) = τT ∈ R6 indicates the system control input and y ∈ R12 indicates the system output.
According to the actual operational conditions of the ROV, it can be assumed that each
element in the state vectors x1 and x2 of the system is bounded.

In order to estimate the ocean current velocity v f and lumped disturbance τD, the equa-
tion for the model-assisted finite-time sliding-mode extended state observer is as follows:{ .

x̂1 = x̂2 + f1(x1) + hu(t) + ωι1(x1 − x̂1) + κ1|x1 − x̂1|
p
q sgn(x1 − x̂1)

.
x̂2 = ω2ι2(x1 − x̂1) + ωκ2|x1 − x̂1|

p
q sgn(x1 − x̂1)

(7)

In Equation (7), x̂ =
[
x̂T

1 , x̂T
2
]T ∈ R24 represents the state variable of MFSESO, which

estimates the state variable x, where x̂1 =
[
η̂T , v̂T

r
]T ∈ R12, x̂2 =

[
v̂T

f , τ̂T
MD

]T
∈ R12, and

τ̂D = Mτ̂MD ∈ R6. ω is the observer scale parameter; ι1 and ι2 are the observer gain
parameters; and κ1 and κ2 are the observer sliding-mode gain parameters, both of which
are definite positive real numbers. sgn represents the sign function, and p and q are the
observer quasi-sliding-mode parameters, both of which are positive odd numbers, and
p < q. In the aforementioned parameters, the correlation between x̂1 and x̂2 can be modified
through the adjustment of ω. By selecting appropriate values for ι1 and ι2, the poles of
the MFSESO characteristic equation can be determined, thereby affecting the convergence
performance of the observer. κ1 and κ2 enhance the robustness of the observer. At the same

time, |x1 − x̂1|
p
q sgn(x1 − x̂1) replaces the traditional sign function, effectively reducing the

chattering phenomenon of sliding mode control.

3.2. Convergence Analysis of MFSESO

Theorem 1. For the ROV extended state equation established above in Equation (6), the observation
error of MFSESO designed in Equation (7) can converge to zero in finite time.

The observation error state equation can be obtained by differentiating the system’s
extended state equation in Equation (6) and the MFSESO equation in Equation (7), as shown
in Equation (8):

[ .
e1.
e2

]
=

[
−ωι1I12×12 ωI12×12
−ωι2I12×12 012×12

][
e1
e2

]
+

[
012×1.
x2/ω

]
−

[
κ1|e1|

p
q sgn(e1)

κ2|e1|
p
q sgn(e1)

]
(8)

where e =
[
eT

1 , eT
2
]T ∈ R24; e1 = x1 − x̂1 and e2 = x2

ω − x̂2
ω ; A = ω

[
−ι1I12×12 I12×12
−ι2I12×12 012×12

]
∈

R24×24; D =

[
012×1.
x2/ω

]
∈ R24; and B =

[
κ1|e1|

p
q sgn(e1)

κ2|e1|
p
q sgn(e1)

]
∈ R24. When the observer gain

parameters ι1 and ι2 satisfy ι1
2 − 4ι2 > 0, all eigenvalues of A have a negative real part.

That is, A is the Hurwitz matrix.

Lemma 1 (Lyapunov Matrix Equation). If the matrix A is a Hurwitz matrix, then for any given
symmetric positive definite matrix Q ∈ R24×24, there exists a symmetric positive definite matrix
P ∈ R24×24, such that ATP + PA = −Q is satisfied.

To facilitate calculation, Q = I is selected, matrix A is brought into Lemma 1, and P
satisfying the condition is calculated:

P =

[
P11 P12
P21 P22

]
=

[
1

2ω
ι2+1

ι1
I12×12 − 1

2ω I12×12

− 1
2ω I12×12

1
2ω

ι1
2+ι2+1

ι1ι2
I12×12

]
(9)
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From the above, ∥P∥F =
√

3
ω

[(
ι2+1

ι1

)2
+

(
ι1

2+ι2+1
ι1ι2

)2
+ 2

] 1
2
; ∥·∥F is the Fibonacci norm.

To prove the convergence of the MFSESO system, the Lyapunov function of the system
is chosen:

V = eTPe. (10)

Taking the derivative of the Lyapunov function V,

.
V = eTP

.
e +

.
eTPe. (11)

Substituting Equation (8) into Equation (11) yields the following:

.
V = eT

(
PA + ATP

)
e + 2eTPD − 2eTPB

= −∥e∥2
2 + 2eTPD − 2eTPB

(12)

According to Assumption 1 and Assumption 2, it can be seen that
∥∥∥ .

v f

∥∥∥
2
≤ kd f and

∥∥ .
τMD

∥∥
2 ≤∥∥M−1

∥∥
F

∥∥ .
τD

∥∥
2 ≤ kdD

∥∥M−1
∥∥

F. Therefore, when
∥∥D

∥∥
2 ≤

∥∥∥∥ kd f
kdD

∥∥M−1
∥∥

F

∥∥∥∥
2
/ω = MD, we

obtain the following:
2eTPD ≤ 2MD∥P∥F∥e∥2. (13)

Meanwhile, since P is a symmetric positive definite matrix, there is an orthogonal matrix
O ∈ R24×24, so that OTPO = Λ ∈ R24×24 is a diagonal matrix; thus, we can obtain
Equation (14):

2eTPB = 2eTOTΛOB
= 2(Oe)TΛ

(
OB

)
≥ 2λminmin{κ1, κ2}

 24
∑

i=1

ei|ei|
p
q sgn(ei)


≥ 2λminmin{κ1, κ2}

 24
∑

i=1
|ei|

q + p
q


= 2λminmin{κ1, κ2}∥e∥(q+p)/q

(q+p)/q

≥ 2αλminmin{κ1, κ2}∥e∥(q+p)/q
2

, (14)

where ∥·∥(q+p)/q is the p-norm with exponent (q + p)/q, and

λmin =
l2
1+(l2+1)2−

√
[l2

1+(l2+1)2][l2
1+(l2−1)2]

4ωl1l2
is the minimum eigenvalue of P. Due to the

equivalence of vector norms, there exists ∥e∥(q+p)/q
(q+p)/q ≥ α∥e∥(q+p)/q

2 , α > 0. If we let

MB= 2αλminmin{κ1, κ2}, then −2eTPB ≤ −MB∥e∥(q+p)/q
2 . To sum up, Equation (15) can

be obtained: .
V ≤ −∥e∥2

2 − MB∥e∥(q+p)/q
2 + 2MD∥P∥F∥e∥2 (15)

Lemma 2 ([29]). Consider the following nonlinear systems:

.
x = f (x), (16)

where f (0) = 0, x ∈ Rn, f : U0 → Rn is a continuous function in an open neighborhood U0
containing the origin. Suppose there is a continuous positive definite function V(x) : U0 → Rn ,
and that there are real numbers a, b, c > 0 and d ∈ (0.5, 1), and an open neighborhood Û ⊆ U0
containing the origin, such that the following equation holds:
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.
V ≤ −aVd − bV + cV

1
2 . (17)

Then, the origin of the system in Equation (16) is in fast finite time, uniformly bounded, sta-
ble. This implies that x converges to a stable region Q =

{
x : χVd− 1

2 + δV
1
2 < c

}
, χ ∈

(0, a), δ ∈ (0, b). And the stable time T depends on the initial value x(0), satisfying T ≤
1

(b−δ)(1−d) ln
(

1 +
(b−δ)Vx(0)

1−d

a−χ

)
.

The following can be seen from Equation (10):

λmin∥e∥2
2 ≤ V ≤ ∥P∥F∥e∥2

2. (18)

According to Equations (15) and (18), we obtain

.
V ≤ −MB∥P∥

− q+p
2q

F V
q+p
2q − ∥P∥−1

F V + 2MDλ
− 1

2
min∥P∥FV

1
2

= −a0Vd0 − b0V + c0V
1
2

, (19)

where a0 = MB∥P∥
− q+p

2q
F , b0 = ∥P∥−1

F , c0 = 2MDλ
− 1

2
min∥P∥F, and d0 = q+p

2q . According to
Lemma (2), it can be seen that the observation error e can converge to the stable region
Q0 =

{
e : χ0Vd0− 1

2 + δ0V
1
2 < c0

}
, χ0 ∈ (0, a0), δ0 ∈ (0, b0) in a finite time. And the

convergence time satisfies T ≤ 1
(b0−δ0)(1−d0)

ln
(

1 +
(b0−δ0)Ve(0)

1−d0

a0−χ0

)
, where the value of e

at time t = 0 is defined as e(0).
The above proves that the observation error e of MFSESO can converge to the stable

region within t = T time, indicating that MFSESO can achieve finite-time estimation of
velocity disturbance v f and lumped disturbance τD. This completes the proof of Theorem 1.

4. Double Closed-Loop Fractional-Order PIλDµ Controller

It can be seen from the previous discussion that ocean current velocity v f is mainly
reflected in the ROV kinematic model and is not in the same channel as the system control
input τT , which belongs to non-matching disturbance. The lumped disturbance τE acts on
the dynamic model and belongs to the matching disturbance. It is difficult to directly offset
the influence of non-matching disturbance simply with the input τT in the dynamic model.
A double closed-loop controller should be designed to compensate for the disturbance of
ocean current velocity v f in the position loop and the disturbance of lumped disturbance τE

in the velocity loop. A fractional-order PIλDµ controller not only preserves the advantages
of the simplicity, practicality, and easy tuning of the traditional PID controller, but also
effectively enhances the robustness and dynamic capability of a dynamic system. So, the
fractional-order PIλDµ controller is introduced into the velocity loop control.

Design of DFOPID

The commonly used definitions of fractional calculus are the Riemann–Lioucille defi-
nition, the Grunwald Letnikov definition, and the Caputo definition [19]. The Riemann–
Lioucille definition and the Grunwald Letnikov definition require the value of the fractional
derivative of the signal at the initial moment to be known, while the Caputo definition
requires the value of the signal and its integer derivative at the initial moment to be known,
which is closer to practical applications. Therefore, the double closed-loop fractional-order
PIλDµ controller designed in this paper adopts the Caputo definition, as follows:

For α ∈ R+, with m− 1 < α ≤ m and m ∈ Z+, the α-order Caputo fractional derivative
of the function y(t) defined on [t0, t] is
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t0 Dα
t y(t) =

1
Γ(m − α)

∫ t

t0

y(m)(τ)

(t − τ)1+α−m dτ. (20)

For γ ∈ R+, the γ-order Caputo fractional integral of function y(t) defined on [t0, t] is

t0 D−γ
t y(t) =

1
Γ(γ)

∫ t

t0

y(τ)

(t − τ)1−γ
dτ. (21)

Among them, the Gamma function Γ(x) is defined as

Γ(x) =
∫ ∞

0
tx−1e−tdt. (22)

The output expression of the fractional-order PIλDµ controller in the time domain is

u(t) = kpe(t) + ki0D−λe(t) + kd0Dµe(t), (23)

where e(t) = r(t) − y(t) is the system error signal, which serves as the input signal of
the fractional-order PIλDµ controller; r(t) is the reference input signal of the system; and
y(t) is the actual input signal of the system. kp, ki, and kd represent the proportional,
integral, and differential gains, respectively. λ and µ represent fractional orders of the
integral and differential terms, respectively. The ranges of these values are 0 < λ < 2 and
0 < µ < 2, respectively. It can be seen from the above discussion that due to the presence
of fractional-order operators, the fractional-order PIλDµ controller can adjust the low- and
high-frequency characteristics of the closed-loop system more flexibly by modifying the
values of λ and µ. Simultaneously, they are less sensitive to the parameter changes in
the control system. When the control parameters and disturbance vary within a certain
interval, the system performance does not change significantly. The system has stronger
robustness. Meanwhile, fractional PIλDµ is an extension of integer PID, naturally inheriting
the advantages of the simple structure and easy tuning of integer PID.

The position loop controller is primarily responsible for eliminating the non-matching
disturbance caused by the ocean current velocity v f and guiding the operational ROV to
achieve a smooth transition process. The position loop controller designed in this paper
incorporates a saturated nonlinear link at the input of the PID algorithm to facilitate the
ROV in reaching the target position at an optimal velocity:

vd(t) = kηpeη(t) + kηi

∫ t

t0

eη(t)dt + kηd
deη(t)

dt
. (24)

In Equation (24), eη(i) = sat
(
eη(i)

)
, eη(i) = ηd(i)− η(i), and i = 1, . . . , 6, where ηd is the

desired position, sat
(
eη(i)

)
=


∆(i), eη(i) > ∆(i)
eη(i),

∣∣eη(i)
∣∣ ≤ ∆(i)

−∆(i), eη(i) < −∆(i)
, ∆ ∈ R6 is the boundary-layer

vector, and kη j ∈ R6×6, j = p, i, d is the control gain diagonal matrix.
Due to the increased demands of ROV dynamics for control robustness and dy-

namic performance, a fractional-order PIλDµ controller is designed to serve as the velocity
loop controller:

τc(t) = kvpev(t) + kvi0D−λv ev(t) + kvd0Dµv ev(t). (25)

In Equation (25), ev = vd − vr − v̂c ∈ R6, v̂c = J−1(η)v̂ f , where vd is desired velocity,
kvj ∈ R6×6, j = p, i, d is the control gain diagonal matrix, and 0Div ej(t) ∈ R6×6, i = −λ, µ
is the fractional calculus diagonal matrix.

The FADRC scheme developed for the ROV to perform high-precision positioning and
docking control tasks is illustrated in Figure 2. The FADRC scheme, outlined with a red
chain line in the figure, consists of DFOPID and MFSESO. DFOPID comprises a position
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loop controller and a velocity loop controller. The position loop controller utilizes the
position error η to generate the desired velocity vd. The velocity error ev is obtained by
subtracting the ROV velocity vr and the ocean current velocity observation v̂c from the
desired velocity vd. The velocity loop controller determines the DFOPID controller output
τC based on the velocity error ev. MFSESO, based on inputs such as the ROV position
η, the ROV velocity vr, and the FADRC scheme output τT , calculates the ocean current
velocity observation v̂ f and the lumped disturbance observation τ̂D. The FADRC scheme
output τT is derived from the disparity between the DFOPID controller output τC and the
lumped disturbance observation τ̂D. In summary, the FADRC scheme incorporates the
ocean current velocity observation value v̂ f and the lumped disturbance observation value
τ̂D estimated by MFSESO into the double closed-loop controller, so that the non-matching
disturbance is transformed into matching disturbance, making it easier to mitigate their
impact. During the transition process, DFOPID ensures accurate and rapid tracking of the
ROV’s position and velocity in relation to the target value. This enhances the robustness
and dynamic characteristics of the entire system.
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Figure 2. FADRC structural framework. FADRC consists of DFOPID and MFSESO, which is the part
outlined with the red chain line. Desired position ηd (defined in line 373); ROV position η (defined in
line 195); position error eη (defined in line 373); velocity error ev (defined in line 379); desired velocity
vd (defined in line 379); ROV velocity vr (defined in line 202) under the body coordinate system
{B}; ocean current velocity vc (defined in line 207) and velocity observation v̂c (defined in line 379)
under the body coordinate system {B}; ocean current velocity v f (defined in line 204) and velocity
observation v̂ f (defined in line 271) under the inertial coordinate system {I}; lumped disturbance
τD (defined in line 220) and lumped disturbance observation τ̂D (defined in line 272); lump-like
disturbance τMD (defined in line 262) and lump-like disturbance observation τ̂MD (defined in line
272); DFOPID controller output τC (defined in line 378); FADRC scheme output τT (defined in line
222); inertial matrix M (defined in line 220); velocity transformation matrix J(η) (defined in line 201).

5. Numerical Simulations and Pool Experiments

In order to verify the effectiveness and advanced nature of the control scheme proposed
in this paper, high-precision ROV positioning and docking control experiments were
conducted in both simulation and pool environments. Meanwhile, a comparison was
carried out using the most widely used traditional method. The high-precision positioning
and docking process of the ROV was as follows: In the ocean current environment with
a flow velocity of 1 knot, the ROV was guided to the docking position using the visual
positioning system and maintained its dynamic position. When the positioning error
continued to remain within the required error range for docking, the docking locking
mechanism extended downward into the docking hole of the underwater tool platform to
complete the docking process.
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5.1. ROV Prototype

As shown in Figure 3a, the ROV in this paper has an overall size of 3100 mm ×
2000 mm × 1800 mm and a net weight of 4187.5 kg. It is equipped with four horizon-
tal thrusters and four vertical thrusters, and has an omnidirectional driving capability.
The bottom protruding part is equipped with two docking rods, which can perform
docking operations with docking holes on the underwater tool platform. The param-
eters of the ROV nominal dynamic model are as follows: the center of gravity coor-
dinate rG = [0, 0, 0]T , the center of buoyancy coordinate rB = [0, 0,−0.493]T , the mo-
ment of inertia matrix I = diag(2038, 3587, 3587), the additional mass matrix MAM =
−diag(3261.35, 4664.31, 7471.75, 1664, 4118.17, 3708.41), the linear damping matrix DL =
−diag(3610.00, 2462.99, 4566.59, 9810.00, 5220.90, 5841.54), the nonlinear damping matrix
DN = −diag(952|u|, 2442.78|v|, 530.46|w|, 890|p|, 1876|q|, 2085.52|r|). As shown in
Figure 3b, the underwater tool platform is equipped with various operational tools and a
sampling basket necessary for the ROV. Once the ROV dives, it can complete various tasks
by changing tools on the tool platform, significantly enhancing the working efficiency. The
ROV determines the relative position by identifying the QR code affixed to the tool platform.
The tool platform is designed with two central docking holes that work in conjunction
with two docking rods to complete the docking operation. According to the design of the
docking rods and docking holes, the ROV position error must be less than 0.05 m, and the
attitude angle error must be less than 1◦.
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5.2. Numerical Simulations

In the numerical simulations, the position of the underwater tool platform was set to
ηd = [5, 1, 1, 0, 0, 0]T . The initial position of the ROV was set to η(0) = [0, 0, 0, 0, 0, 0]T and
the initial velocity was set to vr(0) = [0, 0, 0, 0, 0, 0]T . The ocean current velocity was set
to v f = [0.3635 sin(0.05t + π/3), 0.3635 sin(0.05t + π/3), 0, 0, 0, 0]T , simulating the actual
operating conditions of 1 throttling. The disturbance caused by factors other than ocean
current such as umbilical cable and the uncertainty of the system model were set to τE =

10 cos(0.05t + π/3) sin(0.05t)
10 cos(0.05t + π/4) cos(0.05t)
10 cos(0.05t + π/6) sin(0.05t + π/4)
2 cos(0.05t + π/3) cos(0.05t + π/10)
2 sin(0.05t) sin(0.05t + 2π/3)
2 sin(0.05t + 4π/3) cos(0.05t)

. The MFSESO observation parameters were set

to ι1 = 10, ι2 = 10, κ1 = 2, and κ2 = 20, ω = 1, p = 3, q = 5. The DFOPID control parame-
ters were set to kηp = diag(1, 1, 1, 1, 1, 1), kηi = diag(0, 0, 0, 0, 0, 0), kηd = diag(0, 0, 0, 0, 0, 0),
∆ = [0.5, 0.5, 0.5, π/180, π/180, π/180]T , kvp = 100000diag(1, 1, 1, 10, 10, 30),
kvi = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), kvd = diag(10000, 50000, 50000, 0, 0, 0),
λv = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1]T and µη = [0.5, 0.5, 0.5, 0, 0, 0]T . An Oustaloup filter [30]
was used to implement fractional calculus.

In order to further demonstrate the performance superiority of the FADRC scheme
composed of MFSESO and DFOPID, the following simulation scenarios were conducted.
The first scenario involved a comparison test between the control scheme based on MFSESO-
DFOPID and the control scheme based on MFSESO-DPID. The second test scenario in-
volved comparing the control scheme based on MFSESO-DFOPID with the control scheme
based on LESO-DFOPID. The initial conditions of the test remained unchanged.

For simulation scenario 1, the high-precision positioning and docking control simu-
lation results of the control scheme based on MFSESO-DFOPID and the control scheme
based on MFSESO-DPID are shown in Figures 4 and 5.

Performance indicators such as the root-mean-square error, adjustment time, and
steady-state error are presented in Table 1 to facilitate a more detailed and accurate quan-
titative comparison between the DFOPID algorithm and the DPID algorithm. Among
them, a smaller root-mean-square error indicates that the scheme demonstrates a better
control performance, while a shorter adjustment time signifies faster convergence, and the
steady-state error reflects the accuracy of the control scheme.

Figure 4 illustrates the position error in the position loop and the velocity error in
the velocity loop based on MFSESO-DFOPID and MFSESO-DPID. It can be seen from
the figures that the position error and velocity error based on MFSESO-DFOPID show
a better dynamic process, with a faster convergence velocity and smaller overshoot. At
the same time, when the motion system is stabilized, MFSESO-DFOPID exhibits smaller
position steady-state error and velocity steady-state error values. Meanwhile, against ocean
current velocity disturbance and lumped disturbance, MFSEPO-DFOPID exhibits smaller
error fluctuations and demonstrates greater robustness. Figure 5 shows the thrust curve
of the thruster calculated using the schemes mentioned above, which remains generally
smooth. This indicates that the control scheme proposed in this paper has good practical
application value. The control performance indicators in Table 1 quantitatively support the
results presented in Figure 4. MFSESO-DFOPID obviously meets the docking requirements,
wherein the ROV position error must be less than 0.05 m and the attitude angle error must
be less than 1◦. MFSESO-DFOPID has a significant advantage in most indicators. The
above results fully reflect that the DFOPID control algorithm proposed in this paper shows
a better control performance than the traditional DPID algorithm. It exhibits a significantly
improved dynamic response, reduced steady-state error, and enhanced robustness.
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Figure 4. Position error eη and velocity error ev under MFSESO-DFOPID (red line) and MFSESO-DPID
(blue line). (a) Position error eη (defined in line 373). (b) Velocity error ev (defined in line 379).
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Figure 5. Thruster thrust U (defined in line 236) under MFSESO-DFOPID (red line) and MFSESO-
DPID (blue line).

Table 1. Quantitative comparison between MFSESO-DFOPID and MFSESO-DPID control schemes.
Better performance indicators are highlighted in red.

Performance Indicator Control Scheme x y z ϕ θ ψ

Position root-mean-square
error (m)

MFSESO-DFOPID 0.7606 0.0762 0.0833 0.0017 0.0010 3.36 × 10−5

MFSESO-DPID 0.7716 0.0789 0.1280 0.0028 0.0016 2.57 × 10−4

Position adjustment time (s) MFSESO-DFOPID 9.874 3.472 3.628 2.996 2.596 0.162
MFSESO-DPID 10.030 2.836 5.610 3.118 3.310 0.668

Position steady-state
error (m)

MFSESO-DFOPID −0.0100 0.0019 1.34 × 10−5 −2.86 × 10−7 2.18 × 10−7 −0.0003
MFSESO-DPID −0.0347 0.0090 6.78 × 10−7 −2.41 × 10−6 2.07 × 10−6 −0.0032

Velocity root-mean-square
error (m/s)

MFSESO-DFOPID 0.0167 0.0167 0.0179 0.0050 0.0033 2.86 × 10−4

MFSESO-DPID 0.0371 0.0308 0.0538 0.0067 0.0042 4.78 × 10−4

Velocity adjustment time (s) MFSESO-DFOPID 0.224 0.698 1.486 0.250 0.258 0.252
MFSESO-DPID 12.542 2.916 9.256 0.330 0.422 0.318

Velocity steady-state
error (m/s)

MFSESO-DFOPID −0.0100 0.0022 1.32 × 10−5 −2.86 × 10−7 1.98 × 10−7 −0.0005
MFSESO-DPID −0.0335 0.0105 1.66 × 10−7 −2.39 × 10−6 1.89 × 10−6 −0.0045

For simulation scenario 2, the high-precision positioning and docking control simu-
lation results of the control scheme based on MFSESO-DFOPID and the control scheme
based on LESO-DFOPID are shown in Figure 6.
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Figure 6. Observation error of ocean current velocity v̂ f and lumped disturbance τ̂D under MFSESO-
DFOPID (red line) and LESO-DFOPID (blue line). (a) Observation error of ocean current velocity v̂ f
(defined in line 271). (b) Observation error of lumped disturbance τ̂D (defined in line 272). Moreover,
note that the six degrees of freedom for surge, sway, heave, roll, pitch, and yaw are represented by
the letters X, Y, Z, K, M, and N, respectively.
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In order to quantitatively compare the observation performance of the MFSESO and
LESO algorithms for ocean current disturbance and lumped disturbance, performance
indicators such as the root-mean-square error, adjustment time, and steady-state error
are introduced in Table 2. The root-mean-square error of observation generally reflects
the observation performance, the adjustment time of observation reflects the convergence
velocity, and the steady-state error of observation reflects the estimation accuracy.

Table 2. Quantitative comparison between MFSESO-DFOPID and LESO-DFOPID control schemes.
Better performance indicators are highlighted in red.

Performance Indicator Control Scheme x y z ϕ θ ψ

Root-mean-square error of ocean
current velocity observation (m/s)

MFSESO-DFOPID 0.0080 0.0080 0 0 0 0
LESO-DFOPID 0.0091 0.0091 0 0 0 0

Adjustment time of ocean current
velocity observation (s)

MFSESO-DFOPID 0.524 0.532 0 0 0 0
LESO-DFOPID 1.078 1.082 0 0 0 0

Steady-state error of ocean current
velocity observation (m/s)

MFSESO-DFOPID −4.73 × 10−4 −5.83 × 10−5 0 0 0 0
LESO-DFOPID −5.86 × 10−4 −8.95 × 10−4 0 0 0 0

Root-mean-square error of lumped
disturbance observation (N)

MFSESO-DFOPID 2.039 1.738 2.193 1.213 1.624 0.597
LESO-DFOPID 2.953 2.119 3.320 2.517 3.720 1.031

Adjustment time of lumped
disturbance observation (s)

MFSESO-DFOPID 10.002 1.888 3.334 0.912 0.942 0.738
LESO-DFOPID 10.500 3.218 3.604 2.660 2.754 2.036

Steady-state error of lumped
disturbance observation (N)

MFSESO-DFOPID −0.043 0.0022 0.0016 0.0051 0.0034 0.0005
LESO-DFOPID 0.126 0.0105 −0.0207 0.0031 −0.0050 0.0088

Figure 6a shows the estimation results for the MFSESO and LESO algorithms on
ocean current velocity. It is not difficult to observe in the figure that, at X and Y degrees
of freedom, MFSESO can approach the ocean current velocity more quickly, while the
oscillation amplitude is smaller. With other degrees of freedom, the output of the observer
remains 0 because no velocity disturbance is applied. Figure 6b shows the observation
results for the MFSESO and LESO algorithms on lumped disturbance. It can be seen from
this figure that the convergence process of MFSESO proposed in this paper is faster and
smoother, and the steady-state error is smaller. The relevant performance indicators in
Table 2 quantitatively describe the two observation algorithms, strongly demonstrating
the significant advantages of MFSESO in terms of velocity, stability, and accuracy, and
confirming the results in Figure 6. The above statement indicates that MFSESO can yield
better observation results compared to the traditional LESO.

5.3. Pool Experiments

To verify the actual operational performance of the FADRC scheme based on MFSESO-
DFOPID proposed in this article, a high-precision positioning and docking experiment
using an ROV and a tool platform was conducted in a pool. The experimental scenario is
depicted in Figure 7, the observation effect of the observer is reflected in Figures 8 and 9,
and the position errors of each degree of freedom are illustrated in Figure 10.

As shown in Figure 7, the FADRC scheme based on MFSESO-DFOPID can enable the
ROV to quickly and accurately reach the target position and complete the docking operation.
Since the ROV is self-stabilized in pitch and roll degrees of freedom through the buoyancy
trim, only four degrees of freedom x, y, z, ψ are controlled, where the total distance error
D =

√
xe2 + ye2 + ze2. Figures 8 and 9 reflect that the observer in the control scheme

effectively compensates for the current velocity disturbance and lumped disturbance at
each degree of freedom. As can be seen from Figure 10, when t > 20.40 s, the position error
D < 0.05 m, and when t > 30.63 s, the heading angle error ψ < 1. This proves that this
control scheme can achieve high-precision positioning control and meet the requirements
of docking control operations.
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Figure 7. High-precision positioning and docking control experimental scenario. From top to bottom,
the long image on the left contains frames 1–4, the middle long image includes frames 5–8, and
the long image on the right includes frames 9–12. The entire positioning and docking process is
clearly shown.
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Figure 9. The z  and ψ  freedom observation results. Position ez  (red line) and position observa-
tion ˆez  (blue line); velocity w  (red line) and velocity observation ŵ  (blue line); current velocity 
observation ˆ fw   (red line); lumped disturbance observation ˆDτ   (red line); orientation eψ   (red 
line) and position observation ˆ eψ  (blue line); velocity r  (red line) and velocity observation r̂  

Figure 8. The x and y freedom observation results. Position xe (red line) and position observation x̂e

(blue line); velocity u (red line) and velocity observation û (blue line); current velocity observation
û f (red line); lumped disturbance observation τ̂D (red line); position ye (red line) and position
observation ŷe (blue line); velocity v (red line) and velocity observation v̂ (blue line); current velocity
observation v̂ f (red line); lumped disturbance observation τ̂D (red line).
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Figure 9. The z and ψ freedom observation results. Position ze (red line) and position observation ẑe

(blue line); velocity w (red line) and velocity observation ŵ (blue line); current velocity observation
ŵ f (red line); lumped disturbance observation τ̂D (red line); orientation ψe (red line) and position
observation ψ̂e (blue line); velocity r (red line) and velocity observation r̂ (blue line); current velocity
observation r̂ f (red line); lumped disturbance observation τ̂D (red line).
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6. Conclusions

In this study, an FADRC scheme is introduced, comprising a double closed-loop
fractional-order PIλDµ controller and a model-assisted finite-time sliding-mode extended
state observer. The purpose of this control scheme is to facilitate high-precision positioning
and docking tasks for ROVs in the presence of ocean current disturbances and model
uncertainties. Specifically, DFOPID effectively addresses non-matched disturbances, with
its fractional-order component enhancing the system’s dynamic performance and robust-
ness. The MFSESO in this paper further enhances the estimation accuracy by integrating
sliding-mode technology and ensuring the finite-time convergence of observation errors.
Through numerical simulations and pool experiments, it is demonstrated that the pro-
posed control scheme can effectively mitigate ocean current disturbances and achieve
high-precision operations even in the absence of an accurate model. This underscores
the scheme’s independence from precise model data on the operational ROV, while also
highlighting benefits such as its simple structure and easy parameter tuning. Consequently,
the FADRC scheme presented in this paper holds significant practical value and can serve
as a valuable reference for ROVs engaged in high-precision operations. Future research
will focus on exploring adaptive parameter optimization within the control scheme.
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