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Abstract: Economic growth is resulting in serious environmental problems. Effectively establish-
ing an economic growth model that considers environmental pollution is an important topic. To
analyze the interplay between economic growth and environmental pollution, a fractional-order
time-delayed economic growth model with environmental purification is proposed in this paper. The
established model considers not only the environment and economic production but also the labor
force population and total factor productivity. Furthermore, the asymptotic stability conditions and
parameter stability interval are provided. Finally, in numerical experiments, the correctness of the
theory is verified.
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1. Introduction

Fractional calculus theory analysis and applications have become topics of great inter-
est in current scientific research. The wider application background of fractional calculus
has attracted the attention of many scholars from various fields, resulting in abundant
research results [1–4]. In the field of finance, because of the “memory effect” of fractional
calculus, fractional order equations can describe the long-term logarithmic prices of some
financial assets well [5]. Compared with integer calculus, the main advantage of fractional
calculus is its memory, and it has been proven to be a very suitable tool for describing
the memory and genetic characteristics of various materials and processes. Financial and
economic variables have a longer memory, and therefore, it is more appropriate to use
fractional differential equation models to portray the dynamic behavior of economic sys-
tems, such as, exchange rates, gross domestic product (GDP), interest rates, production,
and stock market prices, which are changing in terms of the financial and economic system.
This provides a scientific approach to predict economic growth.

The study of the complex dynamics of economic systems has become a prominent issue
in economics and macroeconomics in recent years. Several nonlinear continuous models
have been proposed to explicate the core features of economic data based on the dynamic
behavior of the system [6–15]. The results of investigating the dynamics of an economic
system with chaotic behavior and a suboptimal control proposal to suppress the chaotic
behavior are presented [8]. A fractional order economic quantity model with time-varying
holding cost is discussed in detail with the help of numerical computations [9]. Based on the
definition of Atangana–Baleanu–Caputo fractional derivative, the integer-order financial
chaotic system with nonconstant demand elasticity is extended to a fractional-order system,
and its nonlinear dynamic properties are analyzed [10]. The chaotic complexity of a
financial mathematical model in terms of a new generalized Caputo fractional derivative
is analyzed [11]. The conditions for the structural stability of a fractional order IS-LM-AS
dynamic model with adaptive expectations are given [12]. A dynamic fractional-order
discrete gray model for forecasting China’s total renewable energy capacity is proposed [13].
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A fault-tolerant prescribed performance control approach for fractional-order economic
and supply chain systems is presented [14].

Predicting economic growth is an important subject in economics, and accurate predic-
tion can facilitate integrated economic planning and the development of rational economic
policies to promote healthy economic growth [16–18]. In previous studies, scholars mainly
focused on the chaotic motion of the financial system, and domestic scholars have achieved
certain research results on economic growth by introducing delays. The Solow growth
model [19] provides a theoretical foundation for breakthroughs in economic growth and a
research framework that can be applied in subsequent work. And the Solow growth model
demonstrates how saving rates, capital stock, the labor force growth rate, technological
progress, and capital depreciation influence a country’s total output. The economy tends
towards a stable state and emphasizes that technological progress is the ultimate driving
force for long-term growth based on Solow’s theory. Because most economic processes
are not only influenced by current states but also greatly rely on past relevant factors and
indicators, mathematical models with time delay are more suitable for describing economic
phenomena. Recently, the global attractivity of the quasi-periodicity of a new class of
delayed classical growth models are proved [20]. The fractional order models serve to
forecast the economic growth of Group of Twenty countries [21]. Based on the Solow model,
a fractional-order time-delayed economic growth model is established to effectively capture
memory characteristics in the economic growth path and explore the underlying growth
factors [22]. Many results have been achieved using the Solow economic model [22–25],
and it still has significant theoretical and practical value, particularly when considering
fractional calculus theory, which is expected to yield meaningful results.

The economic system is an organic whole composed of interconnected and interactive
economic elements. When addressing the issues related to the economic system, it is
necessary to consider not only its economic benefits but also the impact of such benefits
on the ecological environment [26]. The environment system has a certain self-regulation
and self-recovering capacity. However, excessive pollution beyond its self-regulating
capacity can cause irreversible damage. Therefore, the stability of the economic system still
depends on the capacity of the environment system, external material exchange, and energy
flow [27,28]. Furthermore, environmental pollution will inevitably have an impact on the
economy, such as water pollution affecting crops [29,30]. Serious economic losses caused
by nuclear pollution in Fukushima, Japan have affected economic development [31,32].
To better characterize the dynamic laws of the operation of economic and environmental
systems, economic and environment systems are integrated to form an environmental
economic growth system. Economic growth has always been an issue of great interest in
macroeconomic research. However, with rapid economic growth, environmental pollution
has posed a serious threat to human social development. Using the interplay between
economic growth and environmental quality to analyze that negative impact has a certain
time lag; that is, it is not instantaneous [26]. Economic growth, environmental pollution,
and studies on the interactive influence between economic growth and environmental
pollution are considered in Wuhan [33]. The importance and significance of the fractional
order derivatives in the nonlinear environmental and economic model are provided [34].

Therefore, in this paper, environmental factors are incorporated into the classic Solow
economic growth model, with the consideration that the main indicators in the economic
environment system have the characteristic of “memory”, and a novel fractional-order
time-delayed economic growth model with environmental purification is established. Ac-
cording to the Solow model, a fractional time-delayed economic model with environmental
purification is provided to characterize the relationship between economic growth and envi-
ronmental factors. Based on the strict assumption that technological progress is completely
exogenous, the traditional Solow economic growth model is inconsistent with practical
experience. Furthermore, environmental pollution will inevitably have an impact on the
economy. Accordingly, with the consideration of environmental purification, a fractional
economic growth model related to both capital and population is established in which
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technological progress is endogenous. Furthermore, a detailed stability analysis of the
proposed model based on environmental purification is performed. The asymptotic sta-
bility condition of the equilibrium point is obtained and a stable parameter interval is
provided. The influence of parameter variations on the stability of the established model is
investigated.

The paper is structured as follows. In Section 2, some preliminaries and model
descriptions are presented. The asymptotic stability conditions and parameter stability
interval of the fractional-order time-delayed growth model with environmental pollution
are provided in Section 3. Finally, a numerical simulation and discussion are given in
Sections 4 and 5.

2. Model Description
2.1. Definitions and Lemmas

The definition of the Caputo derivative has more advantages in actual applications,
because its initial value has a measurable physical meaning [1–3]. So the definition of
the Caputo derivative is adopted in this paper. In addition, according to its good ex-
planation of the memory characteristics of economic variables [35], it can well capture
economic processes.

Definition 1 ([2]). The Caputo fractional derivative is defined as

Dq
ι f (ι) =

1
Γ(n − q)

∫ ι

0

f (n)(τ)
(ι − τ)q−n+1 dτ,

where n − 1 < q < n, n ∈ Z+, Γ(n − q) =
∫ ∞

0 xn−q−1e−xdx is the Gamma function [36].

Definition 2 ([2,37]). The Laplace transform of the Caputo derivative is

{Dq
ι f (ι); ς} = sqF(ς)−

n−1

∑
k=0

ςq−k−1 f (k)(0), n − 1 < q < n,

where F(ς) is the Laplace transform of f (ι), i.e., F(ς) =
∫ ∞

0 f (ι)e−ςιdι.

The following linear fractional-order time-delayed system is considered:

Dq
ι X(ι) = AX(ι) + KX(ι − τ), (1)

where A = (αij)n×n, K = (κij)n×n, X(ι) = (x1(ι), x2(ι), · · · , xn(ι))T , X(ι − τ) = (x1(ι − τ1),
x2(ι − τ2), · · · , xn(ι − τn))T .

The Laplace transform is applied to both sides of Equation (1), which yields the
characteristic matrix [38]

∆(ς) =


ςq − κ11e−ςτ11 − α11 −κ12e−ςτ12 − α12 · · · −κ1ne−ςτ1n − α1n
−κ21e−ςτ21 − α21 ςq − κ22e−ςτ22 − α22 · · · −κ2ne−ςτ2n − α2n

...
...

. . .
...

−κn1e−ςτn1 − αn1 −κn2e−ςτn2 − αn2 · · · sq − κnne−ςτnn − αnn

. (2)

According to the distribution of the eigenvalues of det(∆(ς)) = 0, the stability of
system (1) is totally determined. If τij = 0, Equation (1) can be rewritten as

Dq
ι X(ι) = AX(ι) + KX(ι) = ΛX(ι), (3)

where the coefficient matrix Λ = A + K. Then, a useful Lemma about the stability of
system (1) is introduced as:
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Lemma 1 ([38]). When q ∈ (0, 1), if all the eigenvalues of Λ satisfy |arg(λ)| > π
2 and the

characteristic equation det(∆(ς)) = 0 has no pure imaginary roots for any τij > 0, i, j = 1, . . . , n,
then the zero solution of Equation (1) is asymptotically stable by Lyapunov.

2.2. Model Description

In this subsection, a fractional-order time-delayed economic growth model with
environmental pollution based on the Solow model is set up. According to [22,39], the
following fractional-order generalization of the Solow-type equation with time delay is
given as 

Dq
ι Lι = r(1 − Lι/Lm)Lι,

Dq
ι Kι = sAιKα

ι L1−α
ι − (δ + g + n)K(ι − τ),

Dq
ι Aι = pAι + wLι + hK(ι − τ),

(4)

where q ∈ (0, 1) is the fractional order; Lι is the working population; r ∈ (0, 1) denotes
the natural growth rate of the working population; Kι is the capital stock; τ represents
time delay; s ∈ (0, 1) is the constant saving rate; δ ∈ (0, 1) is the capital depreciation rate;
g ∈ (0, 1) is the growth rate of technology; n ∈ (0, 1) is the population growth rate; Yι, Kι

are defined as Cobb–Douglas production function (gross domestic product) and capital
stock at time ι. Aι is the index of total factor productivity (TFP) and α ∈ (0, 1) is the output
elasticity of capital stock.

The economic–environmental system consists of two subsystems: the economic sub-
system and environmental subsystem. These two subsystems operate through the exchange
of materials and energy. During the process of capital accumulation, the discharge of pollu-
tants generated by the economic system into the environmental system increases the stock
of environmental pollutants. By contrast, the accumulated pollutants in the environmental
system cause economic losses for the economic system, thereby inhibiting the accumulation
of capital. The economic losses caused by environmental pollution stimulate investors
in the economic system to invest in pollution control, thereby removing a portion of the
pollution and reducing the stock of environmental pollutants in the environmental system.
Consequently, this reduces the economic losses caused by the environmental system on
the economic system. An environmental purification factor is introduced into the classical
Solow model.

Investment in pollution control, denoted by E, is directly responsive to the economic
losses caused by environmental pollution, represented by G. The larger the economic
losses from pollution, the greater the corresponding investment in pollution control. The
relationship between the two can be expressed as

E = ρG,

where ρ is the degree of pollution control investment. The amount of waste pollution,
denoted by Z, is directly related to gross domestic product Yι. According to environmental
Kuznets curve (EKC) theory [33,40], the relationship between waste pollution and gross
domestic product is described as follows:

Z(ι) = ϵYιe−λYι ,

where ϵ > 0 is referred to as the environmental pollution index, which indicates the severity
of environmental pollution and λ > 0 is a parameter. The pollution amount, denoted by R,
is related to pollution control investment E and waste pollution amount Z.

To define a pollution control function R(Z, E) that describes the amount of pollution
removed, this process has a saturation effect, and its functional form is assumed as follows:

R(Z, E) = ZE/(E + ωZ),

where ω is a control parameter.
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The function ψ(Pι) represents the natural purification capacity for pollution and
exhibits strong nonlinear characteristics. The environmental purification capacity ψ(Pι) is
related to the stock of environmental pollutants Pι and can be expressed as follows:

ψ(Pι) =
σPιdβ

dβ + Pβ
ι

,

where σ, β, and d are parameters, and β > 1.
The economic losses caused by pollution, denoted by G, are related to the environ-

mental purification capacity. It is assumed that G is proportional to the difference between
the nonlinear environmental purification capacity and the linear purification capacity. The
pollution economic loss function is expressed as

G(Yι, Pι) =
lYιP

β+1
t

(dβ + Pβ
ι )

,

where l is a parameter that represents the sensitivity of economic losses to the level of pol-
lution, and β and d are parameters introduced in the environmental purification function.

Remark 1. Note that the ψ(Pι) and G(Yι, Pι) are the case of the Hill function [41,42]. The exponent
β determines the steepness of the switch occurring around Pι. Considering that the higher the β
values are, the steeper the Hill functions, and stronger the hysteresis they create; then, β > 1 is
chosen here.

The change in the capital stock as Kι includes an increase in investment sY(ι), economic
losses caused by pollution G, capital depreciation. Based on system (4), the evolution
equation for the capital stock Kι is given by

Dq
ι Kt = sAιKα

ι L1−α
ι − G(Yι, Pι)− (δ + g + n)K(ι − τ).

The change in environmental pollutant stock P(ι) includes the input of waste pollution
Z, the removal of pollution due to pollution control investment R, and the natural purifica-
tion capacity ψ(Pι). The evolution equation for the environmental system is given by

Dq
ι Pι = Zι − R(Zι, Pι)− ψ(Pι).

From the above analysis, the following fractional-order time-delayed economic growth
model with environmental purification can be provided:

Dq
ι Lι = r(1 − Lι/Lm)Lι,

Dq
ι Kι = sAιKα

ι L1−α
ι − G(Yι, Pι)− (δ + g + n)K(ι − τ),

Dq
ι Aι = pAι + wLι + hK(ι − τ),

Dq
ι Pι = Zι − R(Zι, Pι)− ψ(Pι).

(5)

The functional relationship for system (5) is as follows:

Yι = AιKα
ι L1−α

ι ,
Eι = ρGι,
Zι = ϵYιe−λYι ,
R(Zι, Eι) = ZιEι/(Eι + ωZι),
ψ(Pι) =

σPιdβ

dβ+Pβ
ι

,

G(Yι, Pι) =
lYιP

β+1
ι

(dβ+Pβ
ι )

.

(6)

A summary of the definitions of the parameters and variables in system (5) and
Equation (6) are shown in Table 1.
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Table 1. Values of some parameters.

Variables Representations Parameters Representations

Yι

Cobb–Douglas production
function (gross domestic

product)
s Constant saving rate

Aι Total factor productivity(TFP) δ Capital depreciation rate

Pι Natural purification capacity g Growth rate of technology

Rι Economic losses caused r Natural growth rate

ψι
Environmental purification

capacity ϵ
Environmental pollution

index

Lι Working population q Fractional order

Kι Capital stock Lm
Maximum number of labor

force

Eι
Investment in pollution

control n population growth rate

Zι Waste pollution τ time delay

Gι
Pollution economic loss

function p TFP growth rate

ρ
Degree of pollution control

investment

α Output elasticity 0 < α < 1

w, l, h Scale factors

β Parameter and β > 1

d, ω, σ, λ Parameters

ι time

3. Main Results

In this section, the focus is the local stability of system (5). Lemma 1 is a local stability
theorem for system (5). Local properties can be analyzed for stability using the eigenvalue
distribution of ∆(s). Thus, simplification (part of linearization) is performed in this step.
Note that λ > 0 and Yι > 0, and then e−λYι ≤ 1; hence, Zι ≈ ϵYι is considered. The
equation Zι is approximated to first order using the Taylor expansion, which meets the
approximation requirement. According to Equation (6), R(Zι, Eι) = ZιEι/(Eι + ωZι). If
Eι ≪ ωZι, then R(ι) ≃ Eι/ω. Therefore, R(Zι, Eι) ≃ 1

ω Eι, that is, it is approximated
by a linear function. The ability of environmental purification is related to the level of
environmental pollutants. When the level of pollutants is low, the self-purification ability
of the environmental system is strong. However, when the level of pollutants reaches a
certain upper limit, the self-purification ability of the environment gradually weakens. This
characteristic can be described using Hill functions. Hence,

ψ(Pι) =
σPιdβ

dβ + Pβ
ι

and G(Yι, Pι) =
lYιP

β+1
ι

(dβ + Pβ
ι )

.

To obtain the stability conditions of system (5), Pβ
ι ≫ dβ can be chosen. Then,

ψ(Pι) ≃ σdβP1−β
ι and G(Yι, Pι) ≃ lYιPι.
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The simplification of system (5) can be obtained:
Dq

ι Lι = r(1 − Lι/Lm)Lι,
Dq

ι Kι = sAιKα
ι L1−α

ι − G(Yι, Pι)− (δ + g + n)K(ι − τ),
Dq

ι Aι = pAι + wLι + hK(ι − τ),
Dq

ι Pι = Zι − R(Zι, Pι)− ψ(Pι).

(7)

The functional relationship in Equation (7) is as follows:

Yι = AιKα
ι L1−α

ι ,
Eι = ρGι,
Zι = ϵYιιe−λYι ,
R(Zι, Eι) ≃ 1

ω Eι,
ψ(Pι) ≃ σdβP1−β

ι ,
G(Yι, Pι) ≃ lYιPι.

(8)

Remark 2. Actually, the functional relationship in system (7) is

Yι = AιKα
ι L1−α

ι ,
Eι = ρG(Yι, Pι),
Zι = ϵYιe−λYι ,
R(Zι, Eι) = ZιEι/(Eι + ωZι),
ψ(Pι) =

σPιdβ

dβ+Pβ
ι

,

G(Yι, Pι) =
lYιP

β+1
ι

(dβ+Pβ
ι )

.

In order to obtain the local stability of system (5), the Equation (6) is reduced as Equation (8). If
Equation (6) is used, the equilibrium point equation is difficult to solve, and the Jacobian determinant
at the equilibrium point is also quite complex. Hence, it is very hard to obtain stability conditions
and the parameter stability interval of system (5). However, according to the facts mentioned, in
[38,43], the consideration here is locality, which means that linear equations conform to the linear
form of the model. Therefore, when fractional-order systems have the same linear form, their stability
can be studied through their linear equations, regardless of the complexity of the original equations.
Thus, the simplification Equation (8) is reasonable. Based on this fact, to obtain stability conditions,
the parameter σ = 0 is considered.

Theorem 1. When q ∈ (0, 1) and σ = 0, if λ = 0, r > 0, p + b22 + c22 < 0, p(b22 + c22)−
hb23 > 0 and b44 < 0, b

2 − 4χ − 2c + b
3−4bc+8d√
8χ+b

2−4c
< 0 or b

2 − 4χ − 2c − b
3−4bc+8d√
8χ+b

2−4c
< 0, the

positive equilibrium point of system (7) is locally asymptotically stable by Lyapunov, where χ is any
real root of the equation 8χ3 − 4cχ2 + 2(bd − 8e)χ + e(4c − b

2
)− d

2
= 0, and the coefficients of

the equation are given as
b = −2(p + b22)(cos qπ cos qπ

2 + sin(±qπ) sin(± qπ
2 )),

c = (p + b22)
2 − c2

22 + 2pb22 cos qπ,
d = 2[p(c2

22 − b2
22 − b22)− hc22b23] cos qπ

2 ,
e = p2b2

22 − (pc22 − hb23)
2,

(9)

where b22, b23, b44 and c22 satisfy
b22 = α(s − lP)AKα−1L1−α,
b23 = (s − lP)KαL1−α,
b44 = − ρl

ω AKαL1−α,
c22 = −(δ + g + n),

(10)
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and the (L, K, A, P) is a solution of the equation
r(1 − L/Lm)L = 0,
sAKαL1−α − lPAKαL1−α − (δ + g + n)K = 0,
pA + wL + hK = 0,
(ϵ − ρl

ω P)AKαL1−α
= 0.

(11)

Proof. If λ = 0, σ = 0 and r > 0, from the Equation (7), we can obtain the equilibrium
solution equation as follows:

r(1 − L/Lm)L = 0,
sAKαL1−α − lPAKαL1−α − (δ + g + n)K = 0,
pA + wL + hK = 0,
(ϵ − ρl

ω P)AKαL1−α
= 0.

Assume a positive equilibrium point (L, K, A, P) is derived from Equation (11), then
the linear centralized system (7) at the point (L, K, A, P) can be written as:

Dq
ι Φ(ι) = AΦ(ι) + BΦ(ι) + CΦ(ι − τ), (12)

where

Φ(ι) = (Lι, Kι, Aι, Pι)T , A =


r 0 0 0
0 0 0 0
0 0 p 0
0 0 0 0

,

and B and C are the Jacobian matrices at equilibrium point (L, K, A, P) as

B =


b11 0 0 0
b21 b22 b23 b24
0 0 0 0
0 0 0 b44

, C =


0 0 0 0
0 c22 0 0
0 h 0 0
0 0 0 0

 =


0 0 0 0
0 −(δ + g + n) 0 0
0 h 0 0
0 0 0 0

,

where 

b11 = −2r,
b21 = (1 − α)(s − lP)KαL−α,
b22 = α(s − lP)AKα−1L1−α,
b23 = (s − lP)KαL1−α,
b24 = −lAKαL1−α,
b44 = − ρl

ω AKαL1−α.

The Laplace transform is applied to both sides of system (12), and the characteristic
matrix is given as:

∆(s) =


sq + r 0 0 0
−b21 sq + (δ + g + n)e−sτ − b22 −b23 −b23

0 −he−sτ sq − p 0
0 0 0 sq − b44

. (13)

The det(∆(s)) = 0 is calculated as

(sq + r)(sq − b44)(s2q − asq + (δ + g + n)sqe−sτ + be−sτ + pb22) = 0, (14)

where {
a = p + b22,
b = −p(δ + g + n)− hb23.
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The Equation (14) has no pure imaginary roots for any τ > 0 which is verified for the
next part. We testify the fact by contradiction. When r > 0, there are obviously no pure
imaginary roots in the equation sq + r = 0. Hence, the following equation is considered:

s2q − asq + (δ + g + n)sqe−sτ + be−sτ + pb22 = 0. (15)

Assume that s∗ = ϖi = |ϖ|(cos(π
2 ) + i sin(±π

2 )) is one of the pure imaginary roots of
Equation (15), where ϖ is a positive real number. Taking s∗ into Equation (15) yields

|ϖ|2q(cos qπ + i sin(±qπ))− c22|ϖ|q(cos qπ
2 + i sin(± qπ

2 ))(cos ϖτ − i sin ϖτ)
− a|ϖ|q(cos qπ

2 + i sin(± qπ
2 )) + b(cos ϖτ − i sin ϖτ) + pb22 = 0.

(16)

Both the real part and imaginary part of Equation (16) are zero, so we have

|ϖ|2q cos qπ − a|ϖ|q cos
qπ

2
+ pb22 = c22|ϖ|q sin(± qπ

2
) sin ϖτ + (c22|ϖ|q cos

qπ

2
− b) cos ϖτ (17)

and

|ϖ|2q sin(±qπ)− a|ϖ|q sin(± qπ

2
) = (b − c22|ϖ|q cos

qπ

2
) sin ϖτ + c22|ϖ|q sin(± qπ

2
) cos ϖτ. (18)

The following is considered:
β1 = |ϖ|2q cos qπ − a|ϖ|q cos qπ

2 + pb22,
β2 = |ϖ|2q sin(±qπ)− a|ϖ|q sin(± qπ

2 ),
ρ1 = c22|ϖ|q cos qπ

2 − b,
ρ2 = c22|ϖ|q sin(± qπ

2 ).

(19)

Thus, from Equations (17) and (18), we can obtain{
ρ1 cos ϖτ + ρ2 sin ϖτ = β1,
−ρ1 sin ϖτ + ρ2 cos ϖτ = β2.

(20)

Sum the squares of two equations in Equation (20) on both sides:

ρ2
1 + ρ2

2 = β2
1 + β2

2. (21)

Expressions β1, β2, ρ1 and ρ2 are substituted, which yields

|ϖ|4q + b|ϖ|3q + c|ϖ|2q + d|ϖ|q + e = 0, (22)

where 
b = −2a(cos qπ cos qπ

2 + sin(±qπ) sin(± qπ
2 )),

c = a2 − c2
22 + 2pb22 cos qπ,

d = 2(−apb22 + c22b) cos qπ
2 ,

e = p2b2
22 − b2.

(23)

If 0 < q < 1 and χ satisfy the inequality b
2 − 4χ − 2c + b

3−4bc+8d√
8χ+b

2−4c
< 0 or b

2 − 4χ −

2c − b
3−4bc+8d√
8χ+b

2−4c
< 0, there exists no real roots in Equation (22), where χ is any real root

of the equation 8χ3 − 4cχ2 + 2(bd − 8e)χ + e(4c − b
2
) − d

2
= 0; so, for any τ > 0, the

characteristic equation det(∆(s)) = 0 has no pure imaginary roots.
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If τ = 0, the matrix Λ of Equation (12) is

Λ =


−r 0 0 0
b12 b22 + c22 b23 b24
0 h p 0
0 0 0 b44


and its characteristic equation is

f (λ̂) = (λ̂ + r)(λ̂ − b44)[λ̂
2 − (b22 + c22 + p)λ̂ + p(b22 + c22)− hb23]. (24)

Its eigenvalues λ̂1,2,3,4 can be obtained. When 0 < p < (1 − α)(δ + g + n), then
λ̂1 = −r < 0,
λ̂2 = b44 < 0,
λ̂3 + λ̂4 = p + b22 + c22 < 0,
λ̂3λ̂4 = p(b22 + c22)− hb23 > 0.

(25)

Based on (25), the four eigenvalues of the matrix Λ have negative real parts, and all
the eigenvalues of Λ satisfy |arg(λ̂)| > π

2 . Based on Lemma 1, the positive equilibrium
point (L, K, A, P) of system (7) is asymptotically stable by Lyapunov. This completes
the proof.

Remark 3. In this paper, a fractional-order time-delayed economic growth model with environ-
mental purification is proposed. The established model considers not only the environment and
economic production but also the labor force population and total factor productivity. The delayed
fractional-order economic growth model without pollution is given in [22]. So, our results obtained
in this paper are further extended results than [22] on the analysis between the environment and
economic production.

According to Equation (11),
L = Lm,
P = ϵω

ρl ,

sAKαL1−α − (δ + g + n)K − lPAKαL1−α
= 0,

pA + hK + wL = 0.

(26)

Based on Equation (26), it is noteworthy that the equilibrium points K and A are not
easy to obtain. Hence, certain conditions are provided to facilitate the determination of the
equilibrium points. The corresponding stability conditions are provided as two corollaries.

Corollary 1. If q ∈ (0, 1), when w = 0,λ = 0, σ = 0, h < 0, r > 0, 0 < p < (1− α)(δ+ g+ n),
l
ω

1
ϵω−sρ < 0, and b

2 − 4χ − 2c + b
3−4bc+8d√
8χ+b

2−4c
< 0 or b

2 − 4χ − 2c − b
3−4bc+8d√
8χ+b

2−4c
< 0, then the

positive equilibrium point (L, K, A, P) of system (7) is locally asymptotically stable by Lyapunov,
where χ is any real root of the equation 8χ3 − 4cχ2 + 2(bd − 8e)χ + e(4c − b

2
)− d

2
= 0, and

the coefficients of the equation are given as
b = −2(p + α(δ + g + n))(cos qπ cos qπ

2 + sin(±qπ) sin(± qπ
2 )),

c = p2 + 2αp(δ + g + n)(1 + cos qπ) + (α2 − 1)(δ + g + n)2,
d = −2αp(δ + g + n)[α(δ + g + n)− 1] cos qπ

2 ,
e = p2α2(δ + g + n)2.

(27)
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Proof. If w = 0, as a result of taking τ = 0, then
L = Lm,
P = ϵω

ρl ,

sAKαL1−α − lPAKαL1−α − (δ + g + n)K = 0,
pA + hK = 0.

(28)

Solving the Equation (28), we can obtain the positive solution (L, K, A, P) of system (7) as

L = Lm, K =

(
ρp(δ + g + n)

(ϵω − sρ)hL(1−α)
m

) 1
α

, A = − h
p

K, P =
ϵω

ρl
. (29)

Based on Equation (29), the coefficients can be computed as

b11 = −2r,

b21 = (1 − α)(δ + g + n)
(

ρp(δ+g+n)

(ϵω−sρ)hL(1−α)
m

) 1
α

,

b22 = (δ + g + n)α,
b23 = − p

h (δ + g + n),

b24 = ρl(δ+g+n)
(ϵω−sρ)

(
ρp(δ+g+n)

(ϵω−sρ)hL(1−α)
m

) 1
α

,

b44 = ρ2l(δ+g+n)
ω(ϵω−sρ)

(
ρp(δ+g+n)

(ϵω−sρ)hL(1−α)
m

) 1
α

.

According to the stability conditions in Theorem 1, if b44 < 0, it can be concluded
that l

ω
1

ϵω−sρ < 0. According to p + b22 + c22 < 0 and p(b22 + c22)− hb23 > 0, it can be
concluded that 0 < p < (1 − α)(δ + g + n).

Furthermore, according to Equation (9),
b = −2(p + α(δ + g + n))(cos qπ cos qπ

2 + sin(±qπ) sin(± qπ
2 )),

c = p2 + 2αp(δ + g + n)[(1 + cos qπ) + (α2 − 1)(δ + g + n)],
d = −2αp[α(δ + g + n)2 − (δ + g + n)] cos qπ

2 ,
e = p2α2(δ + g + n)2.

This completes the proof.

Corollary 2. If q ∈ (0, 1), when λ = 0, p = 0, σ = 0, h < 0, w > 0, r > 0, l
ω(sρ−ϵω)

w
h < 0,

sρ−ϵω
ρ > 0, and b

2 − 4χ − 2c + b
3−4bc+8d√
8χ+b

2−4c
< 0 or b

2 − 4χ − 2c − b
3−4bc+8d√
8χ+b

2−4c
< 0, then the

positive equilibrium point (L, K, A, P) of system (7) is locally asymptotically stable by Lyapunov,
where χ is any real root of the equation 8χ3 − 4cχ2 + 2(bd − 8e)χ + e(4c − b

2
)− d

2
= 0, and

the coefficients of the equation are given by
b = −2α(δ + g + n)(cos qπ cos

qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = (α2 − 1)(δ + g + n)2,

d = −2h sρ−ϵω
ρ (−w

h )
α(δ + g + n)Lm cos

qπ

2
,

e = −[−h (sρ−ϵω)
ρ (−w

h )
αLm]2.

(30)
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Proof. If p = 0, h < 0 and w > 0, taking τ = 0, then we can obtain
L = Lm,
P = ϵω

ρl ,

sAKαL1−α − lPAKαL1−α − (δ + g + n)K = 0,
wL + hK = 0.

(31)

Solving the equations, and getting the unique positive solution (L, K, A, P)
of system (7)

L = Lm, K = −w
h

Lm, A =
ρ(δ + g + n)
(sρ − ϵω)

(−w
h
)1−α, P =

ϵω

ρl
. (32)

Based on Equation (32), the coefficients can be computed as

b11 = −2r,
b21 = −(1 − α)w

h (δ + g + n),
b22 = α(δ + g + n),
b23 = − (ϵω−sρ)

ρ (−w
h )

αLm,

b24 = − ρl(δ+g+n)
(ϵω−sρ)

w
h Lm,

b44 = ρ2l(δ+g+n)
ω(sρ−ϵω)

w
h Lm.

According to the stability conditions in Theorem 1, when b44 < 0, it can be concluded
that l

ω(sρ−ϵω)
ω
h < 0, if p = 0, h < 0, w > 0, sρ−ϵω

ρ > 0,

b22 + c22 = (δ + g + n)(α − 1) < 0,

−hb23 = −h
(sρ − ϵω)

ρ
(−w

h
)αLm > 0

are obtained.
According to Equation (9),

b = −2α(δ + g + n)(cos qπ cos
qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = (α2 − 1)(δ + g + n)2,

d = −2h sρ−ϵω
ρ (−w

h )
α(δ + g + n)Lm cos

qπ

2
,

e = −[−h (sρ−ϵω)
ρ (−w

h )
αLm]2.

This completes the proof.

Remark 4. Note that, if coefficient l = 0, this means that economic losses and production capital
caused by pollution are not considered in the economic growth model. In [22], the prediction of
China’s economic growth based on the delayed fractional-order economic growth model without
pollution is discussed and potential economic growth factors are explored. Based on this model,
by considering the fractional orders as parameters and optimizing them, an appropriate fractional
order based on the economic data of China from 1978 to 2020 is found and China’s GDP in the
next 30 years is predicted using the fractional-order delayed economic growth model. The factors
that drive short-term high-speed economic growth are also found. The results indicate that China
has a declining population dividend and capital accumulation deceleration. Therefore, the TFP is
increasing along with technological progress and innovation. Based on the fractional-order economic
growth model in [22], the environmental purification factor is considered in this paper.
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4. Numerical Analysis

In this section, the effectiveness of the theoretical results is demonstrated through
three numerical examples, and the impact of system parameters is further investigated.

The ABM predictor–corrector algorithm [44] and the computed step h = 0.01 are used
to solve the fractional-order time-delayed economic growth model with environmental
purification. The specific values of some parameters of system (7) are shown in Table 2.

Table 2. Values of some parameters.

Parameters Values Parameters Values

Constant saving rate s s = 0.4 Maximum number of
labor force Lm

Lm = 8

Capital depreciation
rate δ

δ = 0.05 Population growth
rate n n = 0.05

Growth rate of
technology g g = 0.1 Time delay τ τ = 2

Natural growth rate r r = 0.05 Degree of pollution
control investment ρ

ρ = 18

Parameter β β = 1.6 Parameter d d = 1

Remark 5. The time delay τ is chosen as τ = 2. According to [22], the fitting result with time delay
τ = 2 matches the original Kt best. Analysis shows that when τ = 0, which represents the case
without time delay, capital stock will be slightly overestimated because historical states are ignored.
By contrast, when τ = 4, because of the excessive emphasis on the role and impact of economic
variables in the capital accumulation that results from considering previous historical values, the
historical data of Kt will be underestimated. Therefore, the time delay τ = 2 is chosen properly.

Inputting these coefficients into model (7) yields a more specific model as follows:

Dq
ι Lι = 0.05(1 − Lι/8)Lι,

Dq
ι Kι = 0.4Yι − lYιPι − 0.2K(ι − 2),

Dq
ι Aι = pAι + wLι + hK(ι − 2),

Dq
ι Pι = ϵYιe−λYι − 18l

ω YιPι − σdβP1−β
ι ,

Yι = AιKα
ι L1−α

ι .

(33)

Example 1. p = 0.04, α = 0.4, w = 0.02, h = −0.01, ϵ = 1, ω = 1, λ = 0, σ = 0, l = 1/18
are used to verify Theorem 1.

The initial value is chosen as E0 = (4.0152, 0.1383, 1.7788, 0.1). From Equation (11),
we can calculate the positive equilibrium point of system (33) and obtain E = (L, K, A, P)
= (8.000, 19.978, 0.994, 1).Those can be obtained through further calculation:

b22 = α(s − lP)AKα−1L1−α
= 0.079,

b23 = (s − lP)KαL1−α
= 3.973,

b44 = − ρl
ω AKαL1−α

= −11.467,
c22 = −(δ + g + n) = −0.2.

It is verified that the corresponding conditions in Theorem 1 are fulfilled. Based on
Theorem 1, the positive equilibrium point E is asymptotically stable. The convergence
behaviors of the solution curve of system (33) about fractional order q are shown in Figure 1.
From Figure 1, the smaller the fractional order, the slower the convergence speed.
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Figure 1. Convergent behavior of system (33) about fractional order q. (a) Convergent behavior about
fractional order q = 0.6. (b) Convergent behavior about fractional order q = 0.7. (c) Convergent
behavior about fractional order q = 0.8. (d) Convergent behavior about fractional order q = 0.9.

Example 2. p = 0.02, α = 0.5, h = −0.01, w = 0, ϵ = 1, ω = 1, λ = 0, σ = 0, l = 1/18 are
used to verify Corollary 1. The initial value E0 = (4.0152, 0.1383, 1.7788, 0.1) is chosen. From
Equation (11), the positive equilibrium point of system (33) is obtained as E = (L, K, A, P) =
(8.000, 0.1686, 0.0843, 1).

The corresponding conditions are satisfied in Corollary 1. Then, the positive equilib-
rium point E is asymptotically stable. The convergence behaviors of the solution curve
of system (33) about the fractional order q are shown in Figure 2. From Figure 2, the
smaller the fractional order, the slower the convergence speed. Similar numerical results
for Corollary 2 can be obtained. Hence, verification is omitted.

Remark 6. According to Theorem 1, the condition sρ − ϵω > 0 is satisfied. This condition also
can be given by Corollaries 1 and 2. Furthermore, s − lP > 0 is obtained. According to [16,45],
countries that have high savings/investment rates tend to be richer. If stable economic growth is to
be maintained, saving rates need to be higher than the pollution rate, otherwise it will be difficult
to achieve economic growth. Hence, this condition is perfectly logical and reasonable. Next, if this
condition is not satisfied, is the system (33) still stable?
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Figure 2. Convergent behavior of the system (33) about the fractional order q. (a) Convergent
behavior about the fractional order q = 0.6. (b) Convergent behavior about fractional order q = 0.7.
(c) Convergent behavior about the fractional order q = 0.8. (d) Convergent behavior about the
fractional order q = 0.9.

Example 3. The initial value E0 = (4.0152, 0.1383, 1.7788, 0.1) is chosen. The parameters of the
system (33) are chosen as

q = 0.9, α = 0.4, p = 0.04, h = −0.01, w = 0.02, λ = 0, σ = 0, l = 1/18.

ϵ = 5, ω = 3 are chosen. sρ − ϵω = −7.8 < 0 are obtained. Then, system (33) is
unstable, which is shown as Figure 3a. A locally enlarged view of t ∈ [0, 20] is also shown as
Figure 3a. ϵ = 7.2, ω = 1 are chosen, sρ − ϵω = 0 is obtained. Then, system (33) is unstable,
as shown in Figure 3b. A locally enlarged view of t ∈ [0, 20] is also shown in Figure 3b.
However, when ϵ = 6.2, ω = 1 are chosen, sρ − ϵω = 1 > 0 is obtained. Then, system (33)
is also unstable, as shown in Figure 3c. A locally enlarged view of t ∈ [0, 20] is also shown
in Figure 3c. If ϵ = 3, ω = 2 are chosen, sρ − ϵω = 1.2 > 0 is obtained. Then, system (33)
is stable. The equilibrium point E = (L, K, A, P) = (8, 53.1003, 9.4197, 6.0000) is asymp-
totically stable by Lyapunov, as shown in Figure 3d. Hence, the condition sρ − ϵω > 0
is a sufficient condition.
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Figure 3. Convergent behavior of system (33) about the parameters ϵ, ω. (a) Convergent behavior
about ϵ = 5, ω = 3. (b) Convergent behavior about ϵ = 7.2, ω = 1. (c) Convergent behavior about
ϵ = 6.2, ω = 1. (d) Convergent behavior about ϵ = 3, ω = 2.

5. Discussion

Note that the conditions λ = 0, σ = 0 in the stability analysis of model (33), when
λ = 0, approximate waste pollution Z(ι) as a linear function. When σ = 0, the function
ψ(Pι) = 0; hence, the natural purification capacity is not considered in model (33). In this
section, the effect of parameters λ, σ in the model (33) is mainly considered.

Parameters from Example 1 are considered:

p = 0.04, α = 0.4, w = 0.02, ϵ = 1, h = −0.01, ω = 1, l = 1/18.

Then, system (33) becomes

Dq
ι Lι = 0.05(1 − Lι/8)Lι,

Dq
ι Kι = 0.4Yι − 1/18YιPι − 0.2K(ι − 2),

Dq
ι Aι = 0.04Aι + 0.02Lι − 0.01K(ι − 2),

Dq
ι Pι = Yιe−λYι − YιPι − σP1−β

ι ,
Yι = AιKα

ι L1−α
ι .

(34)

When λ = 0, σ = 0, according to Example 1, system (34) is stable. If λ = 0 and
σ ∈ [0, 3.55], system (34) has a non-negative equilibrium point. When σ = 1 and λ ∈ [0, 0.7],
system (34) has a non-negative real equilibrium point. When λ = 0, σ = 0.2, 1, 2, 3, 3.55 are
chosen and system (34) is asymptotically stable. Additionally, the convergence behavior
of the solution curve of system (34) is given in Figure 4. The influence of σ on convergent
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behavior about Aι is shown in Figure 4a. Kι is shown in Figure 4b and Pι is shown in
Figure 4c. From Figure 4, Aι, Kι, and Pι decrease along with σ increasing. This conclu-
sion is drawn from system (34) (0.4Yι − 1/18YιP − 0.2K = 0, 0.04A + 0.02L − 0.01K = 0,
Yι −YιPι − σP1−β

ι = 0). However, Lι remains unchanged along with σ increasing, as shown
in Figure 4d.

(a) (b)

(c) (d)

Figure 4. Convergent behavior of system (34) about parameters σ. (a) Influence of σ on the convergent
behavior about Aι. (b) Influence of σ on convergent behavior of Kι. (c) Influence of σ on the convergent
behavior of Pι. (d) Influence of σ on the convergent behavior of Lι.

When σ = 0 and λ ∈ [0, 0.7], system (34) is asymptotically stable by Lyapunov. This
numerical result is similar to λ = 0, σ ∈ [0, 3.55]. When λ = 0, 0.1, 0.2, 0.4, 0.6, 0.7 are
chosen, Figure 5 shows the convergence behavior of the solution curve of the system (34).
Taking λ = 0 and λ > 0(λ = 0.1, 0.2, 0.4, 0.6, 0.7), the convergence behaviors of system (34)
are similar. So, using λ = 0 is reasonable for getting the asymptotic stability conditions.
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(a) (b)

(c) (d)

Figure 5. Convergent behavior of system (34) about parameters λ. (a) Influence of σ on the convergent
behavior of Aι. (b) Influence of σ on the convergent behavior of Kι. (c) Influence of σ on the convergent
behavior of Pι. (d) Influence of σ on the convergent behavior of Lι.

6. Conclusions

A fractional-order time-delayed economic growth model with environmental purifi-
cation is proposed in this paper to analyze the interplay between economic growth and
environmental pollution. Time delay is considered in capital stock to describe the lag effect
and memory features in economic operations. The established model is proposed in the
form of a fractional-order differential equation. The stability conditions of the established
model are obtained, and the parameter stability interval are provided. The theoretical
results are verified in the simulation. The convergence behaviors of the solution curve
of the proposed model about the fractional order q are further discussed. The impacts of
parameter variation on the stability of the proposed model are analyzed.

Some potential research directions of fractional-order economic growth model will be
explored based on the proposed model. Note that the theoretical analysis of the proposed
model is provided in this paper. In the future, the economic data and pollution data will be
collected to analyze the relationship between economic growth and environmental pollution
based on system (5) and Equation (6). Furthermore, a country’s economic development
cannot be separated from its energy consumption, and energy consumption directly leads
to a large number of carbon emissions. It is of great significance to study the relationship
between carbon dioxide emissions and economic growth for the implementation of energy
conservation, emission reduction, and the development of low-carbon economy in cities.
Based on the proposed model in this paper, some carbon dioxide emissions models (such
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as Kaya model [46], carbon emission simultaneous model [47]) can be used to study the
relationship between carbon dioxide emissions and economic growth.
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