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Abstract: The accurate recognition of a brain tumor (BT) is crucial for accurate diagnosis, intervention
planning, and the evaluation of post-intervention outcomes. Conventional methods of manually
identifying and delineating BTs are inefficient, prone to error, and time-consuming. Subjective
methods for BT recognition are biased because of the diffuse and irregular nature of BTs, along
with varying enhancement patterns and the coexistence of different tumor components. Hence, the
development of an automated diagnostic system for BTs is vital for mitigating subjective bias and
achieving speedy and effective BT segmentation. Recently developed deep learning (DL)-based
methods have replaced subjective methods; however, these DL-based methods still have a low
performance, showing room for improvement, and are limited to heterogeneous dataset analysis.
Herein, we propose a DL-based parallel features aggregation network (PFA-Net) for the robust
segmentation of three different regions in a BT scan, and we perform a heterogeneous dataset analysis
to validate its generality. The parallel features aggregation (PFA) module exploits the local radiomic
contextual spatial features of BTs at low, intermediate, and high levels for different types of tumors
and aggregates them in a parallel fashion. To enhance the diagnostic capabilities of the proposed
segmentation framework, we introduced the fractal dimension estimation into our system, seamlessly
combined as an end-to-end task to gain insights into the complexity and irregularity of structures,
thereby characterizing the intricate morphology of BTs. The proposed PFA-Net achieves the Dice
scores (DSs) of 87.54%, 93.42%, and 91.02%, for the enhancing tumor region, whole tumor region, and
tumor core region, respectively, with the multimodal brain tumor segmentation (BraTS)-2020 open
database, surpassing the performance of existing state-of-the-art methods. Additionally, PFA-Net is
validated with another open database of brain tumor progression and achieves a DS of 64.58% for
heterogeneous dataset analysis, surpassing the performance of existing state-of-the-art methods.

Keywords: brain tumor segmentation; feature aggregation; fractal dimension; enhancing tumor;
tumor core; whole tumor

1. Introduction

An uncontrolled growth of cancerous or non-cancerous cells inside a rigid skull char-
acterizes a brain tumor (BT). Computer-aided diagnostic (CAD) tools, when coupled with
artificial intelligence (AI) techniques, play a crucial role in facilitating its early detection [1].
The World Health Organization (WHO) has classified BTs into four grades, one–four, and
further categorized them into high-grade glioma (HGG) and low-grade glioma (LGG)
based on the malignancy scale of pathological tissues [2]. HGGs are aggressive BTs with
high mortality rates [3]. Data from the National Program of Cancer Registries (NPCR) and
the Surveillance, Epidemiology, and End Results (SEER) registries revealed that between
2008 and 2017, 54% of adults in the United States were identified with HGGs, whereas the
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occurrence rate of HGGs in young individuals ranged from 0.5% to 0.7% [4]. On the other
hand, LGGs are slow growing and less fatal, and patients with LGGs have a long survival
period compared to those with HGGs; however, if LGGs are not recognized and treated at
their earlier stages, they infiltrate into neighboring cells, relapse, and finally advance to
HGGs [5]. Invasive treatments for BTs, such as surgery, increase the likelihood of gross
total resection (GTR) but carry the risk of damaging crucial brain regions responsible for
speech and mobility, while non-invasive treatments for BTs, such as radiotherapy, if not
precisely targeted, can severely affect vision, hormone levels, and brain function [6,7].
The research in the selection of these treatments, the accurate recognition of BTs, mental
condition estimation, and motor imagery using AI can improve survival outcomes [8].

Conventional methods of manually identifying and delineating BTs are inefficient
and subjective because of the complex anatomy of the tumor, its infiltration into normal
tissue, and the diverse information obtained from different magnetic resonance imaging
(MRI) scans. The diffusion and irregular nature of BTs, along with varying enhancement
patterns and the coexistence of different tumor components, pose additional challenges in
accurate recognition and treatment. Therefore, the accurate identification of BT location and
morphology is crucial for accurate assessment, intervention planning, and the evaluation
of post-intervention outcomes. Thus, the development of a CAD tool for BT is desirable
for mitigating subjective bias and achieving speedy and effective BT segmentation [9].
Developing a CAD tool for MRI scans of LGG and HGG is challenging because of several
factors. These include the complex anatomy of the BT, which varies from one patient
to another, the infiltration of normal tissue, and diverse intensities of information from
different MRI modalities that require expert interpretation [10].

Segmentation analysis involves breaking down an image into different parts to under-
stand them better. BT segmentation analysis helps doctors identify and locate the tumor
accurately. Deep learning (DL) models are like smart tools that learn from examples to
automatically recognize patterns in images. In BT analysis, these models are trained to
spot and outline tumors in MRI scans. In this paper, we are using algorithms based on
DL to help doctors pinpoint and understand these tumors in MRI scans. Convolutional
neural networks (CNNs) have demonstrated the ability to learn and recognize intricate
patterns in medical images, thereby achieving superior performance in classification and
segmentation [11–14]. A CNN is a DL algorithm that uses convolutional layers to perform
localized feature extraction, pooling layers to reduce spatial dimensions while preserving
essential information, and fully connected layers to make high-level predictions [15].

Several CAD frameworks have been developed for BT classification and segmentation
based on hand- and DL-extracted features methods [16–21]. We propose a CAD tool utiliz-
ing DL-extracted features for the robust segmentation of three different BT regions of the
multimodal brain tumor segmentation (BraTS)-2020 dataset [9,22,23]. The three regions,
named enhancing tumor (ET), whole tumor (WT), and tumor core (TC), are challenging to
segment from a scan owing to diffused, irregular, and non-specific enhancement, varying
distribution, heterogeneity, and the coexistence of different tumor components. Further-
more, class imbalance presents a significant challenge, owing to the small size of the tumor
areas and their vulnerability to background domination.

Existing methods have not shown satisfactory performance, particularly in the case of
ET. Additionally, existing methods do not perform a heterogeneous dataset analysis, which
is crucial for determining the generalizability of a CAD framework. We designed a DL-
based parallel features aggregation network (PFA-Net) to decrease the likelihood of GTR,
minimize subjective bias, and perform robust BT segmentation. Moreover, we performed a
heterogeneous dataset analysis to validate the generality of the proposed CAD framework.
Mainly, we have introduced a novel module based on parallel feature aggregation, which
employs multiple-branch feature extraction operations to extract discriminative information
from BT scans simultaneously with the aggregation of them. Specifically, we utilize three
of these modules at different levels within the encoder of the proposed segmentation
framework to capture spatial semantic information at various levels. Additionally, one
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module is incorporated into the decoder of the segmentation framework to handle the
diverse information obtained from the encoder. The detailed working and architecture of
the proposed module are described in Section 3.

The fractal dimension (FD) is widely used across various fields, including biology [24],
medical image analysis [25], urbanization studies [26], and the identification of BTs [27]. In
our study, we introduced the FD estimation in our segmentation framework. This analysis
provides valuable insights into the structural complexity and irregularity of BTs. By
characterizing the intricate morphology of BTs, it enhances understanding of BT behavior
and aids in diagnostic and prognostic assessments, ultimately contributing to advancements
in BT research and patient care.

The experimental outcomes demonstrate that the proposed method significantly enhances
the overall segmentation accuracy, both qualitatively and quantitatively. This study addresses
the limitations of previous studies and outperform them with the following novelties:

- This study proposes a robust CAD framework based on radiomic parallel features
aggregation for the accurate segmentation of three different BT regions. The frame-
work comprises an encoder–decoder architecture, with a novel PFA block comprising
multiple-branch feature extraction layers to learn discriminative information from the
BT scans in parallel and aggregate them.

- In the encoder module, the PFA block is integrated at low, intermediate, and high
levels to capture a comprehensive representation of the BT and preserve diverse
multi-level information throughout the encoding process. The multi-level aggregated
features capture the overall characteristics of the BT, incorporating local details, such
as small tumor boundaries, particularly for ET, intermediate-level structures, such as
the shape of the BT, and high-level global information, such as the overall location
and size of the BT.

- In contrast to the encoder module, the decoder module utilizes the PFA block to
collectively process upscaled low-level, intermediate-level, and high-level bottleneck-
rich semantic features in parallel. Subsequently, the PFA block aggregates these
semantic features to ensure that the decoder module has access to a diverse range of
information, including fine-grained details and high-level contexts.

- Our proposed PFA-Net surpasses the state-of-the-art methods in the field of hetero-
geneous dataset analysis in terms of segmentation performance and computational
efficiency, with 19.49 million (M) parameters less than those of the previous method.

- The integration of the FD estimation method into our system provides valuable
insights into the distributional characteristics of BTs, thereby enhancing the compre-
hensiveness of our approach. Moreover, our trained PFA-Net is publicly available for
fair comparison via the following link (https://github.com/PFA-Net, accessed on 23
November 2023).

The proposed framework offers novelty in several key aspects. Firstly, it presents a
robust CAD system named PFA-Net, which employs radiomic parallel features aggregation
to accurately segment three distinct regions within BTs. This innovative approach strategi-
cally integrates a PFA block within an encoder–decoder architecture, positioned at multiple
levels to capture comprehensive BT representations, while retaining multi-level information
throughout encoding. Notably, the framework outperforms state-of-the-art methods in
both homogeneous and heterogeneous dataset analyses, demonstrating superior segmen-
tation performance and computational efficiency. Furthermore, the incorporation of the
FD estimation method provides valuable insights into the distributional characteristics of
BTs, enhancing the overall comprehensiveness of the framework. In conclusion, this frame-
work signifies a significant advancement in BT segmentation by amalgamating innovative
techniques (PFA-Net and FD) to achieve heightened accuracy and efficiency.

The rest of this paper is organized as follows: Section 2 presents a review of related
work on BT segmentation. Section 3 presents our method, and Section 4 presents the
experimental results with an in-depth analysis. Section 5 discusses the main findings and

https://github.com/PFA-Net
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limitations of this study. Finally, Section 6 wraps up the paper by presenting a summary of
the main findings and describing the future scope of research.

2. Related Work

Several CNN-based methods have been developed for classification and segmentation
in BT screening. In this study, we considered CNN-based methods for BT segmentation
using homogeneous and heterogeneous datasets. Homogeneous dataset segmentation
refers to the segmentation of three different BT regions of the BraTS-2020 dataset. By
contrast, a heterogeneous dataset refers to the utilization of different datasets for training
and testing in a heterogeneous analysis environment.

2.1. Homogeneous Dataset Analysis

Most of the research conducted on the segmentation task of the BraTS-2020 dataset
has focused on using modified versions of the two-dimensional (2D) U-Net [28] and the
three-dimensional (3D) U-Net [29]. U-Net architectures have proven to be highly effective
for medical image segmentation tasks, including BT segmentation. While modified versions
of U-Net have been the dominant choices, few studies have explored alternative CNN
architectures for the same problem. These methods compare the performance of different
CNN models and evaluate their suitability for BraTS-2020 dataset segmentation. This
section decodes the dichotomy between handcrafted feature-based and deep feature-based
methods for BT classification, localization, and segmentation.

2.1.1. Handcrafted Feature-Based Methods

Before the advent of DL techniques, BTs were identified and analyzed using con-
ventional image processing techniques. For example, Velthuizen et al. [30] compared the
performance of supervised machine learning (ML) methods, including K-nearest neigh-
bor (kNN) and region growing, with unsupervised ML methods, including non-fuzzy
clustering and the fuzzy C-means algorithm, for measuring tumor volumes in a dataset
of MRI of 10 patients. They concluded the supervised methods were superior to unsu-
pervised ones in terms of true positive rate. However, unsupervised methods required
a large processing time. Kamber et al. [31] proposed model-based and non-model-based
methods to automatically segment multiple sclerosis lesions in MRI of the human brain.
They used different classifiers including a decision tree, Bayesian classifier, and statistical
minimum distance. The MR image data were pre-processed by applying homomorphic
filters to remove inhomogeneity artifacts, and segmentation errors were manually cor-
rected. Gibbs et al. [32] used different image processing morphological routines, including
a Sobel edge filter, region growing algorithm, and nearest-neighbor filters, for segmentation
of glioma from 10 patients’ data in MRI volumes. Their segmentation results were not
compared with the ground truth, and therefore lacked authenticity. Clark et al. [33] de-
signed a knowledge-based segmentation system for glioblastoma-multiforme tumors using
unsupervised clustering methods and multispectral histograms. This process involves
knowledge engineering, wherein we determine the most useful knowledge for the goal of
tumor segmentation and then implement this information into a rule-based system. Their
system generated many false-positive (FP) cases.

Kaus et al. [34] developed a computerized segmentation technique for LGGs and
meningiomas. Their method was a combination of a statistical classification approach
along with digital atlas knowledge. The automated method demonstrates comparable
accuracy to the manual method in segmenting the brain and tumor, along with improved
reproducibility, but their method was dependent on an atlas. Warfield et al. [35] developed
a novel adaptive, template-moderated statistical method for the segmentation of normal
anatomy and abnormal anatomy from MRI scans of the brain, knee cartilage, and sclerosis.
Their method was dependent on an external template, and pre-processing was needed.
Mazzara et al. [36] used knowledge-guided (KG) and kNN methods for BT segmentation
from MRI scans of 11 patients. The kNN method performed effectively in a challenging
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case that involved cystic formation within a partially enhanced area. The average accuracy
using the KG method was 52% for 7 of the 11 patients, while the average accuracy using
kNN methods was 56% for all 11 patients. However, both approaches for the segmentation
of the edges of tumor were less accurate compared to expert oncologists.

A few studies were found on BT segmentation based on supervised learning random
forest (RF) algorithms [37,38]. For example, Tustison et al. [37] proposed a probabilities-
based system for the supervised segmentation of various-modality intensity, geometry,
and asymmetry feature sets using RF algorithms. A final set of binary morphological
operations were designed heuristically to enhance the final segmentation results. These
operations included removing small connected components and morphologically closing
certain regions. Their method achieved average Dice scores (DSs) of 74%, 87%, and 78%
for ET, WT, and TC, respectively. Similarly, Pinto et al. [38] proposed an RF framework fed
with context- and appearance-based features of gliomas. The framework was comprised of
an Extra-Trees classifier utilizing local and contextual features extracted from T1c, T2, and
fluid attenuated inversion recovery (Flair) MRI sequences. Their method achieved average
DS values of 73%, 83%, and 78% for ET, WT, and TC, respectively.

There are some computer-aided (CAD) tools designed for the classification and seg-
mentation of BTs. For example, a 3D slicer CAD tool was developed by Kikinis and
Pieper [39]. This tool was fashioned with an interactive editor contained different segmen-
tation effects. Similarly, Gao et al. [40] designed a publicly accessible open-source visually
interactive 3D segmentation tool and made it available to end users across several platforms.

2.1.2. Deep Feature-Based Methods

Enormous data sets are required for DL models to learn complex deep features inde-
pendently at a high computational cost. With the advent of different CNNs, several DL
models have been proposed for BT detection, segmentation, and classification. For example,
a previous study [41] proposed a refined attention mechanism with a dual pathway and
a double-pathway residual block for BT segmentation. The dual-pathway attention gate
focuses on both spatial features and target-related channels and incorporates a double-
pathway residual block in the downsampling layers to enhance feature transmission. The
training strategy involved random cropping to minimize FP and achieved mean DSs of
82.3%, 91.2%, and 87.8% for ET, WT, and TC, respectively. The strategy affects the perfor-
mance of small tumor components, particularly ET. A modality-pairing learning method
introduced by Wang et al. [42] leveraged a 3D U-Net backbone network for segmentation
by fusing four modalities of MRI brain images. This method employs parallel branches
to extract features from different modalities and combines them through layer connec-
tions. Their method achieved average DS values of 86.3%, 92.4%, and 89.8% for ET, WT,
and TC, respectively. However, their method is computationally complex and requires
post-processing.

Yuan [43] proposed the scale attention network (SA-Net) for BT segmentation using
multimodal 3D MRI images. They achieved a DS of 81.25%, 91.51%, and 87.73%, for ET, WT,
and TC, respectively. They combined the four MRI modalities of the BT scans from all pa-
tients into a tensor of four channels, which resulted in computational complexity. SA-Net is
an extended version of vanilla U-Net with additional attention blocks. They did not provide
statistical differences between vanilla U-Net and SA-Net. Henry et al. [44] trained multiple
3D U-Net-like neural networks by using deep supervision and stochastic weight averaging.
Two separate ensembles of the models were trained, resulting in two BT segmentation
maps per patient. These segmentation maps were combined for specific tumor subregions
to obtain the final segmentation and achieved DS values of 81.44%, 90.37%, and 87.01%
for ET, WT, and TC, respectively. They achieved less than 1% improvement with their
proposed method compared with U-Net. Sundaresan et al. [45] proposed a DL approach
that utilizes a triplanar ensemble architecture with 2D U-Nets for the BT segmentation of
MR images. The authors incorporated multiple loss functions and achieved DS values of
83%, 93%, and 87% for ET, WT, and TC, respectively. Ballestar and Vilaplana [46] designed
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an ensemble of the V-Net and 3D U-Net. Each model excelled in a specific tumor region,
and by combining them, the overall performance was enhanced, with DS values of 77%,
85%, and 85% for ET, WT, and TC, respectively. However, the results can be improved
using state-of-the-art networks.

Similarly, Zhang et al. [47] introduced an ensemble technique employing the coarse-to-
fine strategy. This methodology aims to enhance the segmentation accuracy by iteratively
refining the results at different levels using multiple U-Net-based architectures. Their
ensemble model achieved DS values of 79.41%, 92.29%, and 87.70% for ET, WT, and
TC, respectively. Zhao et al. [48] proposed a multi-view pointwise (MVP) U-Net that
utilized a combination of multi-view and pointwise convolutions for BT segmentation from
multi-model 3D MRI. By incorporating spatial–temporal and channel features, the MVP
U-Net enhanced the reconstruction of 3D convolutions compared with the traditional 3D
U-Net. Additionally, they introduced a modified squeeze-and-excitation block into the
concatenated section of the MVP U-Net for improved performance and achieved DS values
of 60%, 79.9%, and 63.5% for ET, WT, and TC, respectively. In the BraTS-2020 challenge, the
winning approach [49] achieved DS values of 81.37%, 91.87%, and 87.97% for AT, WT, and
TC, respectively. Their network was based on nnU-Net [50] with various modifications;
however, it lacks extensive experimental validation. This limits a precise understanding
of the key contributing factors. A multi-threshold model developed by Awasthi et al. [51]
based on attention U-Net was devised to identify different BT regions in MRI scans. Their
model provides the benefits of a decreased computational complexity, lower memory
requirements, and shorter training time with low mean DS values of 59%, 72%, and 61%
for ET, WT, and TC, respectively.

Agravat and Raval [52] employed a three-layer deep 3D U-Net architecture for se-
mantic segmentation, utilizing an encoder–decoder structure. They integrated dense
connections within each layer module, enabling feature learning and gradient propagation
to earlier layers. They achieved DS values of 78.2%, 88.2%, and 83.2% for ET, WT, and TC,
respectively. Their method required pre-processing and two post-processing steps; how-
ever, the performance results were still poor for ET. Xu et al. [53] introduced a U-attention
net segmentation framework for BTs with various labels and achieved DS values of 81.79%,
91.90%, and 86.35% for ET, WT, and TC, respectively. In addition to modifying the struc-
ture and parameters of U-Net, they incorporated an attention gate before concatenating
skip connection features. Moreover, they introduced a multistage segmentation layer to
aggregate the features elementwise during the upsampling process for the final network
output. Although they applied augmentation techniques such as left–right and up–down
flipping, the results showed a decrease in performance. Residual mobile U-Net (RMU-Net)
achieved DS values of 83.26%, 91.35%, and 88.13% for ET, WT, and TC, respectively [54].
RMU-Net comprises an encoder module based on a modified MobileNetV2 and a decoder
module based on U-Net. However, potential unfairness in the evaluation arises because
their method is assessed using training data, whereas comparison with other methods
relies on the evaluation of testing data.

SGEResU-Net [18], based on the 3D U-Net model, achieved DS values of 79.40%,
90.48%, and 85.22% for ET, WT, and TC, respectively. Despite integrating attention and
residual modules into the U-Net architecture, their proposed lightweight SGResU-Net
exhibited a relatively modest performance improvement. Cirillo et al. [55] proposed a
Vox2Vox model that segmented ET, WT, and TC by processing multi-channel 3D MR images,
with mean DS values of 79.56%, 91.63%, and 89.25%, respectively. Their results could be
improved by refining the PatchGAN architecture and exploring an ensemble approach by
training multiple Vox2Vox models using different augmentation techniques. Vu et al. [56]
employed a multi-decoder architecture that jointly learned three BT regions while sharing a
common encoder, enabling end-to-end DL-based segmentation. Additionally, they stacked
the original images with their denoised counterparts as an input enhancement technique,
which led to improved performance, with DS values of 78.13%, 92.75%, and 88.34% for ET,
WT, and TC, respectively. They used pre-processing to enhance the performance of the ET,
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but the results were unsatisfactory. A 3D dynamic convolution-based dilated multifiber
network (DMF-Net) [57] utilized 3D dilated convolution and group convolution to learn
multi-level features. The network comprised four branches dedicated to extracting low-
level features from each modality. Within each branch, two dynamic convolutional layers
were introduced to learn discriminative information. The outputs of the four branches
were fused and passed onto the subsequent layers, forming a modality- and sample-
specific structure that captured distinct knowledge from different modalities for various
multimodal inputs. Despite incorporating a multi-branch structure with dynamic modules,
the performance of the network for ET remained relatively low, reaching only 76.20%.

The attention guided filter–squeeze-and-excitation volumetric network (AGSE-VNet)
is a mashup of the squeeze-and-excitation module and the attention guided filter module
for BT segmentation [58]. The integration addresses the interdependence of the feature
maps, suppresses background information, and achieves DS values of 70%, 85%, and 77%
for ET, WT, and TC, respectively. Fang et al. [59] introduced an automated glioma segmen-
tation technique incorporating convolutional and nonlocal attention modules, facilitating
attention operations in both spatial and channel dimensions. Their method achieved aver-
age DS values of 74.8%, 90.5%, and 88.5% for ET, WT, and TC, respectively. However, the
study did not include ablation studies for nonlocal attention modules, and pre-processing
steps were required to implement their approach. The sparse dynamic volume TransUNet
(SDV-TUNet) [60] is a 3D BT segmentation network that combines voxel information,
inter-layer feature connections, and intra-axis information in an encoder–decoder archi-
tecture. SDV-TUNet achieved DS values of 82.48%, 90.22%, and 89.20% for ET, WT, and
TC, respectively. Due to repeated 3 × 3 convolutional layers in the fusion module, the
computational cost increases. Aboussaleh et al. [61] introduced a hybrid 3D model for
BT segmentation using multimodal MRI, combining features from the encoders of the 3D
U-Net and V-Net (3DUV-NetR+) architectures. 3DUV-NetR+ achieved DS scores of 81.70%,
91.95%, and 82.80% for ET, WT, and TC, respectively. However, 3DUV-NetR+ has a higher
computational performance compared to its sub-models. A U-shaped network for BT MRI
segmentation (DAUnet) introduced a bottleneck and attention module with 3D spatial and
channel attention and residual connections [62]. DAUnet combines deep supervision and
convolutional attention, calculating the supervision loss for each training, which increases
the training time. DAUnet achieved DS values of 83.3%, 90.6%, and 89.2% for ET, WT, and
TC, respectively.

Although the aforementioned studies introduced diverse DL architectures that have
demonstrated commendable achievements in WT segmentation, they often exhibit limi-
tations in accurately segmenting ET. By contrast, the proposed PFA-Net exhibits superior
performance in all cases of BT segmentation, including ET, WT, and TC. In Table 1, a
comparative homogeneous dataset analysis is presented, highlighting the strengths and
limitations of the existing approaches compared with our proposed approach.

Table 1. Comparison of brain tumor segmentation methods in homogeneous dataset analysis.
Enhancing tumor (ET); whole tumor (WT); tumor core (TC); true positive rate (TPR); false positive
(FP); accuracy (Acc).

Methods Networks References Advantages Disadvantages Results

Handcrafted
feature-based

Supervised and
unsupervised

methods
[30]

Supervised methods were
superior in performance
over unsupervised ones

Unsupervised methods
required large
processing time

94% TPR

Model-based and
nonmodel-based [31] Model-based methods have

low error
Errors were manually
corrected

56–82% FP
was reduced

Morphological [32]
An appropriate method for
measuring tumor volume in
a well-defined region

Results were not
compared with ground
truth and lacked
authenticity

Mean
difference is
0.8 ± 1.8 cm3
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Table 1. Cont.

Methods Networks References Advantages Disadvantages Results

Handcrafted
feature-based

Knowledge-
based

segmentation
[33] Knowledge-engineering

concept was used
Generated large number
of FP cases

Some slices
have 90%
matching ratio

Statistical rule [34]
Comparable accuracy to
manual method in
segmenting tumor

Method was dependent
on atlas 99% Acc

Adaptive
template [35]

Integration of registration
methods with classification
methods

Pre-processing and
external template
are needed

-

kNN [36]
Performed effectively in a
challenging case involving a
cystic formation

Less accurate compared
to expert oncologists 56% Acc

Concatenated
random forests [37]

Symmetric multivariate
templates improve
performance

Post-processing
is required

74% for ET,
87% for WT,
78% for TC

Extremely
random forest [38] Extra-Trees classifier utilizes

local and contextual features
Post-processing
is required

73% for ET,
83% for WT,
78% for TC

Deep
feature-based

Dual-path
attention 3D

U-Net
[41]

Used dual-pathway
attention gate with
double-pathway
residual block

Training strategy of
random cropping affects
the performance of AT

82.3% for ET,
91.2% for WT,
87.8% for TC

Modality-
pairing 3D U-Net [42]

Employed parallel branches
to extract features from
different modalities

- Computationally
complex
- Requires
post-processing

86.3% for ET,
92.4% for WT,
89.8% for TC

3D SA-Net [43] Extension of vanilla U-Net
with attention blocks

Computation
complexity

81.25% for ET,
91.51% for WT,
87.73% for TC

3D U-Net [44] Ensemble training approach
is used

Ensemble approach is
computationally
expensive

81.44% for ET,
90.37% for WT,
87.01% for TC

Triplanar U-Net [45]
Proposed an ensemble
model, utilizing three planes
of MRI scans

Requires
post-processing

83% for ET,
93% for WT,
87% for TC

Ensemble model [46]
Ensemble of 3D U-Net and
V-Net mutually enhanced
performance

- Augmentation
is applied
- Requires
post-processing
- Low performance
results for AT

77% for ET,
85% for WT,
85% for TC

Multiple 3D
U-Net [47]

Employed an ensemble
technique with a
coarse-to-fine strategy and
brain parcellation

- Brain parcellation
around tumor regions
may be compromised
- Low performance
results for AT

79.41% for ET,
92.29% for WT,
87.70% for TC

MVP U-Net [48] Introduced 2D multi-view
layers in 3D network

- Low performance
results for all three
BT regions
- Three pre-processing
steps are required

60% for ET,
79.9% for WT,
63.5% for TC
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Table 1. Cont.

Methods Networks References Advantages Disadvantages Results

Deep
feature-based

nnU-Net [49] Achieving the top position
in the BraTS-2020 challenge

- Lacked extensive
experimental validation
- Training spans across
1000 epochs.

81.37% for ET,
91.87% for WT,
87.97% for TC

MTAU [51]
Lower memory
requirements and shorter
training time

- Low performance
results for all three
BT regions

59% for ET,
72% for WT,
61% for TC

Dense 3D U-Net [52]
Integration of dense
connection with each
layer module

- Two post-processing
steps are required
- Pre-processing
is required

78.2% for ET,
88.2% for WT,
83.2% for TC

U-attention Net [53]
Incorporates an attention
gate and multistage layers
within U-Net

The performance is
negatively impacted by
augmentation
techniques

81.79% for ET,
91.90% for WT,
86.35% for TC

RMU-Net [54]
An ensemble CNN
integrating the architectures
of U-Net and MobileNetV2

An unjust comparison
with cutting-edge
methods

83.26% for ET,
91.35% for WT,
88.13% for TC

SGEResU-Net [18]
A combined model of an
attention module together
with a residual module

Very low performance
gained for WT
compared to the
performance gained by
3D U-Net

79.40% for ET,
90.48% for WT,
85.22% for TC

3D-GAN [55] Segmentation is based on
volume-to-volume

- Pre-processing and
augmentation are
applied
- Low performance
results for AT

79.56% for ET,
91.63% for WT,
89.25% for TC

Multi-decoder [56]
Employed a multi-decoder
architecture with a
common encoder

- Requires
pre-processing
- Low performance
results for AT

78.13% for ET,
92.75% for WT,
88.34% for TC

Dynamic
DMF-Net [57]

Group convolution and
dilated convolution are
incorporating to learn
multilevel features

Performance for AT
remains low despite
multi-branch structure
and dynamic modules.

74.58% for ET,
91.36% for WT,
84.91% for TC

AGSE-VNet [58]

The squeeze-and-excitation
module is integrated into
the encoder for
BT segmentation

- Low performance
results for all three
BT regions
- Lack of ablation studies

70% for ET,
85% for WT,
77% for TC

NLCA-VNet [59] Trained the model with a
small-sized dataset

Statistical differences
between VNet and
NLCA-VNet are
not provided

74.80% for ET,
90.50% for WT,
88.50% for TC

SDV-TUNet [60] Fusion of multi-level edges Volumetric data increase
the computational cost

82.48% for ET,
90.22% for WT,
89.20% for TC

3DUV-NetR+ [61] Combination of U-Net
and V-Net

Higher computational
cost compared to its
sub-models

81.70% for ET,
91.95% for WT,
82.80% for TC
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Table 1. Cont.

Methods Networks References Advantages Disadvantages Results

Deep
feature-based

DAUnet [62]
A 3D attention comprises
spatial and channel with a
residual connection

Supervision loss
increases the
training time

83.30% for ET,
90.60% for WT,
89.20% for TC

PFA-Net Proposed

- Multi-level parallel
features are exploited
and aggregated
- High accuracy for
small-area tumors

Intensive computations
are required for parallel
features extraction

87.54% for ET,
93.42% for WT,
91.02% for TC

2.2. Heterogeneous Dataset Analysis
2.2.1. Partially Heterogeneous Dataset-Based Methods

Few studies on BT segmentation have addressed the heterogeneous dataset analysis
problem. Van der Voort et al. [63] proposed a single multi-task CNN that could perform
BT segmentation and predict different statuses, including isocitrate dehydrogenase (IDH)
mutation, tumor grade, and 1p/19q co-deletion. This study employed the BraTS-2019
dataset for training, in conjunction with additional datasets, and employed the BraTS-2018
dataset in the testing phase. Notably, subjects from the BraTS-2018 dataset were included
in the BraTS-2019 dataset, implying that a complete heterogeneous dataset analysis was
not performed.

2.2.2. Complete Heterogeneous Dataset-Based Methods

A DL-based model, MDFU-Net, was developed for heterogeneous brain dataset
analysis [19], yielding quantitative results with a DS of 62.66%. Their method required
pre-processing for effective results. Our proposed PFA-Net achieved superior quantitative
results and required fewer network parameters than the method proposed by [19], without
the need for any pre-processing steps.

In Table 2, a comparative heterogeneous dataset analysis is presented, highlighting the
strengths and limitations of the existing approaches compared with our proposed approach.

Table 2. Comparison of brain tumor segmentation methods in heterogeneous dataset analysis. Dice
score (DS); enhancing tumor (ET); whole tumor (WT); tumor core (TC).

Methods Networks References Advantages Disadvantages Results (DS)

Partially
heterogeneous
analysis-based

Multi-task
CNN [63] Concurrently executes multiple

tasks.

Heterogeneous
dataset analysis is
partially fulfilled

84%

Complete
heterogeneous
analysis-based

MDFU-Net [19]

- Multiscale dilated features
are upsampled
- Performs complete
heterogeneous dataset analysis

Pre-processing
is required 62.66%

PFA-Net Proposed

- Multi-level parallel features
are exploited and aggregated
- Performs complete
heterogeneous dataset analysis

Intensive
computations are
needed for parallel
features extraction

64.58%

3. Proposed Methodology
3.1. Overview of the Workflow

The workflow of the proposed CAD framework, with the flow of information within
the PFA-Net (parallel features aggregation network), is shown in Figure 1. Parallel feature
extraction through multiple layers at different levels by the PFA block and their aggregation
is the core motivation for designing this framework. The detailed architecture and operation
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of the PFA block within PFA-Net are described in Sections 3.2 and 3.3. The proposed
segmentation model was assessed using two BT datasets: BraTS-2020 [9,22,23], referred
to as Dataset-1, and a brain tumor progression dataset [64,65], referred to as Dataset-
2. The proposed framework consisted of two experiments based on homogeneous and
heterogeneous dataset analyses. The term homogeneity refers to the utilization of one
dataset, whereas heterogeneity refers to the utilization of more than one dataset.
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Figure 1. Workflow of the proposed segmentation framework for homogeneous and heterogeneous
dataset analyses.

Initially, for the homogeneous dataset analysis, a training dataset with corresponding
tumor segmentation masks, which is a part of Dataset-1, was fed to the PFA-Net for
training. Subsequently, the hyperparameters of the PFA-Net were tuned to determine the
most suitable configuration for the model. The process involved training the PFA-Net
multiple times using different hyperparameter settings and evaluating its performance
on a validation dataset. The validation dataset was a subset of Dataset-1 used to monitor
the performance of PFA-Net during the training process. The process helps to find the
hyperparameter values that lead to the best performance in terms of DS, convergence, and
generalization to unseen data. Following the training and optimizing of the PFA-Net, the
next step involved evaluating its performance using two separate testing datasets: testing
data (Tst-1) from Dataset-1 and testing data (Tst-2) from Dataset-2. Tst-1 is a portion of the
overall dataset used for training the PFA-Net. It is important to note that Tst-1 was distinct
from the training dataset to ensure an unbiased evaluation.

However, for the heterogeneous dataset analysis, Tst-2 is a completely different dataset
from the training dataset, aiming to evaluate the ability of the model to generalize beyond
the specific characteristics of the training dataset. Testing the PFA-Net on Tst-2 demon-
strated its robustness and applicability to real-world scenarios.

3.2. Architecture and Workflow of PFA-Net

Table 3 presents the details of the layer-wise architecture of PFA-Net, including PFA
blocks. Figure 2 shows the primary architecture of the proposed PFA-Net, which centers
on an innovative PFA block. This block, which consists of multiple convolutional (Conv)
layers, plays a crucial role in extracting features in parallel and in channel-wise aggregation.
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Initially, the encoder module of the PFA-Net was fed with a BT image of dimensions
304 ×304 × 3 from Dataset-1 to eliminate redundant information and extract the optimal
features. Initially, a 7 × 7 × 3 Conv layer processed the BT scan, which was then subjected
to a max-pooling layer to diminish the spatial dimension to 76 × 76. Subsequently, a
tensor of size 76 × 76 was further processed using eight different spatial convolution-based
blocks ([B1, ×2], [B2, ×2], and [B3, ×4]) and four novel parallel features aggregation-
based blocks ([PFA-block, ×4]), as illustrated in Figure 2. These eight blocks are a part of
deepLabV3+ [66].

Table 3. Details of layer-wise architecture of the proposed PFA-Net. [B1, B2, B3] are part of
deepLabV3+ and [PFA, block1, block2, block3, block4] are novel parallel features aggregation blocks.

Layer Name # Iterations Input Size Output Size Filter Size

Input 1 - 304 × 304 × 3 -

Conv1 1 304 × 304 × 3 152 × 152 × 64 7 × 7

Max Pooling 1 152 × 152 × 64 76 × 76 × 64 3 × 3

B1 2 76 × 76 × 64 76 × 76 × 64
1 × 1
3 × 3
1 × 1

PFA-block1 1 76 × 76 × 64 76 × 76 × 1024 3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

B2 2 76 × 76 × 1024 38 × 38 × 128
1×1
3 × 3
1 × 1

PFA-block2 1 38 × 38 × 128 38 × 38 × 1024 3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

B3 4 38 × 38 × 1024 19 × 19 × 512
1×1
3 × 3
1 × 1

Upsample1 1 38 × 38 × 256 76 × 76 × 256 2 × 2

PFA-block3 1 19 × 19 × 512 19 × 19 × 1024 3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

Upsample2 1 19 × 19 × 256 76 × 76 × 256 8 × 8

Concatenation 1
76 × 76 × 256
76 × 76 × 256
76 × 76 × 128

76 × 76 × 640 -

Conv2 1 76 × 76 × 640 76 × 76 × 256 3 × 3

PFA-block4 1 76 × 76 × 256 76 × 76 × 1024 3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

3 × 3
1 × 1

Conv3 1 76 × 76 × 1024 76 × 76 × 256 1 × 1

Conv4 1 76 × 76 × 256 76 × 76 × 2 1 × 1

Upsample3 1 76 × 76 × 2 304 × 304 × 2 8 × 8

SoftMax 1 304 × 304 × 2 304 × 304 × 2 -

Pixel Classification 1 304 × 304 × 2 304 × 304 × 2 -
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The novel PFA blocks play a crucial role in extracting spatially parallel features at dif-
ferent levels: low, intermediate, and high (PFlow, PFint, PFhi). PFA-block1 extracts the low-
level spatial features FB1 ∈ Rwi×hi×di from B1 and generates a tensor PFlow ∈ Rwi×hi×16di

with dimensions 76 × 76 × 1024. PFlow is calculated mathematically as follows:

PFlow(p, q, m) = Agg[Flow]
n
1 (1)

Flow(i, j, . . . .) = f (FB1(i, j, . . . .)) (2)

where p and q denote the spatial dimensions of PFlow sized 76 × 76 with m channels,
equivalent to 1024. Moreover, n = 4 represents the sets of parallel-extracted low-level
features, and the aggregation operation (Agg) combines these features across channels. Flow
is generated by applying different operations ( f ) to the input feature map (FB1) of B1.

Subsequently, PFlow was further processed using B2. Additionally, a residual con-
nection was established to add PFlow to PFint, and PFhi, enabling the incorporation of
refined PFlow information, while preserving and integrating the PFint, and PFhi features
via a concatenation operation. PFA-block2 extracts the intermediate-level spatial fea-
tures FB2 ∈ Rwi×hi×di from B2, generating a tensor PFint ∈ Rwi×hi×8di with dimensions
38 × 38 × 1024. Mathematically, PFint was calculated as follows:

PFint(p, q, m) = Agg[Fint]
n
1 (3)

Fint(i, j, . . . .) = f (FB2(i, j, . . . .)) (4)

where p and q indicate the spatial dimensions of PFint sized 38 × 38 with m channels
equivalent to 1024. Additionally, n = 4 represents the sets of parallel-extracted intermediate-
level features, and the aggregation operation (Agg) combines these features across channels.
Fint is generated by applying different operations ( f ) to the input feature map (FB2) of B2.
Subsequently, the feature map PFint was processed through B3 and upsampled to ensure a
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matching spatial dimension for effective fusion. These upsampled feature maps were then
added to PFlow and PFhi to integrate the refined PFint information alongside the feature
maps PFlow and PFhi.

Lastly, PFA-block3 in the encoder module focuses on the high-level semantic features
FB3 ∈ Rwi×hi×di from B3, resulting in bottleneck features PFhi ∈ Rwi×hi×2di with dimen-
sions 19 × 19 × 1024. The spatial dimensions of PFhi were upsampled and incorporated
into feature maps PFlow, and PFint via concatenation. This ensures that the feature maps
have compatible spatial dimensions for the concatenation operation, thereby enabling the
effective fusion of information. Mathematically, PFhi is calculated as follows:

PFhi(p, q, m) = Agg[Fhi]
n
1 (5)

Fhi(i, j, . . . .) = f (FB3(i, j, . . . .)) (6)

where p and q denote the spatial dimensions of PFhi sized 19 × 19 with m channels
equivalent to 1024. Additionally, n = 4 represents the sets of parallel-extracted high-level
features, and the aggregation operation (Agg) combines these features across channels. Fhi
is generated by applying different operations ( f ) to the input feature map (FB3) of B3.

To leverage diverse information from different levels in the decoder module, the
original feature maps PFlow, PFint, and PFhi were fused channel-wise via a concatenation
operation to generate a feature tensor map PFcat. The fusion process ensures that the
original feature maps are preserved and integrated effectively, enabling PFA-Net to benefit
from the combined information captured at multiple levels. Mathematically, PFcat is
calculated as follows:

PFcat = PFlow ⊙ PFint ⊙ PFhi (7)

PFcat is further exploited using two Conv layers and a PFA block in the decoder module.
PFA-block4 leverages the fused feature map PFcat and produces a tensor PFup ∈ Rwi×hi×4di

with dimensions 76 × 76 × 1024. To prepare the PFup for upsampling to match the spatial
and channel dimensions, two pointwise Conv layers and one upsampling layer were
applied. The pointwise Conv layers first reduce the channel dimensions of the PFup to 256
and then further down to two, corresponding to the number of pixel classes. Subsequently,
an upsampling layer was utilized to increase the spatial dimensions of the PFup to match
an input size of 304 × 304. Finally, the probability of each pixel was calculated using the
SoftMax function, and a decision was made using the cross-entropy (CE) loss function.

3.3. Architecture of PFA Block and Loss Function

The encoder module of the proposed PFA-Net (parallel features aggregation network)
contains three PFA blocks (as shown in Figure 2), named PFA-block1, PFA-block2, and
PFA-block3, to explore Flow, Fint, and Fhi, respectively, and the decoder module contains
one PFA block to exploit PFcat. Figure 3 shows the primary architecture of the proposed
PFA block of PFA-Net. The novel PFA block comprises multiple layers, including Conv
(convolutional), pointwise Conv, rectified linear unit (ReLU), and batch normalization (BN)
layers, for processing the features in parallel, as shown in Figure 3. This configuration
of parallel features processing allows the PFA-Net to capture diverse features with the
3 × 3 filter size simultaneously. While each layer operates on the same input data, the
multiple layers learn different aspects of the input, leading to a more comprehensive
representation of the BT. Finally, concatenating the parallel-generated diverse features
preserves the information learned by each layer and provides a richer representation of
BT features. The four Conv layers captured the hierarchical patterns (low, intermediate,
or high levels) with a filter size of 3 × 3 for a set of 320 input channels. The use of a
3 × 3 filter size is a common choice in CNNs (convolutional neural networks) and has
proven to be effective in capturing various types of patterns with effective computation [67].
Subsequently, four pointwise Conv layers are employed for channel-wise transformations
and dimensionality reduction within the PFA block. Following the pointwise Conv layer,
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four BNs normalize the data. In addition to the BNs, four ReLU layers are employed to
introduce non-linearities into the data through the activation function.
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The details of the layer-wise architecture of the PFA blocks (PFA-block1, -block2,
-block3, -block4) are presented in Table 4. Initially, PFA-block1 in the encoder module of
PFA-Net was fed with a tensor of size 76 × 76 × 64 to eliminate redundant information
from low-level features. In PFA-block1, four Conv and pointwise Conv layers with filter
sizes of 3 × 3 and 1 × 1, respectively, generate an output tensor of size 76 × 76 × 320 and
76 × 76 × 256, respectively. To normalize and introduce non-linearities in the low-level
features, four BN and ReLU layers were applied, resulting in an output spatial tensor size
of 76 × 76 × 256. Finally, the parallel low-level extracted features are concatenated through
a depth-wise Conv layer into a tensor of size 76 × 76 × 1024. Similarly, PFA-block2 in
the encoder module of PFA-Net was fed with a tensor of size 38 × 38 × 128 to eliminate
redundant information from intermediate-level features. In PFA-block2, four Conv and
pointwise Conv layers with filter sizes of 3 × 3 and 1 × 1, respectively, generate an output
tensor of size 38 × 38 × 320 and 38 × 38 × 256, respectively. To normalize and introduce
non-linearities in the intermediate-level features, four BN and ReLU layers were applied,
resulting in an output spatial tensor size of 38 × 38 × 256. Finally, the parallel intermediate-
level extracted features are concatenated through a depth-wise Conv layer into a tensor of
size 38 × 38 × 1024. Similarly, PFA-block3 in the encoder module of PFA-Net was fed with
a tensor of size 19 × 19 × 512 to eliminate redundant information from high-level features.
In PFA-block3, four Conv and pointwise Conv layers with filter sizes of 3 × 3 and 1 × 1,
respectively, generate an output tensor of size 19 × 19 × 320 and 19 × 19 × 256, respectively.
To normalize and introduce non-linearities in the high-level features, four BN and ReLU
layers were applied, resulting in an output spatial tensor size of 19 × 19 × 256. Finally, the
parallel high-level extracted features are concatenated through a depth-wise Conv layer
into a tensor of size 19 × 19 × 1024. PFA-block4 in the decoder module of PFA-Net was
fed with a tensor of size 76 × 76 × 256 to leverage diverse information from different
levels. In PFA-block4, four Conv and pointwise Conv layers with filter sizes of 3 × 3 and
1 × 1, respectively, generate an output tensor of size 76 × 76 × 320 and 76 × 76 × 256,
respectively. Finally, the parallel-extracted features are concatenated through a depth-wise
Conv layer into a tensor of size 76 × 76 × 1024, which is upsampled to an input image size
of 304 × 304 × 3.



Fractal Fract. 2024, 8, 357 16 of 41

Table 4. Details of layer-wise architecture of proposed PFA blocks of PFA-Net.

Block Layer Name # Iterations Input Size Output Size Filter Size

PFA-block1

Conv5 4 76 × 76 × 64 76 × 76 × 320 3 × 3

PW Conv1 4 76 × 76 × 320 76 × 76 × 256 1 × 1

BN1 4 76 × 76 × 256 76 × 76 × 256 -

ReLU1 4 76 × 76 × 256 76 × 76 × 256 -

Cat1 1 (76 × 76 × 256) * 76 × 76 × 1024 -

PFA-block2

Conv6 4 38 × 38 × 128 38 × 38 × 320 3 × 3

PW Conv2 4 38 × 38 × 320 38 × 38 × 256 1 × 1

BN2 4 38 × 38 × 256 38 × 38 × 256 -

ReLU2 4 38 × 38 × 256 38 × 38 × 256 -

Cat2 1 (38 × 38 × 256) * 38 × 38 × 1024 -

PFA-block3

Conv7 4 19 × 19 × 512 19 × 19 × 320 3 × 3

PW Conv3 4 19 × 19 × 320 19 × 19 × 256 1 × 1

BN3 4 19 × 19 × 256 19 × 19 × 256 -

ReLU3 4 19 × 19 × 256 19 × 19 × 256 -

Cat3 1 (19 × 19 × 256) * 19 × 19 × 1024 -

PFA-block4

Conv8 4 76 × 76 × 256 76 × 76 × 320 3 × 3

PW Conv4 4 76 × 76 × 320 76 × 76 × 256 1 × 1

BN4 4 76 × 76 × 256 76 × 76 × 256 -

ReLU4 4 76 × 76 × 256 76 × 76 × 256 -

Cat4 1 (76 × 76 × 256) * 76 × 76 × 1024 -

* Features are concatenated through depth-wise concatenation layer.

In the PFA-Net architecture, we strategically incorporate the PFA block within both
the encoder and decoder frameworks by performing an ablation study, as presented in
Section 4. The encoder extracts high-level features from the input data, while the decoder
reconstructs the segmented output. By integrating the PFA block at multiple appropriate
stages within this framework, the network can effectively leverage its feature extraction
capabilities at various levels. Specifically, we integrated the PFA block at a low level in the
encoder module to exploit low-level features, such as boundaries and edges of small-region
tumors, especially for ET (enhancing tumor). Subsequently, we integrated the PFA block
at an intermediate level in the encoder module to exploit intermediate-level features such
as the shape of the BT. Finally, we integrated the PFA block at a high level in the encoder
module to exploit high-level features, such as the location and size of the BT. In the decoder
module, we induced the PFA block to process and aggregate the combined information
captured at various levels in the encoder module, to ensure that the decoder module had
access to a diverse range of information, including fine-grained details and a high-level
context. This generates more accurate, detailed, and visually appealing outputs.

We used the CE loss function [68], which is commonly used for segmentation tasks, to
measure the dissimilarity between the predicted probability distribution and true distribu-
tion of class labels. The mathematical definition of the CE loss function is as follows:

Cross Entropy = − 1
N ∑N

i=1(yilog(pi) + (1 − yi)log(1 − pi)) (8)

where N denotes the total number of pixels in an image, pi denotes the predicted probability
that pixel i belongs to the foreground class, and yi denotes the true label of pixel i.
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4. Experimental Results
4.1. Experimental Dataset

As explained in Section 3.1, the proposed model was evaluated using two BT datasets
from BraTS-2020 [9,22,23] as Dataset-1, and the brain tumor progression dataset [64,65]
as Dataset-2. For the homogeneous dataset analysis, a five-fold cross-validation was
performed using Dataset-1. Dataset-1 consisted of 369 patients, including 293 diagnosed
with HGG and 76 with LGG, with four modalities including post-contrast T1-weighted
(T1ce), T1, T2, and Flair. We used the T1ce and Flair modalities for their rich visual
representations of tumor regions compared to other modalities. This rich dataset has
been instrumental in advancing the research and development of CAD (computer-aided
diagnostic) frameworks for BT segmentation. Dataset-1 is a combination of different
structures of MRI BT, including gadolinium-enhancing (ET), peritumoral edema (ED),
necrotic core (NCR), and non-enhancing core (NET). The diffused, irregular, and nonspecific
enhancement of ET, the varying distribution and heterogeneity of ED and NCR, and
coexistence of NET with ET make segmentation more challenging. The annotations of this
dataset for training data are publicly accessible, whereas the annotations for test trials are
not disclosed. Examples from Dataset-1 are shown in Figure 4.
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To analyze heterogeneous datasets, the PFA-Net trained on Dataset-1 was applied to
the entire Dataset-2 for testing. This dataset contained the MRI scans of 20 patients diag-
nosed with primary glioblastoma. Each patient’s data comprised two MRI examinations,
totaling 8798 scans. Examples from Dataset-2 are shown in Figure 5.
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4.2. Environmental Setup, Pre-Processing, and Training

All experiments, including the homogeneous and heterogeneous dataset analyses,
were conducted using an Intel (R) core (TM) i5-2320 CPU@3GHz with 16 GB RAM. The
experiments used an NVIDIA GeForce GTX 1070 GPU with 8 GB of graphical memory
(NVIDIA GeForce 10 Series, accessed on 26 August 2023) [69]. On a Windows 10 operating
system, PFA-Net was developed using MATLAB R2021b (MATLAB 2021b, accessed on
26 August 2023) [70]. A stochastic gradient descent optimizer, utilizing a 0.001 learning
rate, was employed to train the PFA-Net in both homogeneous and heterogeneous dataset
analysis experiments. A minibatch of size 10 was used for both homogeneous and het-
erogeneous dataset analyses. The default hyperparameter settings from MATLAB R2021b
were used for all other parameters.

Due to the limited availability of hardware resources and to avoid complexity, we
adopted a simplification approach by extracting slices from the volumetric medical imag-
ing data, resulting in 2D grayscale images. These images were then downsampled to a
resolution of 304 × 304 pixels. In total, we obtained 57,195 images from the medical data
of 369 patients. Additionally, to ensure consistency and comparability across the dataset,
we performed intensity normalization using Z-score normalization. This normalization
technique standardizes the intensity values of the grayscale images to have a mean of 0 and
a standard deviation of 1, thereby reducing the influence of variations in intensity levels
across different images. Z-score normalization is commonly used as a pre-processing step
in medical imaging analysis to enhance the interpretability and robustness of the data.

Dataset-1 was divided into ratios of 70%, 10%, and 20% for training, validation,
and testing, respectively, based on a five-fold cross-validation. To avoid underfitting or
overfitting problems, a validation dataset comprising 10% of Dataset-1 was used in the
homogeneous dataset analysis. Figure 6 illustrates the training and validation losses, as
well as the accuracies of PFA-Net for homogeneous dataset analysis with three segmen-
tation masks (ET, TC, and WT) of Dataset-1 and heterogeneous dataset analysis with the
segmentation mask of Dataset-2. The convergence can be observed in Figure 6, and both
loss and accuracy show that our model trained well and did not suffer from overfitting
during training. This shows that the PFA-Net learns to generalize BT (brain tumor) patterns
from the training data. Regarding the analysis of the heterogeneous dataset, we only
present the training losses/accuracies graphs in Figure 6, because we trained PFA-Net with
the complete Dataset-1 and subsequently tested it with the complete Dataset-2.
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4.3. Evaluation Metrics and Fractal Dimension Estimation

The DS and intersection over union (IoU) are widely used metrics in medical image
segmentation, owing to their ability to quantify the overlap between segmented regions and
the ground truth, which is of paramount importance in medical diagnosis and treatment
planning [71]. Mathematically, the DS (Dice score) and IoU are defined as follows:

DS =
2 × TP

2 × TP + FP + FN
(9)

IoU =
TP

TP + FP + FN
(10)

where TP stands for true positive pixels (correctly segmented as positive in both the
prediction and ground truths). FP denotes the number of false-positive pixels (incorrectly
segmented as positive in the prediction but not in the ground truth). FN denotes the
number of false-negative pixels (incorrectly segmented as negative in the prediction but
positive in the ground truth).

Fractals are complex shapes with self-similarity, defying traditional geometry rules [72]
The FD (fractal dimension) quantifies complexity, revealing whether a structure is concen-
trated or dispersed. In our study, PFA-Net outputs predicted binary masks for four distinct
types of BTs, where the FD can vary between 1 and 2, reflecting the complexity of these
predictions. Within this range, FD encompasses a broad spectrum of representations for
binary images, with higher values indicating greater shape complexity. By employing the
box-counting technique [73], we compute the FD of BTs. If N denotes the number of boxes
evenly dividing the BT, and ϵ represents the scaling factor of the box, we can calculate the
FD as follows:

FD = lim ϵ→0
log(N(ϵ))

log(1/ϵ)
(11)

where FD ∈ [1,2], and for all ϵ > 0, there exists a N(ϵ). The pseudocode for estimating
the FD of the generated BTs of PFA-Net using the box-counting method is provided in
Algorithm 1.
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Algorithm 1: The pseudocode for estimation of fractal dimension.

Input: Is: input is the generated output of PFA-Net
Output: fractal dimension (FD)
1: Set the maximum box size and make its dimensions powers of 2

e = 2ˆ[log(max(size(Is))/log2]
2: Pad the Is to make its dimension equal to e

if size(Is) < size(e)
pad(Is) = e

end
3: Pre-allocate the number of boxes

n = zeros(1, e +1)
4: Compute number of boxes ‘N(e)’ containing at least one BT pixel

n(e + 1) = sum(I(:))
5: While e > 1:

a. Reduce box size: e = e/2
b. Recalculate N(e)

6: Compute log(N(e)) and log(1/e) for each ‘e’
7: Fit line to [(log(1/e), log(N(e)] using least squares
8: Fractal dimension is slope of line

Return FD

4.4. Testing Results of Homogeneous Dataset Analysis
4.4.1. Ablation Studies

We performed four ablation studies on the proposed PFA-Net based on a novel PFA
block with a homogeneous dataset analysis. In the first ablation study, we considered
the importance of using the optimum number of PFA blocks to obtain the maximum per-
formance results at the cost of the learning parameters. In the second ablation study, we
explored the importance of the presence of a PFA block within the decoder module by
leveraging information from different levels (low, intermediate, and high) of the encoder
module. The third ablation study was specifically that of the PFA block to control the
number of parameters within the PFA block. In the last ablation study, we performed ex-
periments using different loss functions. We divided the first ablation study into four cases
based on the use of varying numbers of PFA blocks within the PFA-Net architecture, as
listed in Table 5. Specifically, the first case involved the exclusion of any PFA blocks, while
the fourth case involved all four PFA blocks. The intermediary cases, two and three, were
further subdivided based on different configurations involving the use of two and three
PFA blocks, respectively. The different cases of the first ablation study are listed in Table 5,
as follows:

(1) Absence of PFA block.
(2a) PFA-block1 at low level of encoder and PFA-block2 at intermediate level of encoder.
(2b) PFA-block3 at high level of encoder and PFA-block4 in decoder.
(2c) PFA-block2 at intermediate level of encoder and PFA-block4 in decoder.
(2d) PFA-block1 at low level of encoder and PFA-block3 at high-level of encoder.
(3a) PFA-block2 at the intermediate level of the encoder, PFA-block3 at the high-level of

the encoder, and PFA-block4 in the decoder.
(3b) PFA-block1 at low encoder levels, PFA-block2 at intermediate encoder levels, and

PFA-block3 at high encoder levels.
(4) PFA-block1 at the low level of the encoder, PFA-block2 at the intermediate level

of the encoder, PFA-block3 at the high level of the encoder, and PFA-block4 at the
decoder level.
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Table 5. Performance analysis of novel PFA blocks in PFA-Net for homogeneous dataset analysis
(ablation study) (Unit: %).

Case PFA-Block1 PFA-Block2 PFA-Block3 PFA-Block4 DS IoU

1 × × × × 84.55 76.47

2a # # × × 85.75 77.86

2b × × # # 85.11 77.20

2c × # × # 85.56 77.67

2d # × # × 85.29 77.39

3a × # # # 86.55 78.83

3b # # # × 86.11 78.29

4 # # # # 87.54 80.09

In the absence of PFA blocks for the first case, we evaluated the performance metrics
by analyzing a homogeneous dataset, which established the baseline results. In the second
case, involving the inclusion of two PFA blocks, we assessed the performance metrics by
introducing PFA blocks at two different levels within the architecture. In this case, the
segmentation performance increased to 1.2%, 0.56%, 1.01%, and 0.74 of DS values and
1.39%, 0.73%, 1.2%, and 0.92% of IoU for cases 2a, 2b, 2c, and 2d, respectively, compared
with the baseline results, as indicated in Table 5. In the third case, involving the inclusion
of three PFA blocks, we assessed the performance metrics by introducing PFA blocks at
three different levels within the architecture. In this scenario, the segmentation efficacy in-
creased to 2% and 1.56% of DS and 2.36% and 1.82% of IoU for cases 3a and 3b, respectively,
compared to the baseline results, as indicated in Table 5. Finally, in the presence of all four
PFA blocks for the fourth case, the performance results increased by 2.99% for DS and 3.62%
for IoU, compared to the baseline results, as shown in Table 5. Furthermore, we conducted
a t-test [74] to assess the disparity between the proposed PFA-Net and the baseline model.
The PFA-Net demonstrated enhanced performance compared with the base model [66],
with a 99% confidence score, resulting in an average p-value of 0.0009 (p < 0.01). This
ablation study demonstrated a gradual enhancement in segmentation performance results
with the progressive inclusion of novel PFA blocks.

We divided the second ablation study into four cases based on fixing the PFA block in
the decoder module and varying the position of the PFA blocks within the encoder module
of the PFA-Net architecture, to demonstrate the importance of the presence of the PFA
block in the decoder module. The four cases in the second ablation study, listed in Table 6,
are as follows.

(1) PFA-block1 at low level of encoder and PFA-block4 in decoder.
(2) PFA-block2 at intermediate level of encoder and PFA-block4 in decoder.
(3) PFA-block3 at high level of encoder and PFA-block4 in decoder.
(4) PFA-block1 at the low level of the encoder, PFA-block2 at the intermediate level

of the encoder, PFA-block3 at the high level of the encoder, and PFA-block4 at the
decoder level.

The performance results of these four cases were compared with the baseline results
from the first ablation study. In the first case, which involved incorporating the PFA block
at a low level of the encoder, the performance improvement increased to 0.91% in DS and
1.04% in IoU compared with the baseline results, as indicated in Table 6. In the second case,
which involved incorporating the PFA block at the intermediate level of the encoder, the
performance improvement increased to 1.01% in DS and 1.2% in IoU compared with the
baseline results, as listed in Table 6. In the third case, which involved incorporating the PFA
block at a high level of the encoder, the performance improvement increased to 0.56% in
DS and 0.73% in IoU compared with the baseline results, as indicated in Table 6. Finally, in
the fourth case, involving all three PFA blocks at low, intermediate, and high levels of the
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encoder, the performance results increased by 2.99% for DS and 3.62% for IoU, compared
with the baseline results, as indicated in Table 6. This ablation study demonstrates that the
decoder module has access to a diverse range of information, including fine-grained details
and high-level contexts.

Table 6. Performance analysis of fixed PFA block in the decoder module of PFA-Net for homogeneous
dataset analysis (ablation study) (Unit: %).

Case
Encoder Decoder

DS IoU
PFA-Block1 PFA-Block2 PFA-Block3 PFA-Block4

1 # × × # 85.46 77.51

2 × # × # 85.56 77.67

3 × × # # 85.11 77.2

4 # # # # 87.54 80.09

In our third ablation study, we analyzed the configuration of the PFA block and aimed
to control the number of parameters contained within a PFA block at the trade-off point for
overall performance. Notably, our investigation revealed that the optimum performance
results were achieved with a configuration of four parallel Conv and BN layers within the
PFA block, as indicated in Table 7. This particular configuration is a baseline for analyzing
the PFA block. When we deviated from this configuration by either increasing or decreasing
the number of layers, the performance was degraded. For instance, when we incorporated
three parallel Conv and BN layers within the PFA block, the parameter count decreased to
3.33 M compared to the baseline parameters. However, this reduction in parameters also led
to a decrease in the performance results, with a 1.29% decrease in DS and a 1.61% decrease
in IoU compared to the baseline configuration results, as indicated in Table 7. Similarly,
when we expanded upon the baseline configuration by implementing five parallel Conv
and BN (batch normalization) layers within the PFA block, the parameter count increased to
3.33 M, but this change also resulted in a 2.07% decrease in DS and a 2.55% decrease in IoU
compared with the baseline configuration results, as shown in Table 7. We conclude that
the configuration featuring four layers demonstrates an optimal balance between learnable
parameter count and performance outcomes.

Table 7. Analysis of number of learnable parameters and configuration of PFA block as ablation study.

Configuration
of PFA Block

Number of Learnable
Parameters (Million) DS (%) IoU (%)

3 28.16 86.25 78.48

4 31.48 87.54 80.09

5 34.81 85.47 77.54

We evaluated the performance of our PFA-Net using various loss functions and
compared it with our chosen CE loss function. Table 8 presents the quantitative results of the
proposed PFA-Net with a homogeneous dataset analysis using CE, weighted cross-entropy
(WCE), and Dice loss (DL). It is evident from Table 8 that the segmentation performance of
the proposed PFA-Net using CE is significantly superior to using WCE and DL. Specifically,
the performance results of the proposed PFA-Net using CE were 9.53% and 11.96% higher
in terms of DS and IoU, respectively, compared to using WCE. Similarly, the performance
results of the proposed PFA-Net using CE were 3% and 4.07% higher in terms of DS and IoU,
respectively, compared to using DL. CE loss proves to be a simple yet effective choice for
segmentation due to its focus on binary classification (tumor and background) and efficient
computation. Though WCE and DL focus more on the class imbalance, our network was
unable to tune optimum weights for these losses.
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Table 8. Performance analysis of different loss functions with TC mask as ablation study.

Loss Function DS IoU

CE 91.02 84.94

WCE 81.49. 72.98

DL 88.02 80.87

4.4.2. Comparisons with State-of-the-Art Methods

We performed a comprehensive comparative analysis of the performance of PFA-Net,
an automated diagnostic screening method for three different types of BT (ET, TC, and WT),
in relation to various recent CAD methods, as presented in Tables 9–11. Existing methods
focusing on BT segmentation utilize DS evaluation metrics, which are regarded as the
primary performance evaluation metrics for medical images segmentation [75]. Therefore,
for a fair comparison, we evaluated the results based on this metric and compared them
with those of the previous CAD methods. The annotations of the BraTS-2020 dataset for the
training data are publicly accessible, whereas the annotations for the validation and test
trials are not disclosed; therefore, the proposed methodology was developed and evaluated
based on training data, and the results were compared with those of other methods that
relied on training data for a fair comparison. Our proposed PFA-Net demonstrated superior
performance in terms of quantitative performance in comparison with previously designed
CAD methods for the segmentation of all three types of BT, including ET (enhancing tumor),
TC (tumor core), and WT (whole tumor). For example, in the case of ET, our proposed
model outperforms all the baseline models and attains the first position with a significant
margin of a 1.24% increment in DS from the second-ranked method [42], as listed in Table 9.

Table 9. A comparative performance analysis of the proposed PFA-Net with existing CAD methods
for the segmentation of enhancing tumor (ET) (Unit: %).

Network DS

Dual-path attention 3D U-Net [41] 82.3

Modality-pairing 3D U-Net [42] 86.3

3D SA-Net [43] 81.25

3D U-Net [44] 81.44

Triplanar U-Net [45] 83

Ensemble model [46] 77

Multiple 3D U-Net [47] 79.41

MVP U-Net [48] 60

nnU-Net [49] 81.37

MTAU [51] 59

Dense 3D U-Net [52] 78.2

RMU-Net [54] 83.26

U-attention Net [53] 81.79

SGEResU-Net [18] 79.40

3D-GAN [55] 79.56

Multi-decoder [56] 78.13

Dynamic DMF-Net [57] 74.58

AGSE-VNet [58] 70

NLCA-VNet [59] 74.8

SDV-TUNet [60] 82.48



Fractal Fract. 2024, 8, 357 24 of 41

Table 9. Cont.

Network DS

3DUV-NetR+ [61] 81.70

DAUnet [62] 83.3

PFA-Net (proposed) 87.54

Table 10. A comparative performance analysis of the proposed PFA-Net with existing CAD methods
for the segmentation of tumor core (TC) (Unit: %).

Network DS

Dual-path attention 3D U-Net [41] 87.8

Modality-pairing 3D U-Net [42] 89.8

3D SA-Net [43] 87.73

3D U-Net [44] 87.01

Triplanar U-Net [45] 87

Ensemble model [46] 85

Multiple 3D U-Net [47] 87.70

MVP U-Net [48] 63.5

nnU-Net [49] 87.97

MTAU [51] 61

Dense 3D U-Net [52] 83.2

RMU-Net [54] 88.13

U-attention Net [53] 86.35

SGEResU-Net [18] 85.22

3D-GAN [55] 89.25

Multi-decoder [56] 88.34

Dynamic DMF-Net [57] 84.91

AGSE-VNet [58] 77

NLCA-VNet [59] 88.50

SDV-TUNet [60] 89.20

3DUV-NetR+ [61] 82.80

DAUnet [62] 89.2

PFA-Net (proposed) 91.02

Table 11. A comparative performance analysis of the proposed PFA-Net with CAD methods for the
segmentation of whole tumor (WT) (Unit: %).

Network. DS

Dual-path attention 3D U-Net [41] 91.20

Modality-pairing 3D U-Net [42] 92.40

3D SA-Net [43] 91.51

3D U-Net [44] 90.37

Triplanar U-Net [45] 93

Ensemble model [46] 85

Multiple 3D U-Net [47] 92.29
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Table 11. Cont.

Network. DS

MVP U-Net [48] 79.90

nnU-Net [49] 91.87

MTAU [51] 72

Dense 3D U-Net [52] 88.20

RMU-Net [54] 91.35

U-attention Net [53] 91.90

SGEResU-Net [18] 90.48

3D-GAN [55] 91.63

Multi-decoder [56] 92.75

Dynamic DMF-Net [57] 91.36

AGSE-VNet [58] 85

NLCA-VNet [59] 90.50

SDV-TUNet [60] 90.22

3DUV-NetR+ [61] 91.95

DAUnet [62] 90.6

PFA-Net (proposed) 93.42

Figure 7 displays the qualitative results of ET segmentation performed using the
proposed PFA-Net within a homogeneous dataset. In the case of TC segmentation, our
proposed model outperforms all baseline models and attains the first position with a
significant margin of 1.22% from the second-ranked method [42], as indicated in Table 10.
Figure 8 displays the qualitative results of the TC segmentation performed by the proposed
PFA-Net within a homogeneous dataset. In the case of WT segmentation, our proposed
model outperforms all baseline models and attains the first position with a significant
margin of 0.42% from the second-ranked method [45], as listed in Table 11. Figure 9
displays the qualitative results of the WT segmentation performed by the proposed PFA-
Net within a homogeneous dataset.
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Figure 7. Qualitative results of the proposed PFA-Net for the segmentation of enhancing tumor (ET).
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Figure 9. Qualitative results of the proposed PFA-Net for the segmentation of whole tumor (WT).

A comparative study of the homogeneous dataset analysis, as presented in Tables 9–11,
provides valuable insights into the performance of various CAD methods. It was concluded
that different CAD methods tend to excel in the diagnosis of one type of tumor, while
exhibiting lower performance for other types. This limitation suggests that these methods
may have a specialization but lack the ability to generalize effectively across all tumor
types. In contrast, our proposed PFA-Net not only excels in diagnosing one specific type
of tumor but also achieves optimal performance for all three types of tumors (ET, TC, and
WT) and surpasses the performance of all state-of-the-art methods.

4.5. Testing Results of Heterogeneous Dataset Analysis

We performed a comprehensive comparative analysis of the performance of PFA-
Net, an automated diagnostic screening method for heterogeneous dataset analysis, in
relation to various recent CAD methods, as presented in Tables 2 and 12. A previous
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method [19] used a pre-processing step to enhance the performance of the heterogeneous
dataset analysis. Some methods [63] do not consider a complete heterogeneous dataset
analysis. Our proposed PFA-Net demonstrates superior performance compared with
previous methods for the analysis of a completely heterogeneous dataset without requiring
a pre-processing technique.

Table 12. Comparative performance analysis of proposed PFA-Net with existing CAD methods for
heterogeneous dataset analysis. Million (M); Megabytes (MB); Seconds (s).

Network DS (%) IoU (%) Number of
Parameters (M) GFLOPS Memory Usage

(MB)
Processing

Time (s)

DeepLabV3+ (ResNet18) [66,76] 50.16 49.94 20.61 53.26 209.03 1.1

DeepLabV3+ (ResNet50) [76] 53.44 51.66 43.98 72.39 412 2.32

DeepLabV3+ (MobileNetV2) [76] 50.21 49.92 6.78 28.16 149.4 1.79

U-Net [18,44,77] 51.18 49.63 31.03 141.72 354.94 0.4

SegNet (VGG16) [78] 48.61 47.29 29.44 112.96 525.15 1.08

FCN (32s) [79] 49.94 49.82 134.29 173.40 1040.78 0.52

MDFU-Net [19] 62.66 56.96 50.97 105.85 537.8 2.3

PFA-Net (proposed) 64.58 59.03 31.48 126.85 318.69 1.53

Table 12 presents a comparison of the performance of PFA-Net in relation to various
state-of-the-art methods [18,19,44,66,76–79] for analyzing the heterogeneous dataset. The
proposed method outperforms the second-ranked method [19] with DS and IoU perfor-
mance gains of 64.58% and 59.03%, respectively, as listed in Table 12. Additionally, our
method is efficient in terms of the number of parameters, testing elapsed time, and memory
usage compared to the second-best method [19], as shown in Table 12. Specifically, the
parameters of the proposed PFA-Net are 19.49 M less than those of MDFU-Net (i.e., 31.48 M
[Proposed] << 50.97 M [MDFU-Net]). The average processing time of one BT scan is
0.77 s less than that of MDFU-Net (i.e., 1.53 s [Proposed] < 2.3 s [MDFU-Net]), and the
average memory used by the proposed PFA-Net is 219.11 megabytes (MB) less than that of
MDFU-Net (i.e., 318.69 MB [Proposed] << 537.8 MB [MDFU-Net]), as shown in Table 12.
However, the computational complexity of the proposed PFA-Net is high in terms of
gigaflops floating-point operations per second (GFLOPS) compared to the second-best
method [19] (i.e., 126.85 GFLOPS [Proposed] > 105.85 GFLOPS [MDFU-Net]). This complex-
ity is attributed to the intensive computations required for parallel feature extraction by the
novel PFA block. Nevertheless, the proposed PFA-Net ranked first in terms of segmentation
accuracy compared to all other methods, as indicated in Table 12. Figure 10 shows the
qualitative results obtained using the proposed PFA-Net on a heterogeneous dataset.

4.6. FD Estimation for BTs

We apply the box-counting method to calculate the FD (fractal dimension) for analyz-
ing the BT (brain tumor) images from Dataset-1 and Dataset-2 for better characterization,
as illustrated in Figures 11–14. In addition, we calculate the correlation coefficient (C)
value and R2 for both datasets. The first row of Figures 11–14 displays the predicted mask
generated by PFA-Net, while the second row depicts the count of boxes (N(ϵ)) for various
box sizes (ϵ). The third row of Figures 11–14 is derived from Equation (11), with the slope
of the line providing the FD estimation of BTs. Table 13 presents the results of FD analysis,
along with the C value and R2, for different tumor types, including ET, TC, WT, and the
heterogeneous dataset analysis of Figures 11–14.
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Figure 11. FD analysis for the segmentation of ET: The first row displays the generated ET mask by 
PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. In 
the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for the 
ET mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of 
(b). 
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Figure 11. FD analysis for the segmentation of ET: The first row displays the generated ET mask by
PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. In
the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for the
ET mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of (b).
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Figure 12. FD analysis for the segmentation of TC: The first row displays the generated TC mask by 
PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. In 
the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for TC 
mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of (b). 
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Figure 12. FD analysis for the segmentation of TC: The first row displays the generated TC mask by
PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. In
the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for TC
mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of (b).
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Figure 12. FD analysis for the segmentation of TC: The first row displays the generated TC mask by 
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Figure 13. FD analysis for the segmentation of WT: The first row displays the generated WT mask 
by PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. 
In the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for 
WT mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of 
(b). 
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Figure 13. FD analysis for the segmentation of WT: The first row displays the generated WT mask by
PFA-Net. The second row illustrates the various sizes of the box and their corresponding counts. In
the third row, the FD value calculated by Equation (11) is shown, along with R2 and C values for WT
mask. (c,e) are calculated from the image of (a), whereas (d,f) are calculated from the image of (b).
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Figure 14. FD analysis for the segmentation of heterogeneous dataset analysis: The first row displays 
the generated heterogeneous dataset mask by PFA-Net. The second row illustrates the various sizes 
of the box and their corresponding counts. In the third row, the FD value calculated by Equation 
(11) is shown, along with R2 and C values for heterogeneous dataset. (c,e) are calculated from the 
image of (a), whereas (d,f) are calculated from the image of (b). 

Higher FD values indicate greater complexity and irregularity in the morphology of 
the BTs. For example, in Table 13, the highest FD value of 1.5601 is observed in the WT, 
suggesting significant irregularities in these areas. This highlights the importance for 
medical experts to conduct thorough analyses of the morphometric properties of the WT. 
R2 values range from 0.934 to 0.983, indicating the goodness of fit of the linear regression 
model used to estimate the FD values, as shown in Table 13. Higher R2 values closer to 1 
signify a better fit of the model to the data. Furthermore, the C value indicates the strength 
and direction of the linear relationship between the FD values and the actual BT morphol-
ogy. Higher C values closer to 1 signify a stronger linear relationship between the varia-
bles. 

Table 13. FD, R2, and C values of ET, TC, WT, and heterogeneous dataset analysis from Figures 11–
14. Fractal dimension (FD); correlation coefficient (C); figure (Fig.). 

Results 
ET TC WT Heterogeneous 

Figure 11a Figure 11b Figure 12a Figure 12b Figure 13a Figure 13b Figure 14a Figure 14b 
FD 1.1956 1.1312 1.2887 1.2562 1.5601 1.4406 1.0776 1.3711 
R2 0.957 0.934 0.983 0.96 0.982 0.98 0.983 0.954 
C 0.9783 0.9665 0.9915 0.9799 0.9909 0.9901 0.9913 0.9768 

The FD values presented in Table 13 offer insights into the complexity and irregular-
ity of different tumor types. By examining two samples of each tumor type, we can assess 
their complexity. For the ET samples, with FD values of 1.1956 and 1.1312, there is a mod-
erate level of complexity and irregularity in their shapes. In contrast, the TC samples ex-
hibit FD values of 1.2887 and 1.2562, indicating a slightly higher complexity compared to 
the ET samples. The higher severity observed in the TC sample is attributed to its compo-
sition, which includes ET as well as NCR and NET components. The WT samples exhibit 
FD values of 1.5601 and 1.4406, indicating the most intricate and irregular shapes among 
the three tumor types of Dataset-1. The high severity observed in the WT sample is at-
tributed to its composition, which includes TC as well as ED components. These FD values 
provide crucial insights into the structural characteristics of each tumor type, which are 
useful in tumor pathology. For the heterogeneous dataset analysis, we obtained different 
FD values (1.0776 and 1.3711). 

Figure 14. FD analysis for the segmentation of heterogeneous dataset analysis: The first row displays
the generated heterogeneous dataset mask by PFA-Net. The second row illustrates the various sizes
of the box and their corresponding counts. In the third row, the FD value calculated by Equation (11)
is shown, along with R2 and C values for heterogeneous dataset. (c,e) are calculated from the image
of (a), whereas (d,f) are calculated from the image of (b).

Table 13. FD, R2, and C values of ET, TC, WT, and heterogeneous dataset analysis from Figures 11–14.
Fractal dimension (FD); correlation coefficient (C); figure (Fig.).

Results
ET TC WT Heterogeneous

Figure 11a Figure 11b Figure 12a Figure 12b Figure 13a Figure 13b Figure 14a Figure 14b

FD 1.1956 1.1312 1.2887 1.2562 1.5601 1.4406 1.0776 1.3711

R2 0.957 0.934 0.983 0.96 0.982 0.98 0.983 0.954

C 0.9783 0.9665 0.9915 0.9799 0.9909 0.9901 0.9913 0.9768

Figures 11–14 present a detailed analysis of FD estimation for the segmentation of
both homogeneous and heterogeneous datasets. For example, Figure 11 provides the FD
analysis for the segmentation of ET using the PFA-Net, illustrating two separate samples.
The first row of Figure 11 displays the generated ET masks by PFA-Net. Each mask is a
binary image where the white region represents the segmented tumor. These masks are
essential for the subsequent FD analysis, as they provide the structural data needed to
estimate the FD. The second row of Figure 11 illustrates the various sizes of the boxes and
their corresponding counts calculated by Algorithm 1. This visualization is fundamental
to the box-counting method used for estimating the FD. By covering the ET masks with
boxes of different sizes and counting the number of boxes that intersect with the tumor,
we obtain the necessary data for calculating the FD. The third row presents the FD values
calculated using Equation (11), along with the R2 and C values for each ET mask.

The FD values indicate the complexity and irregularity of the ET shapes. A higher
FD value suggests more intricate and irregular shapes, while a lower value indicates
simpler shapes. The first sample of the ET mask (Figure 11a) has a higher FD value (1.1956)
compared to the second sample (Figure 11b), which has an FD value of 1.1312, suggesting
that the ET of the first sample is more complex and irregular. Higher R2 values closer to 1
signify a better fit of the model to the data. The high R2 values for Figure 11a (0.957) and
Figure 11b (0.934) indicate a strong linear relationship in the log–log plot of box sizes and
their counts. This high degree of fit suggests that the FD values are reliable measures of the
complexity of ET. Similarly, higher C values closer to 1 signify a stronger linear relationship
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between the variables. Higher C values for Figure 11a (0.9783) and Figure 11b (0.9665)
demonstrate a strong relationship between the size of the boxes and their counts.

Higher FD values indicate greater complexity and irregularity in the morphology
of the BTs. For example, in Table 13, the highest FD value of 1.5601 is observed in the
WT, suggesting significant irregularities in these areas. This highlights the importance for
medical experts to conduct thorough analyses of the morphometric properties of the WT.
R2 values range from 0.934 to 0.983, indicating the goodness of fit of the linear regression
model used to estimate the FD values, as shown in Table 13. Higher R2 values closer
to 1 signify a better fit of the model to the data. Furthermore, the C value indicates the
strength and direction of the linear relationship between the FD values and the actual BT
morphology. Higher C values closer to 1 signify a stronger linear relationship between
the variables.

The FD values presented in Table 13 offer insights into the complexity and irregularity
of different tumor types. By examining two samples of each tumor type, we can assess their
complexity. For the ET samples, with FD values of 1.1956 and 1.1312, there is a moderate
level of complexity and irregularity in their shapes. In contrast, the TC samples exhibit FD
values of 1.2887 and 1.2562, indicating a slightly higher complexity compared to the ET
samples. The higher severity observed in the TC sample is attributed to its composition,
which includes ET as well as NCR and NET components. The WT samples exhibit FD
values of 1.5601 and 1.4406, indicating the most intricate and irregular shapes among the
three tumor types of Dataset-1. The high severity observed in the WT sample is attributed
to its composition, which includes TC as well as ED components. These FD values provide
crucial insights into the structural characteristics of each tumor type, which are useful in
tumor pathology. For the heterogeneous dataset analysis, we obtained different FD values
(1.0776 and 1.3711).

The FD (fractal dimension) parameter serves as a crucial metric for understanding the
intricacies of BT shapes, providing detailed insights for both homogeneous and heteroge-
neous datasets. In homogeneous dataset analysis, FD values provide detailed assessments
of individual tumor types, with moderate values in ET samples indicating a moderate level
of complexity and irregularity, slightly higher values in TC samples suggesting elevated
complexity, and the highest values in WT samples representing the most intricate and
irregular shapes. On the other hand, for heterogeneous data analysis, FD values offer a
broader perspective, capturing the overall complexity of the dataset characterized by the
presence of different tumor types and compositions. The variability in FD values across het-
erogeneous samples signifies the diverse nature of BT shapes within the dataset, with lower
values indicating less complexity and irregularity, and higher values reflecting increased
complexity and variability, likely due to the inclusion of various BT types or compositions.
Overall, FD serves as a measure of irregularity [80], with higher FD values often indicating
more intricate and irregular tumor shapes, thereby guiding medical experts to predict
tumor malignancy and prioritize analysis for treatment decisions and enhanced patient
care [81]. Moreover, it allows researchers to assess and compare the intricacy of tumor
shapes within each dataset and across different datasets, aiding in understanding tumor
behavior and composition.

5. Discussion

CAD (computer-aided diagnostic) tools are typically tailored for specific applica-
tions in medical diagnosis. Designing a general-purpose tool for clinical applications is
challenging because of the diverse structural features of diagnoses, variations in medical
radiography equipment, and substantial inter-patient variance in data. To address this
problem, we introduce a novel DL-based network for parallel feature aggregation, specifi-
cally designed for the analysis of heterogeneous datasets. Although the performance results
are low (DS of 64.58%), they surpassed the previous CAD methods, with 19.49 M (million)
parameters and 219.11 MB (megabytes) memory less than the approach by [19], specifically
designed for heterogeneous dataset analysis (Table 12).
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To demonstrate the substantial disparity (statistical significance) between the proposed
model and the base model [66], we conducted a t-test [74] and calculated Cohen’s d
value [82] for all three tumors in the homogeneous dataset analysis. Table 14 and Figure 15
show the average performance gain and p-value of the proposed PFA-Net compared with
the base model for three tumors, including ET (enhancing tumor), TC (tumor core), and
WT (whole tumor). In detail, the proposed PFA-Net gained 2.99% in DS (Dice score) value
for ET compared to the base model, with a p-value of 0.0009 (99% confidence level) and
Cohen’s d value of 1.3267 (large effective size). For TC, the proposed PFA-Net gained 4.31%
in DS value compared to the base model, with a p-value of 0.0052 (99% confidence level) and
Cohen’s d value of 1.0012 (large effective size). For WT, the proposed PFA-Net gained 1.64%
in DS value compared to the base model, with a p-value of 0.003 (99% confidence level)
and Cohen’s d value of 2.4371 (large effective size). These findings suggest a significant
difference between the proposed and base models, as depicted in Table 14 and Figure 15.

Table 14. Performance gain and substantial disparity between proposed model and base model in
terms of p-value and Cohen’s d value.

Tumor Type
DS (%)

Gain (%) p-Value Cohen’s d Value
Base Model Proposed Model

ET 84.55 87.54 2.99 0.0009 1.3267

TC 86.71 91.02 4.31 0.0052 1.0012

WT 91.78 93.42 1.64 0.003 2.4371
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The homogeneous dataset consisted of three diverse tumor types (ET, TC, and WT) and
posed a significant challenge owing to the structural complexities arising from intra-class
variations. Previous CAD methods have demonstrated excellent performance in diagnosing
one tumor type, while exhibiting performance degradation when dealing with the other
two. For instance, the modality-pairing 3D U-Net [42] is the second-best method for the
segmentation of ET and TC (Tables 9 and 10). However, its performance degrades when
applied to WT segmentation, dropping to the fourth position in this particular scenario.
Similarly, the triplanar U-Net [45] was the second-best method for WT segmentation
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(Table 11). However, its performance degraded when applied to the segmentation of ET
and TC, decreasing to the fourth and twelfth positions, respectively (Tables 9 and 10).
Similarly, other CAD methods have variable performance results for different types of
tumors. In contrast, our proposed model (PFA-Net) exhibits superior performance across
all three tumor types (ET, TC, and WT). Specifically, our PFA module leverages the localized
radiomic contextual spatial features of BT at low, intermediate, and high levels, aggregating
them in parallel. This approach contributes to performance improvements across all three
tumor types, particularly ET.

The proposed PFA-Net demonstrated superior qualitative visual results for both
homogeneous and heterogeneous dataset analysis in a challenging environment. Figure 16
illustrates the correct segmentation results for homogeneous dataset analysis with three
segmentation masks, including ET, TC, and WT, and for heterogeneous dataset analysis.
In detail, the first row of Figure 16 visually highlights the challenges in analyzing BT
scans, such as a minute tumor in the case of ET, having only the border edge of tumors
for TC, the amalgamation of tumor features with background features for WT, and the
enhancement of edges by tumor-like features in the heterogeneous dataset analysis. Despite
these challenges, PFA-Net demonstrates superior performance for all cases. However, the
performance of PFA-Net is constrained due to diffuse and irregular characteristics, non-
specific enhancement, diverse distribution, heterogeneity, and the coexistence of different
tumor components, as shown in Figure 17. This indicates that while PFA-Net excels in
certain scenarios, there are specific tumor configurations that present challenges to its
overall performance.
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For a detailed analysis, we extracted gradient-weighted class activation maps (Grad-
CAM) [83] from the four PFA blocks, which revealed the distinctive features of the BT
scans as a reddish color. The key role of the novel PFA blocks in homogeneous and
heterogeneous dataset analyses are shown in Figure 18. As depicted in Figure 18, the
evolution of tumor regions becomes increasingly focused and discernible as the network
progresses through these different blocks, confirming that our proposed model can extract



Fractal Fract. 2024, 8, 357 36 of 41

important features for the accurate segmentation of tumor regions. Ultimately, we achieved
the precise localization of tumor regions marked as “1” and background regions marked
as “0”.
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6. Conclusions

This study addressed the challenge of pixel-based segmentation in both homogeneous
and heterogeneous environments. We introduced a parallel feature aggregation-based
module that relies on multiple-branch feature extraction operations to learn discriminative
information from BT scans in parallel and aggregate them. Specifically, we leverage these
three modules at various levels in the encoder of the proposed segmentation framework
to obtain spatial semantic information at various levels, and one module is integrated
into the decoder of the proposed segmentation framework to process the various levels
of information from the encoder. Finally, incorporating an FD estimation method into our
system yields valuable insights into the distributional characteristics of BTs, especially for
WT, thereby enriching the comprehensiveness of our approach.

Our proposed method was applied to the segmentation of different types of BT scans
from different datasets, and the results demonstrated its superiority over previous CAD
methods in terms of DS values of 87.54%, 91.02%, and 93.42% for a homogeneous dataset
analysis and 64.58% for a heterogeneous dataset analysis, with 19.49 M fewer learning
parameters than those of the previous method. In addition, a statistical analysis confirmed
a significant difference in segmentation accuracy between our model and the base model,
with p-values of 0.0009, 0.0052, and 0.003 for ET, TC, and WT, respectively, and Cohen’s d
values of 1.3267, 1.0012, and 2.4371, for ET, TC, and WT, respectively, as shown in Table 14
and Figure 15.

Despite achieving the optimum DS using our proposed method for homogeneous and
heterogeneous datasets, this study has some limitations. The number of parameters was
increased by 3.33 M following the addition of each PFA block. In future, the parameters
will be reduced by introducing a dilation operation into the PFA blocks. Incorrect segmen-
tation occurred in both homogeneous and heterogeneous dataset analyses, as depicted
in Figure 17. The first row of Figure 17 visually underscores the challenges in analyzing
BT scans, attributed to diffuse and irregular characteristics, non-specific enhancement,
and diverse distribution. Furthermore, the second row of Figure 17 illustrates that the
small ground truth masks of tumors are dispersed, posing an additional challenge for our
model, which did not accurately segment them. In future, we will apply pre-processing
methods to address these challenges. Moreover, because the segmentation performance for
heterogeneous dataset analysis is limited compared with that for a homogeneous dataset
analysis, the performance can be improved by using a balanced heterogeneous dataset.

While a box-counting algorithm was employed for FD estimation in our study, it
is worth noting that other fractal-based methods could potentially be embedded within
the proposed framework. Fractal analysis offers a versatile approach for quantifying the
complexity and irregularity of signals, including those derived from medical imaging
data such as brain tumors. Therefore, exploring alternative fractal-based methods could
offer additional insights and potentially enhance the robustness of our framework. Some
examples of other fractal-based methods that could be considered include the Higuchi
fractal dimension [84], multifractal analysis [85], and fractal-derived texture analysis [86].
Each of these methods has its strengths and limitations, and incorporating them into future
iterations of our framework could contribute to a more comprehensive understanding of
the fractal nature of BT. Additionally, exploring the potential synergies between different
fractal-based methods may lead to further improvements in accuracy and reliability.
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