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Abstract: The present study presents a combination of two famous analytical techniques for the
analytical solutions of linear and nonlinear time-fractional Emden–Fowler models. We combine
the Elzaki transform (ET) and the homotopy perturbation method (HPM) for the development of
the Elzaki transform homotopy perturbation method (ET-HPM). In this paper, we demonstrate
that the Elzaki transform (ET) simplifies fractional differential problems by transforming them into
algebraic formulas within the transform space. On the other hand, the HPM has the ability to
discretize the nonlinear terms in fractional problems. The fractional orders are considered in the
Caputo sense. The main purpose of this strategy is to use an alternative approach that has never been
employed in the time-fractional Emden–Fowler model. This strategy does not require any variable or
hypothesis constraints that ruin the physical nature of the actual problem. The derived series yields
a convergent series using the Taylor series formula. The analytical data and visual illustrations for
several kinds of fractional orders validate the effectiveness of the suggested scheme. The significant
results demonstrate that our recommended strategy is quick and simple to use on fractional problems.

Keywords: Elzaki transform; homotopy perturbation scheme; time-fractional Emden–Fowler model;
analytical solution

1. Introduction

In the twenty-first century, there has been a significant amount of interest in frac-
tional calculus (FC) and its diverse applications in mathematical science, astronomy, and
biological sciences. It is widely used in different applications of sciences and technology,
including device control concepts, computer networks, statistical computation, optical
science, electrical chemistry, signal analysis, and chemical substances. The fractional deriva-
tive has a global scope instead of being limited to a local area; therefore, it is extremely
beneficial, and unlimited variations are anticipated [1,2]. It is capable of taking impacts
into account more precisely. This nonlocality is extremely useful for analyzing physical
reactions involving memory effects. These systems are challenging to investigate using
traditional calculus. Consequently, this topic has been focused on in various fascinating
studies during the last few decades. FC is a widely recognized mechanism in a variety
of scientific and technological domains, and it has been explained by fractional differen-
tial equations [3,4]. Several other phenomena, such as electromagnetic, hydrodynamic,
thermal, acoustic, and electrodynamic phenomena, can also be effectively simulated using
these equations. To date, numerous researchers have shown that it can handle multiple
challenges, particularly in mathematics and physical science. Indeed, the reliability of
fractional operators has demonstrated their suitability for simulating the local instability of
components in time or space, which has a critical function in many circumstances; however,
it cannot be understood using normal mathematical approaches [5,6]. Many scientists have
studied the approximate solutions of these fractional differential problems and showed that
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these problems appear substantially more complex than integer-order variants for dealing
with accurate results [7–10].

The time-fractional Emden–Fowler equation is employed in modeling complex sys-
tems across various scientific and engineering disciplines. It simulates the propagation of
waves in media with memory, where waves exhibit non-standard diffusion characteristics
as a result of the fractional time derivative. In addition, this fractional model is being
investigated in the context of nonlinear dynamics and pattern formation in a variety of
physical systems, including those exhibiting fractal and chaotic dynamics. The astrophys-
ical researchers Homer Lane and Robert Emden first examined the Lane–Emden model,
in which they explored the heat distribution of a sphere-shaped ball of oxygen reacting
through molecular interactions with other molecules under the traditional rules of ther-
modynamics [11]. Most of the singular problems described by Lane–Emden models have
been applied in various applications of applied sciences [12]. The Emden–Fowler model is
a form of differential equation that is used in astrophysics and computational astrophysics.
Due to singularity actions at the point (y = 0), the solution of the Emden–Fowler problem
and its initial value problems at the singularity are computationally difficult. Chowd-
hury and Hashim [13] investigated the use of the HPM to find approximate solutions
for second-order ordinary differential problems of the generalized Emden–Fowler form.
Mall and Chakraverty [14] introduced a neural network scheme to solve singular initial
value problems of Emden–Fowler equations. Syam [15] proposed a scheme based on series
results to derive the analytical outcomes of higher-order Emden–Fowler equations [16].

The homotopy perturbation method (HPM) is one of the particularly prominent semi-
analytical approaches that combine homotopy and perturbation strategies because there are
no strict constraints on the selection of its linear operator, and its series solution probably
frequently fails to converge [17]. He and El-Dib [18] argued that their proposed approach
depends on the traditional Taylor series, which does not need a higher-level approxima-
tion. The strategy of the HPM has been applied to various problems, such as algebraic
problems [19], nonlinear diffusion equations [20], initial and boundary value problems [21],
nonlinear wave problems [22], harmonic oscillation [23], and other challenges [24–26].
Tarig Elzaki [27] developed the scheme of Elzaki transformation to obtain the results of
some ordinary and partial differential equations in a time analysis more easily. Later,
Aggarwal et al. [28] established the definitions of duality relations for numerous advanced
integral transformations. They enable the analysis of a rapidly converging series that leads
to precise solutions. This approach is regarded as highly effective in resolving differential
problems including both integer and noninteger orders, which may be linear or nonlinear
and homogeneous or nonhomogeneous.

In the current study, we develop a strategy called the Elzaki transform homotopy
perturbation method (ET-HPM) for an analytical view of the time-fractional Emden–Fowler
model. The Elzaki transform simplifies the handling of fractional operators, enhances
convergence properties, provides straightforward operational rules, and improves the treat-
ment of initial conditions. It offers the direct treatment of fractional differential equations
despite the further transformation required. This can substantially speed up the solution
process and decrease potential errors caused by several conversions. These features make
the Elzaki transform an effective tool for solving fractional differential equations and pro-
vide an alternative approach to conventional methods. By utilizing the HPM, we derive
He’s polynomials with an easy computational process. Thus, outcomes like iterative series
that lead toward the precise results of fractional problems are achieved. Our proposed
scheme is independent of any hypotheses, constraints, or restrictions on variables that may
ruin the actual problem. This scheme has more direct applications to the fractional problem
than other schemes discussed in the literature. The remaining work is designed as follows:
We present the highlights of FC and features of the ET in Section 2. Section 3 provides an
overview of the proposed strategy, along with certain convergence theorems. In Section 6,
we implement the ET-HPM formulation to derive the outcomes of the time-fractional
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Emden–Fowler model. Section 7 displays the graphical structures of the obtained results
with respect to various fractional orders. At last, we provide our conclusion in Section 8.

2. Definitions and Fundamental Principles

This section presents basic definitions concerning FC and the ET with their properties.

Definition 1. The expression for the fractional-order Riemann–Liouville integral is [29]

Jαϑ(φ) =
1

Γ(α)

∫ φ

0

ϑ(ε)

(φ − ε)1−ε
dε, α > 0, φ > 0

Definition 2. The fractional-order Caputo’s derivative is expressed as [29]

Dαϑ(φ) =
1

Γ(n − α)

∫ φ

0
(φ − ε)n−α−1ϑn(ε)dε n − 1 < α ≤ n, n ∈ N

Definition 3. Let A be a set of functions expressed as [27,30]

A = ϑ(t) : ∃M, q1, q2 > 0, | ϑ(τ) |< Me
|t|
qi , if t ∈ (−1)i × [0, ∞),

where M represents the constant of a finite term. On the other hand, q1 and q2 can be either finite or
infinite. Thus, the integral formulation of the Elzaki transform is expressed as

E[ϑ(φ)] = R(σ) = σ
∫ ∞

0 e−
φ
σ ϑ(φ)dφ,

where σ is the transform parameter of φ. Let R(σ) represent the ET of E[ϑ(φ)]; thus, ϑ(φ) =
E−1[R(σ)] is the inverse of the ET.

Definition 4. The ET of a fractional operator in Caputo form is described as [31]

E
[

Dα
φϑ(φ)

]
= σ−αE[ϑ(φ)]−

n−1
∑

k=0
σ2−α+kϑk(0), n − 1 < α < n

Statements: The ET has the following features in differential cases [32]:

E[φn]= n!σn+2,

E
[
ϑ′(φ)

]
=

E[ϑ(φ)]

σ
− σϑ(0),

E[ϑ′′ (φ)]=
E[ϑ(φ)]

σ2 − ϑ(0)− σϑ′(0).

The ET for the nth derivative is defined as

E[ϑn(φ)]= σ−nR(σ)− σ2−nϑ(0) + σ3−nϑ′(0) + · · ·+ σϑn(0),

3. Formulation of ET-HPM

This section presents the development of the ET-HPM strategy for the analytical
treatment of the time-fractional Emden–Fowler model. The Elzaki transform is useful for
handling initial constraints and transforming differential equations into algebraic form.
This scheme expands the solution into a power series of the embedding parameter p and
solves the transformed equations iteratively. The greatest advantage of this scheme is that
it is useful for solving fractional differential equations, which are often challenging for
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traditional methods in comparison to the traditional HPM. The process of this technique
begins with the consideration of a nonlinear fractional differential problem as follows:

Dα
φϑ(ψ, φ) + Lϑ(ψ, φ) + Nϑ(ψ, φ) = g(ψ, φ), (1)

subject to the condition
ϑ(0, φ) = f (φ), (2)

where ϑ represents the function of time φ, L and N show linear and nonlinear operators,
and g(ψ, φ) is a known term. Applying the ET to Equation (1), we obtain

E
[

Dα
φϑ(ψ, φ) + Lϑ(ψ, φ) + Nϑ(ψ, φ)

]
= E[g(ψ, φ)].

Using the propositions of the ET, we obtain

1
σα

[
R(σ)− σ2ϑ(ψ, 0)

]
= −E[Lϑ(ψ, φ) + Nϑ(ψ, φ)− g(ψ, φ)].

Thus, R(σ) is obtained as follows:

R[σ] = σ2ϑ(ψ, 0)− σαE[g(ψ, φ)]− σαE[Lϑ(ψ, φ) + Nϑ(ψ, φ)].

Applying the inverse ET, we obtain

ϑ(ψ, φ)= G(ψ, φ)− E−1[σαE[Lϑ(ψ, φ) + Nϑ(ψ, φ)]]. (3)

Equation (3) is called the formulation of the ET-HPM of Equation (1), where

G(ψ, φ) = E−1[σ2ϑ(ψ, 0)− σα E[g(ψ, φ)]]
]
.

Consider the following solution of Equation (1):

ϑ(ψ, φ) =
∞
∑

n=0
pnϑn(ψ, φ), (4)

where p ∈ [0, 1] is a small homotopy parameter, and ϑ0(ϑ, φ) is the initial condition. The
nonlinear component of the homotopy polynomial is considered as follows:

Nϑ(ψ, φ) =
∞
∑

n=0
pn Hnϑ(ψ, φ), (5)

which can be calculated as

Hn(ψ, φ) = 1
n!

∂n

∂pn

(
N
(

∞
∑

n=0
pnϑn

))
p=0

. n = 0, 1, 2, · · ·

By using Equations (4) and (5), Equation (3) becomes

∞
∑

n=0
pnϑn(ψ, φ) = G(ψ, φ)− pE−1

[
σαE

{
L
(

∞
∑

n=0
pnϑn(ψ, φ)

)
+

∞
∑

n=0
pn Hnϑn(ψ, φ)

}]
.

With the comparison of p on both sides, we obtain
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p0: ϑ0(ψ, φ) = G(ψ, φ),

p1: ϑ1(ψ, φ) = −E−1[σαE{Lϑ0(ψ, φ) + H0(ϑ)}],
p2: ϑ2(ψ, φ) = −E−1[σαE{Lϑ1(ψ, φ) + H1(ϑ)}],
p3: ϑ3(ψ, φ) = −E−1[σαE{Lϑ2(ψ, φ) + H2(ϑ)}],

...

pn: ϑn(ψ, φ) = −E−1[σαE{Lϑn−1(ψ, φ) + Hn−1(ϑ)}]
In the end, our analytical solution acts in series, as follows:

ϑ(ψ, φ) = ϑ0 + ϑ1 + ϑ2 + · · · = lim
p→∞

∞
∑

i=1
ϑi(ψ, φ). (6)

Now, we present a theorem that explains the conditions of the convergence for the series
solutions (6).

4. Convergence Analysis

This section presents a study of the convergence theorem and states its proof for the
analytical results of the considered fractional model under the suggested scheme. We
show that the obtained results in the form of a series converge to the precise results of the
problem very rapidly.

Theorem 1 (The Banach fixed-point theorem). Consider X a Banach space to the nonlinear
mapping T : X → X , and also suppose that

∥ T[ϑ]− T[ϑ]∥≤ ε ∥ ϑ−ϑ∥, ϑ,ϑ ∈ X, 0 < ε < 1. (7)

It is stated that T represents a singular fixed point, and the sequence produced by the ET-HPM is
considered to converge to ϑn+1 = Tϑn with an arbitrary ϑ0 ∈ X, and therefore,

∥ ϑv − ϑw ∥ ≤ ∥ ϑ1 − ϑ0 ∥
v−2
∑

k=w−1
εk. (8)

The aforementioned theorem serves as a prerequisite for the subsequent analysis, which is explicable
through the utilization of the Banach fixed-point theorem.

Theorem 2. Let ϑ(ψ, φ) ∈ H and α ∈ (0, 1), in which H denotes the Hilbert space, and assume
that ϑ(ψ, φ) is the precise solution to Equation (1). The derived results ∑∞

r=0 ϑr(ψ, φ) converge
to ϑ(ψ, φ) if ϑr(ψ, φ) ≤ ϑr−1(ψ, φ)∀r > A, i.e., for every one ω > 0 ∃ A > 0, in which
∥ ϑr+n(ψ, φ) ∥ ≤ β, ∀m, n ∈ N.

Proof. Consider a sequence of ∑∞
r=0 ϑr(ψ, φ).

T0(ψ, φ) =ϑ0(ψ, φ),

T1(ψ, φ) =ϑ0(ψ, φ) + ϑ1(ψ, φ),

T2(ψ, φ) =ϑ0(ψ, φ) + ϑ1(ψ, φ) + ϑ2(ψ, φ),

T3(ψ, φ) =ϑ0(ψ, φ) + ϑ1(ψ, φ) + ϑ2(ψ, φ) + ϑ3(ψ, φ),
...

Tr(ψ, φ) =ϑ0(ψ, φ) + ϑ1(ψ, φ) + ϑ2(ψ, φ) + · · ·+ ϑr(ψ, φ).

(9)

We have to show that {Tr(ψ, φ)}∞
r=0 yields a “Cauchy sequence” under the obtained results.

In addition, consider that
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∥ Tr+1(ψ, φ)− Tr(ψ, φ) ∥= ∥ ϑr+1(ψ, φ) ∥ ≤ ε∥ ϑr(ψ, φ) ∥ ≤ ε2∥ ϑr−1(ψ, φ) ∥ ≤ ε3∥ ϑr−2(ψ, φ) ∥ · · ·
≤ εr+1∥ ϑ0(ψ, φ) ∥.

(10)

For r, n ∈ N, one has

∥ Tr(ψ, φ)− Tn(ψ, φ) ∥ =∥ ϑr+n(ψ, φ) ∥=∥Tr(ψ, φ)− Tr−1(ψ, φ) + (Tr−1(ψ, φ)− Tr−2(ψ, φ))

+(Tr−2(ψ, φ)− Tr−3(ψ, φ)) + · · ·+ (Tn+1(ψ, φ)− Tn(ψ, φ)) ∥
≤∥ Tr(ψ, φ)− Tr−1(ψ, φ) ∥+ ∥ (Tr−1(ψ, φ)− Tr−2(ψ, φ)) ∥
+∥ (Tr−2(ψ, φ)− Tr−3(ψ, φ)) ∥+ · · ·+ ∥ (Tn+1(ψ, φ)− Tn(ψ, φ)) ∥

≤εr∥ ϑ0(ψ, φ) ∥+ εr−1∥ ϑ0(ψ, φ) ∥+ · · ·+ εr+1∥ ϑ0(ψ, φ) ∥
=∥ ϑ0(ψ, φ) ∥

(
εr + εr−1 + εr+1

)
=∥ ϑ0(ψ, φ) ∥1 − εr−n

1 − εr+1 εn+1.

(11)

Since ϑ0(ψ, φ) and 0 < ε < 1 are restricted, we consider β = 1− ε/(1− εr−n)εn+1∥ ϑ0(ψ, φ) ∥,
and we obtain

∥ ϑr+n(ψ, φ) ∥ ≤ β, ∀r, n ∈ N. (12)

Hence, {ϑr(ψ, φ)}∞
r=0 produces a “Cauchy sequence” in H. It shows that {ϑr(ψ, φ)}∞

r=0
yields a convergence sequence along the limitr→∞ϑr(ψ, φ) = ϑ(ψ, φ) for ∃ϑ(ψ, φ) ∈ H.
This completes the proof. □

Theorem 3. Now, suppose that ϑ(ψ, φ) reflects the obtained series solution and ∑n
r=0 ϑr(ψ, φ)

is finite. Considering α > 0 and ∥ ϑr(ψ, φ) ∥ ≥ ∥ ϑn(ψ, φ) ∥, the maximum absolute error is
provided by the following inequality:

∥ Tr(ψ, φ)− Tn(ψ, φ) ∥ < αn+1

1−α ∥ ϑ0(ψ, φ) ∥. (13)

Proof. Suppose ∑n
r=0 ϑr(ψ, φ) is bounded such that ∑n

r=0 ϑr(ψ, φ) < ∞. Now, assume that

∥ ϑr(ψ, φ)− ϑk(ψ, φ) ∥= ∥
∞

∑
r=n+1

ϑr(ψ, φ) ∥

≤
∞

∑
r=n+1

∥ ϑr(ψ, φ) ∥

≤
∞

∑
r=n+1

αr∥ ϑ0(ψ, φ) ∥

≤ αn+1
(

1 + α + α2 + · · ·
)
∥ ϑ0(ψ, φ) ∥

≤ αn+1

1 − α
∥ ϑ0(ψ, φ) ∥.

Thus,
∥ ϑr(ψ, φ)− ϑk(ψ, φ) ∥ = A.ER∥ ϑ0(ψ, φ) ∥.

□

Remark 1. The component A.ER represents the highest possible truncation error of ϑ(ψ, φ), which
provides the proof of the theorem.
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5. The Uniqueness Theorem

Let the analytical results of a fractional model obtained by the ET-HPM be unique
whenever 0 < γ < 1, i.e.,

∂nϑ
∂φn + Lϑ + Nϑ = g(ψ, φ) (14)

Proof. Since Equation (14) is the derived solution of the ET-HPM, we have

∂αϑ
∂φα + Lϑ + Nϑ = g(ψ, φ)

where L and N agree with the Lipschitz constraints. Applying the ET, we obtain

E
[

∂αϑ
∂φα + Lϑ + Nϑ

]
= E[g(ψ, φ)]

Using the properties of the ET, we have

R(σ)
σα =

n−1
∑

k=0
σ2−n+k ∂kϑ(ψ,0)

∂φk + E[g(ψ, φ)− Lϑ − Nϑ],

⇒ E[ϑ(ψ, φ)] = σk
n−1
∑

k=0
σ2 ∂kϑ(ψ,0)

∂φk + σnE[g(ψ, φ)− Lϑ − Nϑ]. (15)

Now, applying the inverse ET to Equation (15), we obtain

∴ ϑ(ψ, φ) =
n−1
∑

k=0

φk

k!
∂kϑ(ψ,0)

∂φk + E−1[σnE[g(ψ, φ)− Lϑ − Nϑ]].

Consider that there are two unique results, ϑ(ψ, φ) and ω(ψ, φ); we have

|ϑ − ω| =

∣∣∣∣∣∣∣∣
∑n−1

k=0
φk

k!
∂kϑ(ψ,0)

∂φk + E−1[σnE[g(ψ, φ)− Lϑ − Nϑ]]

−
(

∑n−1
k=0

φk

k!
∂kω(ψ,0)

∂φk + E−1[σnE[g(ψ, φ)− Lω − Nω]]
)
∣∣∣∣∣∣∣∣.

From the triangle inequality, we can deduce that

|ϑ − ω| ≤
∣∣∣∣∣
(

n−1
∑

k=0

φk

k!
∂kϑ(ψ, 0)

∂φk −
n−1
∑

k=0

φk

k!
∂kω(ψ, 0)

∂φk

)∣∣∣∣∣+ ∣∣E−1[σnE[−Lϑ − Lω − Nϑ − Nω]]
∣∣,

⇒ |ϑ − ω| ≤
∣∣−E−1[σnE[L(ϑ − ω) + N(ϑ − ω)]]

∣∣.
By applying the convolution theorem,

|ϑ − ω| ≤
∫ φ

0 (|L(ϑ)− L(ω)|+|N(ϑ)− N(ω)|)
∣∣∣ (φ−τ)n

n!

∣∣∣dτ. (16)

Given that L and N agree with the Lipschitz constraints, we can conclude that L is a
bounded operator with the property that |L(ϑ)− L(ω)|≤ µ|ϑ − ω|, where µ is a constant.
Additionally, N is defined as |N(ϑ)− N(ω)|≤ ε|ϑ − ω| for any positive value of ε. Thus,
Equation (16) becomes

|ϑ − ω| ≤
∫ φ

0 (|µ(ϑ − ω)|+ |ε(ϑ − ω)|)
∣∣∣ (φ−τ)n

n!

∣∣∣dτ, µ, ε > 0. (17)

By applying the mean value theorem for integrals to Equation (17), we can establish that
M is the maximum value of M = max(φ − τ)n for φ in the interval [0, φ]. Consequently,
Equation (17) can be expressed as

|ϑ − ω|≤ [(µ + ε)|ϑ − ω|]Mφ. (18)
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Let (µ + ε)Mφ = γ. Equation (18) becomes

|ϑ − ω|≤ γ|ϑ − ω|,
∴ (1 − γ)|ϑ − ω|≤ 0.

This means that ϑ = ω whenever γ < 1 and γ ∈ (0, 1). Hence, the solution is unique. □

6. Numerical Applications

Here, we implement the proposed scheme to derive the approximate results of the
time-fractional Emden–Fowler model. We consider two examples: linear and nonlinear
models. We note that the resultant series converges to the precise responses just after a
couple of cycles, which shows the accuracy and authenticity of the proposed scheme. We
adopt Mathematica 11 in our computational processes and graphical illustrations.

6.1. Problem 1

Consider the following homogeneous linear time-fractional Emden–Fowler model:

∂αϑ
∂φα = ∂2ϑ

∂ψ2 +
2
ψ

∂ϑ
∂ψ −

(
6 + 4ψ2 − cos φ

)
ϑ, 1 < α ≤ 2, (19)

subject to the condition
ϑ(ψ, 0) = eψ2 (20)

Employing the ET with Equation (19), we obtain

1
σα

E
[
ϑ(ψ, φ)− σ2ϑ(ψ, 0)

]
= E

[
∂2ϑ

∂ψ2 +
2
ψ

∂ϑ

∂ψ
−
(

6 + 4ψ2 − cos φ
)

ϑ

]
.

Taking the inverse ET, we obtain

ϑ(ψ, φ) = ϑ(ψ, 0) + E−1
[
σαE

{
∂2ϑ
∂ψ2 +

2
ψ

∂ϑ
∂ψ −

(
6 + 4ψ2 − cos φ

)
ϑ
}]

. (21)

By adopting the HPM in Equation (21), we can obtain
∞
∑

i=0
piϑi(ψ, φ) = ϑ(ψ, 0) + E−1

[
σαE

{
∞
∑

i=0
pi ∂2ϑi

∂ψ2 + 2
ψ

∞
∑

i=0
pi ∂ϑi

∂ψ −
(
6 + 4ψ2 − cos φ

) ∞
∑

i=0
piϑi

}]
. (22)

Evaluating similar components of p of Equation (22), we obtain

p0: ϑ0(ψ, φ) = ϑ(ψ, 0) = 1,

p1: ϑ1(ψ, φ) = E−1
[

σαE
{

∂2ϑ0

∂ψ2 +
2
ψ

∂ϑ0

∂ψ
−
(

6 + 4ψ2 − cos φ
)

ϑ0

}]
,

p2: ϑ2(ψ, φ) = E−1
[

σαE
{

∂2ϑ1

∂ψ2 +
2
ψ

∂ϑ1

∂ψ
−
(

6 + 4ψ2 − cos φ
)

ϑ1

}]
,

....

The following possible outcomes are obtained:
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ϑ0(ψ, φ) = eψ2
,

ϑ1(ψ, φ) = eψ2
[

φα

Γ(α+1) −
φα+2

Γ(α+3) +
φα+4

Γ(α+5) −
φα+6

Γ(α+7) + . . .
]

ϑ2(ψ, φ) = eψ2
[{

φ2α

Γ(2α+1) −
φ2α+2

Γ(2α+3) +
φ2α+4

Γ(2α+5) −
φ2α+6

Γ(2α+7) + . . .
}
− 1

2!

{
Γ(α+3)
Γ(α+1)

φ2α+2

Γ(2α+3)

− Γ(α+5)
Γ(α+3)

φ2α+4

Γ(2α+5) +
Γ(α+7)
Γ(α+5)

φ2α+6

Γ(2α+7) −
Γ(α+9)
Γ(α+7)

φ2α+8

Γ(2α+9) + . . .
}

+ 1
4!

{
Γ(α+4)
Γ(α+1)

φ2α+4

Γ(2α+5) −
Γ(α+7)
Γ(α+3)

φ2α+6

Γ(2α+7) +
Γ(α+9)
Γ(α+5)

φ2α+8

Γ(2α+9) −
Γ(α+11)
Γ(α+7)

φ2α+10

Γ(2α+11) + . . .
}

− 1
6!

{
Γ(α+7)
Γ(α+1)

φ2α+6

Γ(2α+7) −
Γ(α+9)
Γ(α+3)

φ2α+8

Γ(2α+9) +
Γ(α+11)
Γ(α+5)

φ2α+10

Γ(2α+11) −
Γ(α+13)
Γ(α+7)

φ2α+12

Γ(2α+13) + . . .
}
+ . . .

]
...

Hence, the analytical solution of Equation (19) yields

ϑ(ψ, φ) = ϑ0(ψ, φ) + u1(ψ, φ) + u2(ψ, φ) + · · ·
ϑ(ψ, φ) = eψ2

+ eψ2
[

φα

Γ(α+1) −
φα+2

Γ(α+3) +
φα+4

Γ(α+5) −
φα+6

Γ(α+7) + . . .
]

+eψ2
[{

φ2α

Γ(2α+1) −
φ2α+2

Γ(2α+3) +
φ2α+4

Γ(2α+5) −
φ2α+6

Γ(2α+7) + · · ·
}

− 1
2!

{
Γ(α+3)
Γ(α+1)

φ2α+2

Γ(2α+3) −
Γ(α+5)
Γ(α+3)

φ2α+4

Γ(2α+5) +
Γ(α+7)
Γ(α+5)

φ2α+6

Γ(2α+7) −
Γ(α+9)
Γ(α+7)

φ2α+8

Γ(2α+9) + . . .
}

+ 1
4!

{
Γ(α+4)
Γ(α+1)

φ2α+4

Γ(2α+5) −
Γ(α+7)
Γ(α+3)

φ2α+6

Γ(2α+7) +
Γ(α+9)
Γ(α+5)

φ2α+8

Γ(2α+9) −
Γ(α+11)
Γ(α+7)

φ2α+10

Γ(2α+11) + · · ·
}

− 1
6!

{
Γ(α+7)
Γ(α+1)

φ2α+6

Γ(2α+7) −
Γ(α+9)
Γ(α+3)

φ2α+8

Γ(2α+9) +
Γ(α+11)
Γ(α+5)

φ2α+10

Γ(2α+11) −
Γ(α+13)
Γ(α+7)

φ2α+12

Γ(2α+13) + . . .
}
+ . . .

]
+ · · · .

(23)

In the case of α = 1, the precise result of Equation (19) yields

ϑ(ψ, φ) = eψ2+sin φ. (24)

6.2. Problem 2

Next, assume the following homogeneous nonlinear time-fractional Emden–Fowler model:

∂2αϑ
∂φ2α = ∂2ϑ

∂ψ2 +
6
ψ

∂ϑ
∂ψ +

(
14φ + ψ4)ϑ + 4φϑ ln(ϑ), 1 < α ≤ 2, (25)

subject to the condition
ϑ(ψ, 0) = 1, ϑφ(ψ, 0) = −ψ2 (26)

Employing the ET with Equation (25), we obtain

1
σα

E
[
ϑ(ψ, φ)− σ2ϑ(ψ, 0)

]
= E

[
∂2ϑ

∂ψ2 +
6
ψ

∂ϑ

∂ψ
+
(

14φ + ψ4
)

ϑ + 4φϑ ln(ϑ)
]

.

Taking the inverse ET, we obtain

ϑ(ψ, φ) = ϑ(ψ, 0) + E−1
[
σαE

{
∂2ϑ
∂ψ2 +

6
ψ

∂ϑ
∂ψ +

(
14φ + ψ4)ϑ + 4φϑ ln(ϑ)

}]
. (27)

By adopting the HPM in Equation (27), we can obtain

∞
∑

i=0
piϑi(ψ, φ) = ϑ(ψ, 0) + E−1

[
σαE

{
∞
∑

i=0
pi ∂2ϑi

∂ψ2 + 6
ψ

∞
∑

i=0
pi ∂ϑi

∂ψ +
(
14φ + ψ4) ∞

∑
i=0

piϑi + 4φ
∞
∑

i=0
piϑi ln(ϑi)

}]
. (28)
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After analyzing identical parts of p in Equation (28), we obtain

p0: ϑ0(ψ, φ) = ϑ(ψ, 0) = ϑ(ψ, 0) + ϑφ(ψ, 0),

p1: ϑ1(ψ, φ) = E−1
[

σαE
{

∂2ϑ0

∂ψ2 +
6
ψ

∂ϑ0

∂ψ
+
(

14φ + ψ4
)

ϑ0 + 4φϑ0 ln(ϑ0)

}]
,

p2: ϑ2(ψ, φ) = E−1
[

σαE
{

∂2ϑ1

∂ψ2 +
6
ψ

∂ϑ1

∂ψ
+
(

14φ + ψ4
)

ϑ1 + 4φϑ0 ln(ϑ1) + 4φϑ1 ln(ϑ0)

}]
,

....

The following possible outcomes are obtained:

ϑ0(ψ, φ) = 1 − φψ2

ϑ1(ψ, φ) = −28ψ2 φα+2

Γ(α+3) + ψ4 φα

Γ(α+1) − ψ6 φα+1

Γ(α+2)′

ϑ2(ψ, φ) = −392 φ2α+2

Γ(2α+3) + 36ψ2 φ2α

Γ(2α+1) − 66ψ4 φ2α+1

Γ(2α+2) + 392ψ2 Γ(α+4)
Γ(α+3)

φ2α+3

Γ(2α+4)

+14ψ4 Γ(α+2)
Γ(α+1)

φ2α+1

Γ(2α+2) − 14ψ6 Γ(α+3)
Γ(α+2)

φ2α+2

Γ(2α+3) − 28ψ6 2α+2
Γ(2α+3) + ψ8 φ2α

Γ(2α+1) + ψ10 2α+1
Γ(2α+2)

...

Hence, the analytical solution of Equation (25) yields

ϑ(ψ, φ)= ϑ0(ψ, φ) + u1(ψ, φ) + u2(ψ, φ) + · · ·

ϑ(ψ, φ)= 1 − φψ2 − 28ψ2 φα+2

Γ(α + 3)
+ ψ4 φα

Γ(α + 1)
− ψ6 φα+1

Γ(α + 2)
− 392

φ2α+2

Γ(2α + 3)
+ 36ψ2 φ2α

Γ(2α + 1)

−66ψ4 φ2α+1

Γ(2α + 2)
+ 392ψ2 Γ(α + 4)

Γ(α + 3)
φ2α+3

Γ(2α + 4)
+ 14ψ4 Γ(α + 2)

Γ(α + 1)
φ2α+1

Γ(2α + 2)
− 14ψ6 Γ(α + 3)

Γ(α + 2)
φ2α+2

Γ(2α + 3)

−28ψ6 2α + 2
Γ(2α + 3)

+ ψ8 φ2α

Γ(2α + 1)
+ ψ10 2α + 1

Γ(2α + 2)
+ · · ·

(29)

In the case of α = 1, the precise result of Equation (25) yields

ϑ(ψ, φ) = e−φψ2
. (30)

7. Numerical Findings and Analysis

This section reveals the physical interpretation of linear and nonlinear time-fractional
Emden–Fowler problems. Our aim is to present the physical behavior of these problems
with different fractional orders. In our first problem, we consider a linear time-fractional
Emden–Fowler problem with a sufficient condition.

Figure 1a displays the physical behavior of the ET-HPM solution for a fractional order
α = 1, whereas Figure 1b shows the physical behavior of the precise results including
0 ≤ ψ ≤ 1 and 0 ≤ φ ≤ 2 for Problem 1. The 3-D graphical visuals show that both graphs
are close and reveal the significance of our proposed scheme. Figure 1c demonstrates
the contour plot, which examines the correlation across three variables on a single graph
and the expression of ψ and φ that gives the ideal results of ϑ(ψ, φ). The contour lines
relate multiple combinations of the variables that generate similar parameters of ϑ(ψ, φ) at
0 ≤ ψ ≤ 1 and 0 ≤ φ ≤ 1. Figure 1d depicts the error distribution of ϑ(ψ, φ) at 0 ≤ ψ ≤ 1
and φ = 0.1 with α = 0.6 (red), α = 0.8 (blue), and α = 1 (green) and the precise result (the
dotted line). Table 1 shows the error distribution between the ET-HPM and precise results.
The ET-HPM results are obtained at different fractional orders, such as α = 0.4, 0.6, 0.8, and
1. By increasing the parameter of the fractional order, our computed results become closer
to the precise results.
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Figure 1. The geometric layout of ϑ(ψ, φ). (a) The ET-HPM solution of ϑ(ψ, φ) at α = 1. (b) The
precise solution of ϑ(ψ, φ). (c) A contour variation of ϑ(ψ, φ) at α = 1. (d) A visual variation across
ET-HPM and precise results.

Table 1. A comparison of the exact and ET-HPM results of Problem 1 in Section 6.1 at different
fractional orders.

(ψ,φ)
ET-HPM ET-HPM ET-HPM ET-HPM

Exact Results Error Analysis
α = 0.4 α = 0.6 α = 0.8 α = 1

(0.25, 0.01) 1.28334 1.14351 1.09367 1.07519 1.07519 00000

(0.50, 0.01) 1.54801 1.37933 1.31922 1.29693 1.29693 00000

(0.75, 0.01) 2.11588 1.88533 1.80316 1.77269 1.77269 00000

(1.00, 0.01) 3.27713 2.92005 2.79279 2.74560 2.7456 00000

(0.25, 0.03) 1.4286 1.22415 1.13634 1.09690 1.09690 00000

(0.50, 0.03) 1.72322 1.4766 1.37069 1.32312 1.32312 00000

(0.75, 0.03) 2.35536 2.01828 1.87351 1.80849 1.8085 0.00001

(1.00, 0.03) 3.64806 3.12597 2.90175 2.80104 2.80105 0.00001

(0.25, 0.05) 1.5301 1.28832 1.17646 1.11903 1.11905 0.00002

(0.50, 0.05) 1.84565 1.55401 1.41689 1.34980 1.34983 0.00003

(0.75, 0.05) 2.52271 2.12407 1.93666 1.84496 1.84500 0.00004

(1.00, 0.05) 3.90725 3.28983 2.99956 2.85753 2.85759 0.00004

Figure 1. The geometric layout of ϑ(ψ, φ). (a) The ET-HPM solution of ϑ(ψ, φ) at α = 1. (b) The
precise solution of ϑ(ψ, φ). (c) A contour variation of ϑ(ψ, φ) at α = 1. (d) A visual variation across
ET-HPM and precise results.

Table 1. A comparison of the exact and ET-HPM results of Problem 1 in Section 6.1 at different
fractional orders.

(ψ,φ)
ET-HPM ET-HPM ET-HPM ET-HPM Exact

Results
Error

Analysisα = 0.4 α = 0.6 α = 0.8 α = 1

(0.25, 0.01) 1.28334 1.14351 1.09367 1.07519 1.07519 00000

(0.50, 0.01) 1.54801 1.37933 1.31922 1.29693 1.29693 00000

(0.75, 0.01) 2.11588 1.88533 1.80316 1.77269 1.77269 00000

(1.00, 0.01) 3.27713 2.92005 2.79279 2.74560 2.7456 00000

(0.25, 0.03) 1.4286 1.22415 1.13634 1.09690 1.09690 00000

(0.50, 0.03) 1.72322 1.4766 1.37069 1.32312 1.32312 00000

(0.75, 0.03) 2.35536 2.01828 1.87351 1.80849 1.8085 0.00001

(1.00, 0.03) 3.64806 3.12597 2.90175 2.80104 2.80105 0.00001

(0.25, 0.05) 1.5301 1.28832 1.17646 1.11903 1.11905 0.00002

(0.50, 0.05) 1.84565 1.55401 1.41689 1.34980 1.34983 0.00003

(0.75, 0.05) 2.52271 2.12407 1.93666 1.84496 1.84500 0.00004

(1.00, 0.05) 3.90725 3.28983 2.99956 2.85753 2.85759 0.00004

Similarly, we display the physical behavior of the ET-HPM solution for a fractional
order α = 1 in Figure 2a, whereas Figure 2b shows precise results including 0 ≤ ψ ≤ 0.05
and 0 ≤ φ ≤ 0.01 for Problem 2. The 3-D graphical visuals show that both graphs are
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close and reveal the significance of our proposed scheme. Figure 2c demonstrates the
contour plot, which examines the correlation across three variables on a single graph
and the expression of ψ and φ that gives the ideal results of ϑ(ψ, φ). The contour lines
relate multiple combinations of the variables that generate similar parameters of ϑ(ψ, φ)
at 0 ≤ ψ ≤ 1 and 0 ≤ φ ≤ 1. Figure 2d depicts the error distribution of ϑ(ψ, φ) at
0 ≤ ψ ≤ 0.1 and φ = 0.01 with α = 0.6 (red), α = 0.8 (blue), and α = 1 (green) and
the precise result (the dotted line). Table 2 represents the error distribution between the
ET-HPM and precise results. The ET-HPM results are derived at various fractional orders,
such as α = 0.4, 0.6, 0.8, and 1. By extending the fractional-order value, we obtain results
that are close to the precise results.
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Contour graphics are an effective visualization tool for representing three-dimensional
data in two dimensions. The contour graphs demonstrate the result ϑ(ψ, φ) of the time-
fractional Emden–Fowler equation across a domain in the space ψ and time φ planes. These
graphical simulations are helpful in understanding the dynamic behavior of the obtained
results. The contour lines depict the constant parameters of the results ϑ(ψ, φ), providing a
visual representation of the solution’s evolution over space and time. Only three iterations
are considered for analytical computation results. It is evident that the accuracy of the
results can be significantly enhanced by incorporating additional parameters, and the errors
will come closer to zero. By extending the value of α, the nonlinearity impact is influenced,

Figure 2. The geometric layout of ϑ(ψ, φ). (a) The ET-HPM solution of ϑ(ψ, φ) at α = 1. (b) The
precise solution of ϑ(ψ, φ). (c) A contour variation of ϑ(ψ, φ) at α = 1. (d) A visual variation across
ET-HPM and precise results.

Contour graphics are an effective visualization tool for representing three-dimensional
data in two dimensions. The contour graphs demonstrate the result ϑ(ψ, φ) of the time-
fractional Emden–Fowler equation across a domain in the space ψ and time φ planes. These
graphical simulations are helpful in understanding the dynamic behavior of the obtained
results. The contour lines depict the constant parameters of the results ϑ(ψ, φ), providing a
visual representation of the solution’s evolution over space and time. Only three iterations
are considered for analytical computation results. It is evident that the accuracy of the
results can be significantly enhanced by incorporating additional parameters, and the errors
will come closer to zero. By extending the value of α, the nonlinearity impact is influenced,
even though the wave amplitude decreases. We have observed that the ET-HPM is entirely
designed for handling both linear and nonlinear time-fractional models.
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Table 2. A comparison of the exact and ET-HPM results of Problem 2 in Section 6.2 at different
fractional orders.

(ψ,φ)
ET-HPM ET-HPM ET-HPM ET-HPM Exact

Results
Error

Analysisα = 0.4 α = 0.6 α = 0.8 α = 1

(0.1, 0.01) 1.00940 1.00118 1.00005 0.99991 0.99990 0.00001

(0.2, 0.01) 1.03743 1.00415 0.99979 0.99938 0.99960 0.00022

(0.3, 0.01) 1.07548 1.00293 0.99525 0.99594 0.99910 0.00316

(0.4, 0.01) 1.08962 0.97375 0.97084 0.97988 0.98840 0.00852

(0.1, 0.03) 1.01852 1.00388 1.00052 0.99984 0.99970 0.00014

(0.2, 0.03) 1.08700 1.01700 1.00200 0.99917 0.99880 0.00037

(0.3, 0.03) 1.19268 1.03293 1.00050 0.99557 0.99730 0.00173

(0.4, 0.03) 1.30197 1.02824 0.98064 0.97945 0.99520 0.01575

(0.1, 0.05) 1.01562 1.00498 1.00097 0.99984 0.99950 0.00034

(0.2, 0.05) 1.11876 1.02982 1.00535 0.99945 0.99800 0.00145

(0.3, 0.05) 1.28216 1.06541 1.00882 0.99639 0.99550 0.00089

(0.4, 0.05) 1.47214 1.08852 0.99616 0.98119 0.99200 0.01081

8. Conclusions

In this paper, we successfully obtained the analytical solutions of linear and nonlinear
time-fractional Emden–Fowler models via the ET-HPM strategy. Two numerical problems
were adequately examined traditionally using this proposed approach. The fractional
orders are introduced in Caputo form. Our proposed scheme shows excellence in obtaining
iterative results that are very close to the precise solution. By simplifying the fractional
problem in the transform domain, the ET-HPM can provide more valuable convergence as-
pects of the solution series. The suggested approach generates convergence series systems
with simple identifiable variables without the need for linearization, interference, or re-
stricting constraints. The analytical and visualized findings obtained by the recommended
approach are considerably more appealing and effective in determining the solutions of
time-fractional models. This approach has significant promise for solving fractional dif-
ferential problems. We will consider expanding this scheme for real-life problems with
larger dimensions to other fractal and fractional phenomena encountered in engineering
and science trends in future work.
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