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Abstract: This article extends the celebrated Riemann–Hilbert (RH) method equipped with mixed
spectrum to a new integrable system of three-component coupled time-varying coefficient complex
mKdV equations (ccmKdVEs for short) generated by the mixed spectral equations (msEs). Firstly,
the ccmKdVEs and the msEs for generating the ccmKdVEs are proposed. Then, based on the msEs,
a solvable RH problem related to the ccmKdVEs is constructed. By using the constructed RH
problem with mixed spectrum, scattering data for the recovery of potential formulae are further
determined. In the case of reflectionless coefficients, explicit N-soliton solutions of the ccmKdVEs are
ultimately obtained. Taking N equal to 1 and 2 as examples, this paper reveals that the spatiotemporal
solution structures with time-varying nonlinear dynamic characteristics localized in the ccmKdVEs is
attributed to the multiple selectivity of mixed spectrum and time-varying coefficients. In addition, to
further highlight the application of our work in fractional calculus, by appropriately selecting these
time-varying coefficients, the ccmKdVEs are transformed into a conformable time-fractional order
system of three-component coupled complex mKdV equations. Based on the obtained one-soliton
solutions, a set of initial values are assigned to the transformed fractional order system, and the N-th
iteration formulae of approximate solutions for this fractional order system are derived through the
variational iteration method (VIM).

Keywords: Riemann–Hilbert method equipped with mixed spectrum; three-component coupled
time-varying coefficient complex mKdV equations; Riemann–Hilbert problem; scattering data; N-
soliton solution; nonlinear dynamic characteristics; conformable fractional order derivative; N-th
iteration approximate solution; variational iteration method

1. Introduction

The RH method introduced in Yang’s monographs [1] has received much attention
in recent years [2–6]. It is an analytical tool with complex analysis characteristics that
originated from the classical inverse scattering transform (IST) in soliton theory [7] and
gradually developed independently. Compared to the existing analytical methods such as
Darboux transformation [8], Hirota bilinear method [9], simplified Hirota’s method [10–12],
and others [13–17] in the same research field, the RH method, which benefited the pioneer-
ing contributions of Zakharov and Shabat [18], requires constructing a solvable RH problem
that connects the solution of the initial value problem (IVP) of the nonlinear evolution
equation being solved. It is worth mentioning that, based on the analysis of the RH problem
that occurs in integrable systems, the nonlinear steepest descent method proposed by Deift
and Zhou [19] provides a theoretical evaluation of the long-term asymptotic behavior of
integrable equations in the sense of IST solvability.

Since the pioneering work [7] of Gardner, Greene, Kruskal and Miura, the scope of
IST solvable systems has been extended from the isospectral KdV equation [20] to non-
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isospectral equations [21–24] and mixed spectral systems [25,26]. However, the models
solved by the RH method are basically isospectral, such as [27–31]. There is little research
on the RH method for variable-coefficient equations [32–35], and even fewer cases [36,37]
of non-isospectral or mixed spectral equations. Throughout all the existing literature, we
know that Chen, Zhang, and Ye [36] successfully solved a non-isospectral Gross–Pitaevskii
equation in 2021 by extending the RH method, followed by Zhang and Zhou [37] solving the
variable-coefficient mixed spectral complex mKdV equation in 2023. For all the isospectral
equations with variable coefficients that have been studied by RH method, specifically, Li,
Tian, Zhang, and Yang [32] obtained multi-soliton solutions containing distinct poles of
arbitrary order to the fifth-order nonlinear Schrödinger equation (NLS); Xu and Zhang [33]
derived N-soliton solutions of the generalized NLS equation; Zhou and Chen [34] gained
high-order soliton solutions and analyzed their long-term asymptotic properties of the
inhomogeneous Hirota equation; Ma, Li, Wang, Xie, and Du [35] constructed multi-soliton
solutions and gave the corresponding asymptotic analysis for the coupled Lakshmanan–
Porsezian–Daniel equations.

When the physical background of nonlinear waves is a non-uniform medium that is
not suitable to be described by isospectral equations and constant-coefficient equations, re-
searchers often associate it with non-isospectral equations or variable-coefficient equations.
On the other hand, the multi-component coupled models have important applications.
For example, as pointed out by Jiang and Qu [38], when describing nonlinear phenomena
in fibers such as birefringence, arrays, and multimode, a single NLS equation appears
insufficient, and the coupled NLS equations should be adopted to meet the interactions
between field components caused by different frequencies or polarizations. Based on this
practical background, this article proposes and studies the following ccmKdVEs:

u1,t = α(t)[u1,xxx + 6|u1|2u1,x + 3(u1u2)xu∗
2 + 3(u1u3)xu∗

3 ] + β(t)(u1 + xu1,x)− iδ(t)xu1 − iγ(t)u1, (1)

u2,t = α(t)[u2,xxx + 6|u2|2u2,x + 3(u1u2)xu∗
1 + 3(u2u3)xu∗

3 ] + β(t)(u2 + xu2,x)− iδ(t)xu2 − iγ(t)u2, (2)

u3,t = α(t)[u3,xxx + 6|u3|2u3,x + 3(u1u3)xu∗
1 + 3(u2u3)xu∗

2 ] + β(t)(u3 + xu3,x)− iδ(t)xu3 − iγ(t)u3, (3)

where uj = uj(x, t) assigned with values j = 1, 2, 3 are all the complex functions related
to the spatiotemporal independent variables contained within them. Furthermore, when
|x| → ∞ , it is assumed that uj, along with all its partial derivatives, quickly decays to zero.
Besides, α(t), β(t), γ(t), and δ(t) are real valued functions. In the case of u2 = 0 and u3 = 0,
Equations (1)–(3) degenerate to the complex mKdV equation [37]:

u1,t = α(t)(u1,xxx + 6|u1|2u1,x) + β(t)(u1 + xu1,x)− iδ(t)xu1 − iγ(t)u1. (4)

The prototype model of Equation (4) is the known complex mKdV equation [39]:

ut + uxxx + 6|u|2ux = 0, (5)

which helps to characterize the nonlinear wave propagation of short pulses in optical
fibers [39–41]. It is obvious that a special case of Equation (5) gives the famous mKdV
equation [42]:

ut + uxxx + 6u2ux = 0, (6)

whose extensive applications [43] are not limited to ocean dynamics but also encompass
traffic flow, size quantized films, and so on.

In many fields, fractal and fractional calculus have attached much attention [44–48].
Besides the non-isospectral or variable-coefficient equations, it has been shown [49–51] that
fractional differential equations are also suitable for descripting the nonlinear dynamics in
non-uniform physical backgrounds, such as fractal and porous materials. As an application
of the ccmKdVEs (1)–(3) and their soliton solutions to be obtained, in this paper, we will
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reduce a fractional order system from Equations (1)–(3) and use the VIM method to derive
the N-th iteration formulae of approximate solutions.

The structure arrangement of the remaining part of this article is as follows. In
Section 2, we propose the Lax pair of the ccmKdVEs (1)–(3) and establish the relevant
RH problem. In Section 3, we determine the time-dependences of scattering data in the
relevant RH problem. In Section 4, we derive N-soliton solutions of the ccmKdVEs (1)–(3)
by considering the case of reflectionless coefficients. Besides, the spatiotemporal structures
of one- and two-soliton solutions reveal the dominant roles of mixed spectrum and time-
varying coefficients on the time-varying nonlinear dynamic characteristics localized in the
ccmKdVEs (1)–(3). In Section 5, we select appropriate time-varying coefficients to reduce a
conformable time-fractional order system from the ccmKdVEs (1)–(3) and obtain its N-th
iteration formulae of approximate solutions. In Section 6, we address the conclusion of
this article.

2. Lax Pair and the Relevant RH Problem

Firstly, we propose in this section the Lax pair of the ccmKdVEs (1)–(3) as follows:

ζx + iηΛζ = Pζ, Λ = diag(1,−1,−1,−1), (7)

ζt − i
{

4η3α(t)− [ηβ(t) +
1
2

δ(t)]x − 1
2

γ(t)
}

Λζ = Qζ, (8)

where ζ = ζ(x, t, η) is the eigenfunction, and η determines the mixed spectral parameter
by the following:

dη

dt
= ηβ(t) +

1
2

δ(t), (9)

while P and Q are two auxiliary matrices:

P =


0 u1 u2 u3

−u∗
1 0 0 0

−u∗
2 0 0 0

−u∗
3 0 0 0

, (10)

Q = ηα(t)[2iΛ(P2 − Px)− 4ηP] + α(t)(Pxx + PPx − PxP − 2P3) + β(t)xP. (11)

Due to uj and all its partial derivatives quickly decaying to zero when |x| → ∞ , as
previously assumed, we can gain the Jost solution of Lax pair (7) and (8):

ζ = e−Λϕ , |x| → ∞ , (12)

where

ϕ = i
{

ηx −
∫ t

0
[4α(τ)η3(τ)− 1

2
γ(τ)]dτ

}
. (13)

We adopt a transformation in the following form:

K = ζeΛϕ, (14)

then one has the following:
K → I , |x| → ∞ , (15)

where I is the 4 × 4 identity matrix.
Substitute Equation (14) into Equations (7) and (8), and then rewrite the resulting

expressions as follows:
Kx + iη[Λ, K] = PK, (16)

Kt − i
{

4η3α(t)− [ηβ(t) +
1
2

δ(t)]x − 1
2

γ(t)
}
[Λ, K] = QK. (17)
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By integrating Equation (16) through two different pathways, (x, t) → (−∞, t) and
(x, t) → (+∞, t) , we can obtain the following:

K− = I +
∫ x

−∞
e−iη(x−y)ΛP(y, t, η)K−(y, t, η)eiη(x−y)Λdy, (18)

K+ = I −
∫ +∞

x
e−iη(x−y)ΛP(y, t, η)K−(y, t, η)eiη(x−y)Λdy. (19)

With the help of Ω = eiΛηx, we set ξ1 = K−Ω and ξ2 = K+Ω. Then, it is not difficult to
check that the matrices ξ1 and ξ2 satisfy the Lax pair (7) and (8), and they can be connected
by the scattering matrix S(η) as follows:

ξ1 = ξ2S(η), (20)

where

S(η) =


s11(η) s12(η) s13(η) s14(η)
s21(η) s22(η) s23(η) s24(η)
s31(η) s32(η) s33(η) s34(η)
s41(η) s42(η) s43(η) s44(η)

. (21)

By using Abel’s identity and the fact that the trace of P is equal to zero, we can
prove that detK± = 1 [1] always holds for all x. Then, from Equation (20), one obtains
detS(η) = 1. This ensures that the inverse matrices of K± and S(η) both exist. Meanwhile,
K± and S(η) have the following symmetry properties [1]:

KH
±(x, t, η∗) = K−1

± (x, t, η), SH(η∗) = S−1(η), (22)

under the Hermitian transformation H. For convenience, we assume the following:

S−1(η) =


ŝ11(η) ŝ12(η) ŝ13(η) ŝ14(η)
ŝ21(η) ŝ22(η) ŝ23(η) ŝ24(η)
ŝ31(η) ŝ32(η) ŝ33(η) ŝ34(η)
ŝ41(η) ŝ42(η) ŝ43(η) ŝ44(η)

. (23)

Then, the relationship s∗11(η
∗) = ŝ11(η) can be derived from the second expression of

Equation (22).
By utilizing Equations (18) and (19), we have the following:

e−iη(x−y)ΛP(y, t, η)eiη(x−y)Λ =


0 u1e−2iη(x−y) u2e−2iη(x−y) u3e−2iη(x−y)

−u∗
1e2iη(x−y) 0 0 0

−u∗
2e2iη(x−y) 0 0 0

−u∗
3e2iη(x−y) 0 0 0

. (24)

We divide the matrices K−, K+, K−1
− and K−1

+ into blocks:

K− = ([K−]
1, [K−]

2, [K−]
3, [K−]

4), (25)

K+ = ([K+]
1, [K+]

2, [K+]
3, [K+]

4), (26)

K−1
− =


[K−1

− ]
1

[K−1
− ]

2

[K−1
− ]

3

[K−1
− ]

4

, K−1
+ =


[K−1

+ ]
1

[K−1
+ ]

2

[K−1
+ ]

3

[K−1
+ ]

4

, (27)

where [K±]
j and [K−1

± ]
j
, j = 1, 2, 3, 4, are the corresponding column and row vectors.
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In order to construct the relevant RH problem, we define two matrices X+ and X−

as follows:
X+ = ([K−]

1, [K+]
2, [K+]

3, [K+]
4) = K−D1 + K+D2, (28)

X− =


[K−1

+ ]
1

[K−1
− ]

2

[K−1
− ]

3

[K−1
− ]

4

 = D1K−1
− + D2K−1

+ . (29)

where D1 = diag(1, 0, 0, 0) and D2 = diag(0, 1, 1, 1).
In view of Equation (24), we can verify that X+ and X− have the properties of analytic

extension to the upper half plane η ∈ C+ and lower half plane η ∈ C−, respectively. In this
way, when η ∈ C± → ∞ , the asymptotic property of X± → I is supported. We thus reach
the RHP problem established as below:

(a) X+(x, t, η) and X−(x, t, η) are analytic in η ∈ C+ and η ∈ C−, respectively;
(b)

X−(x, t, η)X+(x, t, η) = J(x, t, η); (30)

(c) X± → I , when η ∈ C± → ∞ ;
with the use of jump matrix J(x, t, η):

J(x, t, k) = Ω(D1 + D2S)(D1 + S−1D2)Ω−1 = Ω


1 ŝ12(η) ŝ13(η) ŝ14(η)

s21(η) 1 0 0
s31(η) 0 1 0
s41(η) 0 0 1

Ω−1. (31)

By using Equations (15), (28) and (29), the following can be concluded:

X+
x + iη[Λ, X+] = PX+, (32)

X−
x + iη[Λ, X−] = PX−. (33)

Further implementation of Taylor expansion on X± can yield the following:

X± = X±
0 +

1
η

X±
1 + O(

1
η2 ) , η → ∞ . (34)

Substituting Equation (34) into Equation (32) and comparing the same power coeffi-
cients of η in the resulting equation yields the following:

O(η) : i[Λ, X0] = 0, (35)

O(η0) : X±
0,x + i[Λ, X±

1 ] = PX±
0 . (36)

Then, it is easy to see from Equations (35) and (36) that X±
0 = I and the following

results:
u1 = 2i(X+

1 )12 = 2i lim
η→∞

η(X+)12, (37)

u2 = 2i(X+
1 )13 = 2i lim

η→∞
η(X+)13, (38)

u3 = 2i(X+
1 )14 = 2i lim

η→∞
η(X+)14. (39)

3. Solvability of Relevant RH Problem and Time-Dependences of Scattering Data

Due to the use of Ω = eiΛηx as mentioned earlier and the obvious results ΩD1Ω−1 = D1
and ΩD2Ω−1 = D2, the following two determinants are easy to obtain:

det(X+) = det(K−D1 + K+D2) = s11(η), (40)
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det(X−) = det(D1K−1
− + D2K−1

+ ) = ŝ11(η) = s∗11(η
∗). (41)

Theorem 1. Regardless of whether it is the regular case at det(X±) ̸= 0 or the non-regular case
at det(X±) = 0 , the relevant RH problem (30) always has a unique solution.

Proof of Theorem 1. The specific proof is similar to the proofs in [1,2], except that X± are
four-component, see Equations (28) and (29), rather than two-component [2], but the em-
bedded η related to the corresponding spectral parameter is a mixed spectrum that satisfies
Equation (9) rather than an isospectral case [1]. For the regular case, i.e., det(X±) ̸= 0,
the formula proposed by Plemlj [52] help us to obtain a unique solution [1] of the RH
problem (30):

(X+)
−1

(η) = I +
1

2πi

∫ +∞

−∞

(I − J)(s)(X+)
−1

(s)
s − η

ds, η ∈ C+. (42)

Next, we consider the non-regular RH problem (30) when det(X±) = 0. The following
can be seen from Equations (40) and (41):

det(X+) = s11(η) = s∗11(η
∗) = det(X−) = 0, (43)

s11(η) = s11(η
∗) = 0. (44)

Consequently, we know that detX+(η) and detX−(η) have the same number of conjugate
zeros, denoted as

{
ηj ∈ C+; j = 1, 2, · · · , N

}
and

{
η∗

j ∈ C−; j = 1, 2, · · · , N
}

, respectively.
For any integer j ∈ {1, 2, · · · , N}, considering the following linear algebraic equations:

X+(ηj)vj(ηj) = 0, (45)

v∗j (η
∗
j )X−(η∗

j ) = 0, (46)

and noting the fact detX±(ηj) = 0, we can see that in Equations (45) and (46) exist non-zero
column and row vector solutions vj and v∗j , respectively. From Equations (22), (28) and (29),
we obtain the following:

(X±)
H
(x, t, η∗) = (X∓)(x, t, η), (47)

which supports the relationship vH
j (ηj) = v∗j (η

∗
j ) by taking the conjugate of Equation (46)

and transposing it simultaneously.
Furthermore, the conclusion [1] that the non-regular RH problem (30) can be converted

into a regular case ensures the existence of a unique solution:

X+
1 (η) =

N

∑
l,j=1

vl(Z−1)l jv
∗
j +

1
2πi

∫ +∞

−∞
P(s)(I − J)(s)P−1(s)(X̂+)

−1
(s)ds, (48)

which supports Equations (38)–(40) for obtaining solution of the ccmKdVEs (1)–(3), with
the help of the following notations:

(X̂+)
−1

(η) = I +
1

2πi

∫ +∞

−∞

P(s)(I − J)(s)(X̂+)
−1

(s)
s − η

ds, η ∈ C, (49)

P(η) = I +
N

∑
l,j=1

vl(Z−1)l jv
∗
j

η − η∗
j

, (50)

P−1(η) = I −
N

∑
l,j=1

vl(Z−1)l jv
∗
j

η − ηl
, (51)
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Z = (zl j)N×N , zl j =
v∗l vj

η∗
l − ηj

. (52)

□

Theorem 2. In the absence of reflection coefficients, the time-dependences of scattering data:{
k j , k∗j , vj, v∗j ; j = 1, 2, · · · , N}, (53)

have the following explicit forms:

ηj = e
∫ t

0 β(τ)dτ [ηj(0) +
1
2

∫ t

0
δ(τ)e−

∫ τ
0 β(ω)dωdτ], (54)

η∗
j = e

∫ t
0 β(τ)dτ [η∗

j (0) +
1
2

∫ t

0
δ(τ)e−

∫ τ
0 β(ω)dωdτ], (55)

vj(x, t, ηj) = e
−iΛ{ηjx−

∫ t
0 [4η3

j (τ)α(τ)−
1
2

γ(τ)]dτ}
vj,0, (56)

v∗j (x, t, η∗
j ) = v∗j,0e

iΛ{η∗j x−
∫ t

0 [4η∗3
j (τ)α(τ)−

1
2

γ(τ)]dτ}
, (57)

where ηj(0) and η∗
j (0) are arbitrary complex constants, vj,0 is a four-dimensional constant

column vector.

Proof of Theorem 2. To determine the time-dependences of vj and v∗j , we take the partial
derivatives of Equation (45) about t and x, and then arrive at the following:

X+
x vj + X+vj,x = 0, (58)

X+
t vj + X+vj,t = 0. (59)

From Equations (13), (14) and (29) we obtain the following:

X+
x = −iηj[Λ, X+] + PX+, (60)

X+
t = QX+ + i

{
4η3

j α(t)− [ηjβ(t) +
δ(t)

2
]x − 1

2
γ(t)

}
[Λ, X+]. (61)

Inserting Equation (60) into Equation (61) yields the following:

X+(vj,x + iηjΛvj) = 0. (62)

Similarly, substituting Equation (61) into Equation (59) we obtain the following:

X+(vj,t − i
{

4η3
j α(t)− [ηjβ(t) +

δ(t)
2

]x − 1
2

γ(t)
}

Λvj) = 0. (63)

Thus, from Equations (62) and (63) we gain the following:

vj,x + iηjΛvj = 0, (64)

vj,t − i
{

4η3
j α(t)− [ηjβ(t) +

δ(t)
2

]x − i
2

γ(t)
}

Λvj = 0. (65)

By solving Equations (64) and (65), we can reach Equation (56). Additionally, the
establishment of Equation (57) is confirmed by using the relationship vH

j (ηj) = v∗j (η
∗
j ).
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As for the time-dependences of ηj and η∗
j , we consider Equation (9) with the discrete

spectrum ηj:
dηj

dt
= ηjβ(t) +

1
2

δ(t). (66)

Then, Equations (54) and (55) can be derived from Equation (66) and its conju-
gate form. It should be noted that Equation (66) and its conjugate form also solve
Equations (64) and (65). □

4. N-Soliton Solutions and Their Spatial Structures

Under the case of reflectionless coefficients, that is, s21 = s31 = s41 = 0 and ŝ12 = ŝ13 =
ŝ14 = 0, it can be seen from Equation (31) that J = I. In this case, Equation (48) degenerates
to the following:

X+
1 (η) =

N

∑
l,j=1

vl(Z−1)l jv
∗
j . (67)

Therefore, Equations (37)–(39) become the following:

u1 = 2i

(
N

∑
l,j=1

vl(Z−1)l jv
∗
j

)
12

, (68)

u2 = 2i

(
N

∑
l,j=1

vl(Z−1)l jv
∗
j

)
13

, (69)

u3 = 2i

(
N

∑
l,j=1

vl(Z−1)l jv
∗
j

)
14

. (70)

When we further take vj,0 = (1, aj, bj, cj)
T combined with complex constants aj, bj and

cj, Equations (56) and (57) can provide the following:

vj =


e−ϕj

aje
ϕj

bje
ϕj

cje
ϕj

, (71)

v∗j = (e−ϕ∗
j , a∗j eϕ∗

j , b∗j eϕ∗
j , c∗j eϕ∗

j ), (72)

where ϕj = i
{

ηjx −
∫ t

0 [4η3
j (τ)α(τ)− γ(τ)/2]dτ

}
.

Finally, we can obtain N-soliton solutions of the ccmKdVEs (1)–(3) as follows:

u1 = −2i
detR1

detZ
, (73)

u2 = −2i
detR2

detZ
, (74)

u3 = −2i
detR3

detZ
, (75)

where R1, R2, and R3 are three (N + 1)× (N + 1) matrices:

R1 =


0 e−ϕ1 · · · e−ϕN

a1eϕ∗
1 z11 · · · z1N

...
...

. . .
...

aNeϕ∗
N zN1 · · · zNN

, (76)
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R2 =


0 e−ϕ1 · · · e−ϕN

b1eϕ∗
1 z11 · · · z1N

...
...

. . .
...

bNeϕ∗
N zN1 · · · zNN

, (77)

R3 =


0 e−ϕ1 · · · e−ϕN

c1eϕ∗
1 z11 · · · z1N

...
...

. . .
...

cNeϕ∗
N zN1 · · · zNN

. (78)

In the case of N = 1, Equations (73)–(75) reduce to the one-soliton solutions:

u1 = 2i
a1e−ϕ1+ϕ∗

1 (η∗
1 − η1)

(|a1|2 + |b1|2 + |c1|2)eϕ∗
1+ϕ1 + e−ϕ∗

1−ϕ1
, (79)

u2 = 2i
b1e−ϕ1+ϕ∗

1 (η∗
1 − η1)

(|a1|2 + |b1|2 + |c1|2)eϕ∗
1+ϕ1 + e−ϕ∗

1−ϕ1
, (80)

u3 = 2i
c1e−ϕ1+ϕ∗

1 (η∗
1 − η1)

(|a1|2 + |b1|2 + |c1|2)eϕ∗
1+ϕ1 + e−ϕ∗

1−ϕ1
, (81)

where ϕ1 = i
{

η1x −
∫ t

0 [4η3
1(τ)α(τ)− γ(τ)/2]dτ

}
, η1 is determined by Equation (54).

In Figure 1, we show the spatial solution structures of the uniformly propagating
bell-shaped one-solitons along the positive x-axis determined by Equations (79)–(81) under
the conditions of isospectrum and constant coefficients α(t) = 1, β(t) = 0, γ(t) = 1, and
δ(t) = 0.
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In Figure 1, we show the spatial solution structures of the uniformly propagating 
bell-shaped one-solitons along the positive x-axis determined by Equations (79)–(81) 
under the conditions of isospectrum and constant coefficients ( ) 1tα =  , ( ) 0tβ =  , 
( ) 1tγ = , and ( ) 0tδ = . 

 
(a) 

  
(b) (c) 

Figure 1. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.2 + 0.3i, α(t) = 1, β(t) = 0, γ(t) = 1, and δ(t) = 0. (a) |u1|; (b) |u2|; (c) |u3|.

In the case of isospectrum and variable coefficients α(t) = t sin t cos t, β(t) = 0,
γ(t) = t, and δ(t) = 0, we can see from Figure 2 that the bell-shaped one-solitons
determined by Equations (79)–(81) propagate along the x-axis and exhibit periodic recipro-
cating motion.
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Figure 2. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.2 + 0.3i, α(t) = t sin t cos t, β(t) = 0, γ(t) = t, and δ(t) = 0. (a) |u1|; (b) |u2|;
(c) |u3|.

For the case of non-isospectral and variable coefficients α(t) = 1, β(t) = 0.01, γ(t) = 1,
and δ(t) = sin t, we show in Figure 3 the bell-shaped one-solitons determined by Equa-
tions (79)–(81), which propagate at varying velocities along the x-axis.
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Figure 3. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.2 + 0.3i, α(t) = 1, β(t) = 0.01, γ(t) = 1, and δ(t) = sin t. (a) |u1|; (b) |u2|; (c) |u3|.

In another case of non-isospectral and variable coefficients α(t) = t sin t, β(t) = −t,
γ(t) = cos t, and δ(t) = et, the propagating bell-shaped one-solitons with variable velocity
propagation determined by Equations (79)–(81) are shown in Figure 4.
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Figure 4. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.2 + 0.3i, α(t) = t sin t, β(t) = −t, γ(t) = et, and δ(t) = cos t. (a) |u1|; (b) |u2|;
(c) |u3|.

In the case of N = 2, from Equations (73)–(75) we obtain the following two-soliton
solutions:

u1 = −2i
a1eϕ∗

1−ϕ2 z21 + a2eϕ∗
2−ϕ1 z12 − a1eϕ∗

1−ϕ1 z22 − a2eϕ∗
2−ϕ2 z11

z11z22 − z12z21
, (82)

u2 = −2i
b1eϕ∗

1−ϕ2 z21 + b2eϕ∗
2−ϕ1 z12 − b1eϕ∗

1−ϕ1 z22 − b2eϕ∗
2−ϕ2 z11

z11z22 − z12z21
, (83)

u3 = −2i
c1eϕ∗

1−ϕ2 z21 + c2eϕ∗
2−ϕ1 z12 − c1eϕ∗

1−ϕ1 z22 − c2eϕ∗
2−ϕ2 z11

z11z22 − z12z21
, (84)

with

z11 =
e−ϕ∗

1−ϕ1 + |a1|2eϕ∗
1+ϕ1 + |b1|2eϕ∗

1+ϕ1 + |c1|2eϕ∗
1+ϕ1

η∗
1 − η1

, (85)

z12 =
e−ϕ∗

1−ϕ2 + a∗1 a2eϕ∗
1+ϕ2 + b∗1 b2eϕ∗

1+ϕ2 + c∗1c2eϕ∗
1+ϕ2

η∗
1 − η2

, (86)

z21 =
e−ϕ∗

2−ϕ1 + a∗2 a1eϕ∗
2+ϕ1 + b∗2 b1eϕ∗

2+ϕ1 + c∗2c1eϕ∗
2+ϕ1

η∗
2 − η1

, (87)

z22 =
e−ϕ∗

2−ϕ2 + |a2|2eϕ∗
2+ϕ2 + |b2|2eϕ∗

2+ϕ2 + |c2|2eϕ∗
2+ϕ2

η∗
2 − η2

, (88)

where ϕ1 = i{η1x−
∫ t

0 [4η3
1(τ)α(τ)−γ(τ)/2]dτ

}
, ϕ2 = i{η2x−

∫ t
0 [4η3

2(τ)α(τ)−γ(τ)/2]dτ
}

, η1
and η2 are determined by Equation (54).

In the case of isospectral and constant coefficients α(t) = 1, β(t) = 0, δ(t) = 1, and
γ(t) = cos t, the bell-shaped two-solitons determined by Equations (82)–(84) propagate in
opposite directions and then backward along the x-axis, as shown in Figure 5.

In Figure 6, the bell-shaped two-solitons determined by Equations (82)–(84) are shown
in the case of isospectral and variable coefficients α(t) = t sin t cos t, β(t) = 0, δ(t) = 1, and
γ(t) = cos t, which periodically move back and forth along the x-axis in the same direction.
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Figure 5. Spatial structures of two-soliton solutions (82)–(84) with a1 = 1, b1 = 2, c1 = 4, a2 = e2−i,
b2 = e2−i, c2 = e2−i, η1(0) = 0.1 − 0.3i, η2(0) = 0.2 + 0.2i, α(t) = 1, β(t) = 0, γ(t) = 1, and δ(t) = 0.
(a) |u1|; (b) |u2|; (c) |u3|.
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Figure 6. Spatial structures of two-soliton solutions (82)–(84) with a1 = 1, b1 = 2, c1 = 4, a2 = e2−i,
b2 = e2−i, c2 = e2−i, η1(0) = 0.1 − 0.3i, η2(0) = 0.2 + 0.2i, α(t) = t sin t cos t, β(t) = 0, γ(t) = t, and
δ(t) = 0. (a) |u1|; (b) |u2|; (c) |u3|.

For the case of non-isospectral and variable coefficients α(t) = t sin t, β(t) = −t,
γ(t) = cos t and δ(t) = et, the bell-shaped two-solitons with variable-velocity propagation
determined by Equations (82)–(84) are shown in Figure 7. We can see that the left soliton
propagates first to the right and then to the left along the x-axis, while the right soliton
always propagates to the right.

In another case of non-isospyectral and variable coefficients α(t) = 1, β(t) = 0.01,
γ(t) = 1, and δ(t) = sin t, Figure 8 shows that the bell-shaped two-solitons with variable-
velocity propagation determined by Equations (82)–(84) interact with each other during
their periodic reciprocating motion along the x-axis.
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Figure 7. Spatial structures of two-soliton solutions (82)–(84) with a1 = 1, b1 = 2, c1 = 4, a2 = e2−i,
b2 = e2−i, c2 = e2−i, η1(0) = 0.4 − 0.3i, η2(0) = 0.2 − 0.2i, α(t) = t sin t, β(t) = −t, γ(t) = cos t, and
δ(t) = et. (a) |u1|; (b) |u2|; (c) |u3|.
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Figure 8. Spatial structures of two-soliton solutions (82)–(84) with a1 = 1, b1 = 2, c1 = 4, a2 = e2−i,
b2 = e2−i, c2 = e2−i, η1(0) = 0.2 + 0.3i, η2(0) = 1 + 0.3i, α(t) = 1, β(t) = 0.01, γ(t) = 1, and
δ(t) = sin t. (a) |u1|; (b) |u2|; (c) |u3|.

5. Application to Fractional Order System

As an application of the ccmKdVEs (1)–(3) and their solutions (73)–(75), we give in
this section the reduced time-fractional order system of Equations (1)–(3) and apply the
VIM [53–55] for constructing the N-th iteration formulae of approximate solutions.

If we suppose that α(t), β(t), γ(t), and δ(t) as tθ−1, together with 0 < θ < 1 and
t ∈ [0,+∞), the ccmKdVEs (1)–(3) can be transformed into a novel time-fractional order
system of three-component coupled mKdV equations:

Dθ
t u1 = u1,xxx + 6|u1|2u1,x + 3(u1u2)xu∗

2 + 3(u1u3)xu∗
3 + u1 + xu1,x − ixu1 − iu1, (89)

Dθ
t u2 = u2,xxx + 6|u2|2u2,x + 3(u1u2)xu∗

1 + 3(u2u3)xu∗
3 + u2 + xu2,x − ixu2 − iu2, (90)
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Dθ
t u3 = u3,xxx + 6|u3|2u3,x + 3(u1u3)xu∗

1 + 3(u2u3)xu∗
2 + u3 + xu3,x − ixu3 − iu3, (91)

where Dθ
t is the partial differential operator of conformable derivative [56].

Considering the VIM [53–55], we applied solutions (79)–(81) to attach Equations (89)–(91)
with the initial conditions:

u1,0 =
4

6e−2x + e2x , (92)

u2,0 =
8

6e−2x + e2x , (93)

u3,0 =
12

6e−2x + e2x , (94)

Here, the one-soliton solutions (79)–(81) have been substituted by the following:

η1 = i, a1 = 1, b1 = 2, c1 = 3, ϕ1 = −x. (95)

It is not difficult to optimally identify the Lagrange multiplier λ(ξ) = −1 for Equa-
tions (89)–(91). We then have the N-th iteration formulae of approximate solutions for any
N ≥ 0:

u1,N+1 = u1,N + Iθ
0,t

{
u1,N,ξξξ(x, ξ) + 6|u1,N(x, ξ)|2u1,N,ξ(x, ξ) + 3[u1,N(x, ξ)u2,N(x, ξ)]ξ u∗

2,N(x, ξ)

+3[u1,N(x, ξ)u3,N(x, ξ)]ξu∗
3,N(x, ξ) + u1,N(x, ξ) + xu1,N,ξ(x, ξ)− ixu1,N(x, ξ)− iu1,N(x, ξ)

}
,

(96)

u2,N+1 = u2,N + Iθ
0,t

{
u2,N,ξξξ(x, ξ) + 6|u2,N(x, ξ)|2u2,N,ξ(x, ξ) + 3[u1,N(x, ξ)u2,N(x, ξ)]ξu∗

1,N(x, ξ)

+3[u2,N(x, ξ)u3,N(x, ξ)]ξu∗
3,N(x, ξ) + u2,N(x, ξ) + xu2,N,ξ(x, ξ)− ixu2,N(x, ξ)− iu2,N(x, ξ)

}
,

(97)

u3,N+1 = u3,N + Iθ
0,t

{
u3,N,ξξξ(x, ξ) + 6|u3,N(x, ξ)|2u3,N,ξ(x, ξ) + 3[u1,N(x, ξ)u3,N(x, ξ)]ξu∗

1,N(x, ξ)

+3[u2,N(x, ξ)u3,N(x, ξ)]ξu∗
2,N(x, ξ) + u3,N(x, ξ) + xu3,N,x(x, ξ)− ixu3,N(x, ξ)− iu3,N(x, ξ)

}
,

(98)

where Iθ
0,t represents the conformable fractional variable upper bound integral operator [56]

acting on the affected functions with respect to ξ from 0 to t.
Substituting the initial conditions (92)–(94) into Equations (96)–(98), we obtain the first

iteration approximate solutions:

u1,1 = 4
6e−2x+e2x − (7776−864i)e2xtθ

(6+e4x)
4
θ

− (38448−432i)e6xtθ

(6+e4x)
4
θ

+ (6264+72i)e10xtθ

(6+e4x)
4
θ

+ (28+4i)e14xtθ

(6+e4x)
4
θ

− (1728−864i)e2xtθ x
(6+e4x)

4
θ

− (288−432i)e6xtθ x
(6+e4x)

4
θ

+ (48+72i)e10xtθ x
(6+e4x)

4
θ

+ (8+4i)e14xtθ x
(6+e4x)

4
θ

,
(99)

u2,1 = 8
6e−2x+e2x − (15552−1728i)e2xtθ

(6+e4x)
4
θ

− (76896−864i)e6xtθ

(6+e4x)
4
θ

+ (12528+144i)e10xtθ

(6+e4x)
4
θ

+ (56+8i)e14xtθ

(6+e4x)
4
θ

− (3456−1728i)e2xtθ x
(6+e4x)

4
θ

− (576−864i)e6xtθ x
(6+e4x)

4
θ

+ (96+144i)e10xtθ x
(6+e4x)

4
θ

+ (16+8i)e14xtθ x
(6+e4x)

4
θ

,
(100)

u3,1 = 12
6e−2x+e2x − (23328−2592i)e2xtθ

(6+e4x)
4
θ

− (115344−1296i)e6xtθ

(6+e4x)
4
θ

+ (18792+216i)e10xtθ

(6+e4x)
4
θ

+ (84+12i)e14xtθ

(6+e4x)
4
θ

− (5184−2592i)e2xtθ x
(6+e4x)

4
θ

− (864−1296i)e6xtθ x
(6+e4x)

4
θ

+ (144+216i)e10xtθ x
(6+e4x)

4
θ

+ (24+12i)e14xtθ x
(6+e4x)

4
θ

.
(101)

In Figure 9, we show the spatial structures of the first iteration approximate solutions
(99)–(101) with θ = 0.8.
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Figure 9. Spatial structures of first iteration approximate solutions (99)–(101) with θ = 0.8. (a) |u1,0|;
(b) |u2,0|; (c) |u3,0|.

The second-, third-, and other higher-order iteration approximate solutions of
Equations (89)–(91) can be obtained from Equations (96)–(98), and they are omitted here.
However, we are unable to obtain an exact solution through this process. We note here that
the results obtained earlier regarding the ccmKdVEs (1)–(3) also satisfy Equations (89)–(91)
when α(t) = β(t) = γ(t) = δ(t) = tθ−1 and t is constrained to the interval [0,+∞). As for
the N-soliton solutions of Equations (89)–(91), we need to adjust those ϕj, j = 1, 2, · · · , N,
involved in Equations (73)–(78) to the following:

ϕj = i
{

ηj(0)e
tθ
θ x − 4

3
e

3tθ
θ η3

j (0) +
tθ

2θ
+

4
3

η3
j (0)

}
. (102)

When θ = 0.8 and θ = 0.5, the corresponding one-soliton solutions (79)–(81) for
Equations (89)–(91) are shown in Figures 10 and 11. By comparing Figures 10 and 11, we
can see that the one-solitons with small fractional order value θ = 0.5 actually have greater
speeds than those with θ = 0.8.
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Figure 10. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.1 − 0.2i, α(t) = tθ−1, β(t) = tθ−1, γ(t) = tθ−1, δ(t) = tθ−1, and θ = 0.8. (a) |u1|;
(b) |u2|; (c) |u3|.
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Figure 11. Spatial structures of one-soliton solutions (79)–(81) with a1 = 1, b1 = 2, c1 = 4,
η1(0) = 0.1 − 0.2i, α(t) = tθ−1, β(t) = tθ−1, γ(t) = tθ−1, δ(t) = tθ−1, and θ = 0.5. (a) |u1|;
(b) |u2|; (c) |u3|.

6. Conclusions

This paper shows, through the ccmKdVEs (1)–(3) proposed for the first time, the
feasibility of solving multi-component coupled time-varying coefficient soliton equations
equipped with mixed spectrum by the extension of RH method [1]. The construction of
N-soliton solutions (73)–(75) benefits from the derived Lax pair (7) and (8), RH problem
(30), and time-dependences of scattering data (54)–(57). This paper is the earliest attempt to
extend the RH method [1] to the mixed spectral multi-component integrable systems using
the ccmKdVEs (1)–(3) as an example, with the aim of further expanding the applicability
of the RH method. Although the proof of Theorem 1 depends mostly on [1,2], and that of
Theorem 2 on simple calculi, the proofs of these two Theorems cannot be separated from
some crucial preliminary preparations. On the one hand, constructing the ccmKdVEs (1)–(3)
requires embedding the time-varying spectrum determined by Equation (9), which makes
the calculus operations involved in the proof of Theorems 1 and 2 fully consider the impact
of the time-varying spectrum. On the other hand, due to the need to handle the ccmKdVEs
(1)–(3), the Lax pair (7) and (8) have 4 × 4 matrices P and Q, as well as the scattering matrix
S(η) and its inverse matrix S−1(η) in Equations (21) and (23), which are all fourth-order.
These make the RH problem (30) we established a fourth-order matrix problem, while all
of these matrix problems involved in the corresponding single-component systems are all
second-order. The above are the main mathematical advantages of this article.

To investigate the nonlinear dynamic characteristics of the obtained soliton solutions
under the dual influences of spectral parameter η and variable coefficients α(t), β(t), γ(t)
and δ(t), we provide explicit expressions for the one-soliton solutions (79)–(81) and two-
soliton solutions (82)–(84) and simulate their spatial solution structures. The common
feature of the nonlinear dynamics shown in Figures 1–8 is that the solitons in the isospectral
case always maintain their amplitudes and widths unchanged during propagation, while
the amplitudes and widths of those solitons in the non-isospectral case change over time.
At the same time, the coefficient functions have an impact on the velocity of soliton
propagation. Whether the coefficient functions are constant determines whether the motion
of isospectral solitons is uniform, while the motion of non-isospectral solitons is always
variable. Of course, the coefficient functions not only cause periodicity but also affect
velocity. Similar nonlinear characteristics of solitons have also been reported in [37], but the
difference is that the model dealt with in this article is a three-component coupled system,
which leads to computational differences and the earliest extension of the RH method [1]
to the mixed spectral multi-component coupled equations with variable coefficients. There
are various studies [57–59] on the effect of potentials on N-soliton solutions of nonlinear
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systems, such as the q-deformed Rosen–Morse type potential [59], which has caused
scaling of soliton amplitude and spatial shift of soliton peak position. Therefore, this work
is beneficial in enriching insights into the factors that affect the N-soliton solutions of
nonlinear systems from the perspectives of coefficient functions and time-varying spectra.
In the special case of these coefficient functions are taken as tθ−1, the ccmKdVEs (1)–(3)
transform into a conformable time-fractional system of three-component coupled mKdV
Equations (89)–(91). Based on the VIM [53–55] and the assigned initial conditions (89)–(91)
inspired by the one-soliton solutions (79)–(81), we obtain the N-th iteration formulae of
approximate solutions (96)–(98). This can be seen as a specific application of the ccmKdVEs
(1)–(3) and their N-soliton solutions (73)–(75) in fractional calculus. Due to the time memory
of nonlocal fractional order derivatives with integral kernels, such as Riemann–Liouville
fractional derivative and Caputo fractional derivative, this goes beyond local fractional
derivatives. Therefore, we have reason to believe that the numerical and analytical methods,
extensions to spatiotemporal fractional orders:

Dθ
t u1 = D3ϑ

x u1 + 6|u1|2Dϑ
x u1 + 3Dϑ

x (u1u2)u∗
2 + 3Dϑ

x (u1u3)u∗
3 + u1 + xDϑ

x u1 − ixu1 − iu1, (103)

Dθ
t u2 = D3ϑ

x u2 + 6|u2|2Dϑ
x u2 + 3Dϑ

x (u1u2)u∗
1 + 3Dϑ

x (u2u3)u∗
3 + u2 + xDϑ

x u2 − ixu2 − iu2, (104)

Dθ
t u3 = D3ϑ

x u3 + 6|u3|2Dϑ
x ux + 3Dϑ

x (u1u3)u∗
1 + 3Dϑ

x (u2u3)u∗
2 + u3 + xDϑ

x u3 − ixu3 − iu3, (105)

where D3ϑ
x represents Dϑ

x Dϑ
x Dϑ

x , 0 < ϑ < 1, and applications in related fields of the time-
fractional system of three-component coupled mKdV Equations (89)–(91) combined with
such nonlocal fractional derivatives deserve further research.

In Section 5, a special case of the ccmKdVEs (1)–(3) with α(t), β(t), γ(t), and δ(t)
all being tθ−1, 0 < θ < 1, and t ≥ 0 is used to transform into the time-fractional
Equations (89)–(91). In such a special case, the results obtained in Sections 1–4 can be
adjusted accordingly to satisfy Equations (89)–(91), which is attributed to the properties of
the comfortable fractional derivative [56]. However, there are very few fractional deriva-
tives with such properties, and our research on the numerical algorithm of Equations
(89)–(91) is not deep enough. Nevertheless, we believe that the introduction of the time-
fractional Equations (89)–(91) has the following three benefits. Firstly, it not only highlights
the importance of the ccmKdVEs (1)–(3) but also contributes to the exploration of the RH
method [1] for nonlocal fractional integrable systems. Secondly, it can further remind
us of nonlocal fractional systems, making it easier for us to naturally propose the non-
local time-fractional Equations (89)–(91) or nonlocal spatiotemporal fractional Equations
(103)–(105). Thirdly, we all know that for solving nonlocal fractional nonlinear differential
systems, numerical algorithms are generally chosen by researchers, but often, as in this
article, only approximate solutions can be obtained instead of exact solutions in closed
forms, and waiting for N-soliton solutions is even more unrealistic. Numerical algorithms
cannot do without the initial values of the system to be solved. The initial values given
in Equations (92)–(94) are derived from the one-soliton solutions (79)–(81) obtained by
the analytical RH method. Therefore, in the process of searching for the application of
the obtained results in fractional calculus, two fractional systems of Equations (89)–(91)
and Equations (103)–(105) are proposed in this paper. This can enrich the research content
of numerical algorithms and also provide clues and references for the selection of initial
values and error estimation of numerical algorithms, thereby achieving complementary
advantages between numerical and analytical methods.
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