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Abstract: This paper proposes a novel nonlinear speed control method for permanent magnet
synchronous motors that enhances their robustness and tracking performance. This technique
integrates a sliding-mode disturbance observer and variable-gain fractional-order super-twisting
sliding-mode control within a vector-control framework. The proposed control scheme employs
a sliding-mode control method to mitigate chattering and improve dynamics by implementing
fractional-order theory with a variable-gain super-twisting sliding manifold design while regulating
the speed of the considered motor system. The aforementioned observer is suggested to enhance
the control accuracy by estimating and compensating for the lumped disturbances. The proposed
methodology demonstrates its superiority over other control schemes such as traditional sliding-
mode control, super-twisting sliding-mode control, and the proposed technique. MATLAB/Simulink
simulations and real-time implementation validate its performance, showing its potential as a reliable
and efficient control approach for the system under study in practical applications.

Keywords: variable-gain fractional-order super-twisting sliding mode; chattering; fractional-order
sliding manifold; super-twisting sliding mode; sliding-mode disturbance observer; permanent
magnet synchronous motor

1. Introduction

Permanent magnet synchronous motors (PMSMs) have attracted substantial interest
across various industrial applications, ranging from low- to mid-power requirements to
high-power drives, including wind power systems, electric vehicles, robotics, aerospace,
and CNC machine tools. Their popularity compared to induction-type and brush-type
motors stems from their inherent advantages such as increased air-gap flux density, high
power density, minimized rotor inertia, compact designs, and improved efficiency [1,2].
However, the operational dynamics of practical PMSM systems represent a classic example
of a multivariable, strongly coupled nonlinear system. The efficacy of control methodologies
for such systems is substantially influenced by a spectrum of uncertainties encompassing
unmodeled dynamics, variations in model parameters, external load disturbances, and
frictional effects [3]. Consequently, the development of robust control algorithms holds
significant promise for widespread applications.

The inherent difficulty in achieving high-performance control of PMSM systems using
conventional techniques, such as Jacobian linearization and proportional–integral–differential
(PID) control, is due to the intricate nature of the system dynamics and the presence of
multiple uncertainties [4]. Therefore, numerous researchers have devoted effort to devising
control algorithms to mitigate the deterministic nonlinearities inherent in PMSM models.
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Feedback linearization techniques have gained significant attention as effective approaches
for addressing the challenges posed by disturbances and uncertainties [5]. Meanwhile, the
advent of digital control processors has further promoted the adoption of model predictive
control (MPC) in motor control owing to its ability to perform online optimization and
flexibility in incorporating constraints [6,7]. Although feedback linearization and MPC ef-
fectively manage the deterministic nonlinearities of PMSM models, eliminating the adverse
effects resulting from uncertainties remains a challenging task [4]. Numerous nonlinear
control schemes have been proposed and implemented to enhance the performance of
nonlinear control systems under various operating conditions. These methods include
active disturbance rejection control [8], robust control [9], backstepping control [10,11],
sliding-mode control (SMC) [12,13], intelligent control [14], and adaptive control [15].

SMC is a widely recognized nonlinear control method that is renowned for its robust-
ness against fluctuations in internal parameters and external disturbances. This technique
displays impressive tracking performance, even when uncertainties exist in the system
parameters and external interference. Its ease of implementation, minimal overshoot, ro-
bustness, effective disturbance rejection, and quick response make it a preferred choice for
various motor applications including PMSMs [16]. Previous studies have demonstrated the
effectiveness of SMC across multiple motor systems. For instance, a fuzzy SMC approach
has been successfully applied to a six-phase induction machine [17], whereas an improved
sliding-mode observer (SMO) has been proposed for sensorless control of PMSMs and
IMs [18,19]. Additionally, the use of neuro-fuzzy SMC techniques in induction machines
has been validated [20].

However, a prominent drawback of SMC methods is the occurrence of chattering,
which arises owing to the discontinuous nature of the control law and frequent switching
actions near the sliding surface [21]. This limitation poses a challenge for the practical
implementation of SMC in real-world systems. Various strategies have been developed
for mitigating or alleviating the effects of chattering. These approaches include high-
order sliding-mode control (HOSMC) techniques [22], complementary SMC [23], different
sign function approximations (although these approaches can alleviate the chattering
phenomenon, they are at the expense of anti-disturbance performance) [24], and utilizing
the reaching law algorithm [25]. The methods outlined in Figure 1 effectively demonstrate
their capacity to reduce chattering and increase the usefulness of SMC in real-world
applications. Another strategy employed to mitigate chattering involves reducing switching
gain. However, this method has two notable drawbacks: it compromises the controller’s
reaching time; and if the switching gain is set below the upper bound of the disturbances,
the complete rejection of disturbances becomes unattainable [26].

To mitigate the adverse effects of disturbances and enhance the robustness of control
systems, a promising approach involves leveraging disturbance observer technology within
traditional SMC frameworks [27]. This method actively observes and compensates for
integrated disturbances without compromising the closed-loop system performance, sig-
nificantly improving robustness. Furthermore, HOSMC techniques have been developed
as extensions of first-order SMC to reduce chattering effects. These methodologies utilize
higher-order derivatives of a sliding manifold to address challenges such as high-frequency
chattering and improve robustness, which are particularly beneficial for electric drives [28].

Recent studies have further explored various observer-based methods to enhance the
control system performance. For instance, advanced disturbance observer designs, such
as extended state observer (ESO), have been integrated with SMC to improve disturbance
estimation and rejection capabilities in PMSM control systems [29]. These methods have
significantly improved the handling of uncertainties and external disturbances, enhancing
the overall robustness and stability of PMSM drives [30].

A notable advancement in the HOSMC domain is the second-order sliding-mode con-
trol algorithm, which mitigates chattering while maintaining the core benefits of classical
sliding-mode approaches, including robustness, simplicity, and finite-time convergence [31].
Among second-order SMC algorithms, the super-twisting algorithm (STA) is highly ef-
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fective [32]. However, conventional STAs exhibit homogeneous characteristics and often
overlook the uncertainties and disturbances arising from state variable fluctuations [33]. To
address this limitation, Lyapunov-based variable-gain super-twisting (VGST) techniques
have been introduced as nonhomogeneous extensions of STA, effectively managing un-
certain disturbances bounded by known functions [34]. VGSTSMC, an evolution of STA,
incorporates variable parameters to compensate for uncertainties and disturbances, thereby
enhancing system robustness [34]. Despite these advantages, the primary challenge re-
mains in determining the boundary functions for uncertainties and disturbances within
VGSTSMC, which complicates the design of controllers for practical PMSM applications.
Addressing this issue and developing efficient methods to ascertain the boundary func-
tions are crucial research areas for fully exploiting VGSTSMC’s potential of VGSTSMC in
practical electric drive systems, particularly for PMSM applications.
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Figure 1. Progress made in sliding-mode control.

However, the primary constraint of these types of STAs is their slow response, which
is attributed to the use of linear sliding manifolds. To overcome this problem, researchers
have proposed advanced sliding manifolds such as the integral sliding manifold, leading
to the development of an integral super-twisting algorithm [35]. Although this control
algorithm promises a fast response on a sliding manifold, it often exhibits significant
overshoot. To address this issue, fractional-order sliding surfaces (FOSSs) have emerged as
an effective control scheme [36]. By expanding the integer-order sliding manifold, FOSSs
provide a fast response and minimal overshoot in dynamics [37]. Studies demonstrated that
the use of FOSSs can mitigate chattering [38]. This technique has been incorporated into
many mechatronic systems because of its numerous advantages, resulting in exceptional
performance [39]. Based on this concept, a new constant-gain fractional-order super-
twisting scheme has been developed [40]. However, relying solely on constant gains
implies that the controller cannot adequately counteract the uncertain disturbances.

The primary goal of this study is to design a sliding-mode control strategy using a
variable-gain fractional-order super-twisting sliding-mode control (VGFOSTSMC) method
for PMSM speed-regulation systems that meet specific requirements. The control law must
satisfy the following conditions:

• Responsively track the reference signal while minimizing steady-state error, over-
shoots, and settling times.

• Demonstrate robust performance in the presence of uncertain disturbances.
• Possess a relatively straightforward design process.
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In pursuit of these objectives, this research introduces the VGFOSTSMC. This novel
control mechanism employs fractional-order (FO) calculus to establish its sliding manifold,
ensuring the swift attainment of state equilibrium and minimal overshoot. Moreover, the
controller integrates variable gains to mitigate the chattering phenomenon. To enhance
the robustness of the control system against disturbances, an observer-based approach is
introduced in the feedforward significance of this study as follows:

1. A unique FOSS is formulated and disseminated. Including a specific term accelerates
convergence to the sliding manifold, enabling the controller to demonstrate improved
performance without additional tunable parameters.

2. Introducing a new variable-gain super-twisting sliding-mode control law enables
the system state to swiftly approach the sliding manifold, regardless of the initial
position. Additionally, the proposed reaching law effectively mitigates high-frequency
chattering, which is an undesirable phenomenon in SMC.

3. Proposing a sliding-mode disturbance observer (SMDO) to enhance the disturbance
rejection capabilities of the VGFOSTSMC method. The estimated system disturbance
is used for the feedforward of the speed controller.

4. Developing a new sliding-mode speed controller rooted in the advancements above;
this controller integrates an adaptive disturbance estimator/observer to offset the
outputs of the enhanced sliding-mode-based speed controller. The method ensures
finite-time convergence and exhibits higher precision, stronger robustness, and re-
duced chattering compared to conventional SMC.

5. The study showcases the effectiveness of the proposed VGFOSTSMC method in
regulating PMSM speed through simulations and experimental results.

The remainder of this paper is organized as follows. In Section 3, the mathematical
model of a PMSM is discussed in detail. Section 4 focuses on the design of the VGFOSTSMC
and SMDO and its stability analysis. In Section 5, the simulations and experimental
results of the proposed VGFOSTSMC and SMDO are presented and analyzed. The final
section provides concluding remarks and summarizes the key findings and contributions
of this study.

2. Preliminaries

The main objective of this study is to achieve fast and precise speed tracking for
a PMSM drive system within finite time. This section aims to thoroughly comprehend
fractional-order calculus and the concept of finite-time convergence, which are necessary
to accomplish this control objective.

Definition 1 (Fractional Integral [41]). The fractional integral of function f (x) is defined as follows:

t0 Dα
t f (t) =t0 Iα

t f (t) =
1

Γ(α)

∫ t

t0

(t − τ)α−1 f (τ)dτ (1)

Definition 2 (Riemann–Liouville Fractional Derivative [41]). We applied the Riemann–Liouville
fractional derivative operator to the integrable function.

RL
t0

Dα
t f (t) =

dα

dtα
f (t) =

1
Γ(q − α)

dq

dtq

∫ t

t0

(t − τ)q−1−α f (τ)dτ (2)

where the parameter α must satisfy the condition q − 1 < α < q, where Dα and Iα denote the
fractional derivative and integral, respectively. Moreover, Γ(.) represents Euler’s gamma function,
which is defined as

Γ(α) =
∫ ∞

0
ettα−1dt (3)
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Lemma 1. The nth-order derivative ( dn

dtn ) of the fractional derivative operator t0 Dα
t f (t) can be

mathematically represented as

dn

dtn (t0 Dα
t f (t)) =t0 Dα

t
(dn f (t)

dtn

)
=t0 Dα+n

t f (t) (4)

Lemma 2. For the Lyapunov function W(t) with initial value W(t0), finite-time stability can be
computed as

Ẇ(t) ≤ nWp(t), ∀t ≥ t0, W(t0) ≥ 0 (5)

where n > 0 and 0 < p < 1. Therefore, the finite-time t f can be formulated as

t f ≤
1

n(1 − p)
W1−p(t0) (6)

3. Mathematical Model of PMSM

Several idealized assumptions must be made to develop a mathematical model
for PMSM.

1. The hysteresis and eddy current losses generated by the iron core of the PMSM are
not considered.

2. The three-phase windings of the PMSM are assumed to be perfectly symmetrical.
3. The conductivity of the PMSM is assumed to be zero, and the rotor lacks damping

windings.
4. The electromotive force (EMF) induced in the stator is considered a pure sine wave

during PMSM operation.

To investigate a PMSM with surface-mounted targets, we utilized the coordinate
transformation method to establish a mathematical model in a stationary reference frame.
The voltage equation is explained in detail in [3].

ud =rsid + Ld i̇d − PnΩmLqiq

uq =rsiq + Lq i̇q + PnΩm(ϕm + Ldid)
(7)

where rs denotes the stator resistance, Ld and Lq denote the stator inductances, id and iq
denote the stator currents in the d-q frame, Ωm indicates the rotor angular velocity to be
controlled, Pn denotes the number of pole pairs, ϕm represents the permanent-magnet rotor
flux linkage, and ud and uq represent the stator voltages.

The dynamic equation for the PMSM is formulated as follows:

JΩ̇m = Te − TL − BΩm (8)

where TL represents the load torque, B indicates the viscous friction coefficient, J stands for
rotational inertia, and Te denotes the electromagnet torque, which can be written as

Te =
1
2

Pn
(
iqϕm − (Lq − Ld)iqid

)
(9)

In a scenario where the manifold-mounted PMSM is designed for the drive system
with Lq = Ld, the electromagnetic torque can be rewritten as

Te =
1
2

Pnϕmiq (10)

Remark 1. This study proposes the implementation of a VGFOSTSMC controller to achieve
improved tracking results for PMSMs. This study aimed to enhance the speed control performance
of a PMSM drive system, as illustrated in Figure 2, by employing speed-loop controllers. This
system utilizes vector control with two current loops and a speed loop, implementing a control
strategy of id = 0 and governing the two current loops with proportional–integral (PI) controllers
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to ensure accurate tracking and error elimination. Lumped disturbances can negatively impact the
tracking performance and result in incomplete system state information. To address this issue, the
study incorporated an SMDO to estimate unknown state variables, facilitating the construction
of the VGSTSMC controller and contributing to the enhanced speed control performance of the
PMSM system.

VGFOSTSMC

PI

Park Inverse 

Transformation
PWM

3 Phase 

Inverter

Clark 

Transformation

Park 

Transformation

Encoder
Calculation of q 

and wm

SMDO

PI

Figure 2. Representation of the PMSM system architecture.

4. PMSM Speed Controller Design

The design of a robust speed controller is essential for precise control of motor systems,
particularly in applications where rapid and accurate speed regulation is crucial. In this
section, we focus on developing a comprehensive speed controller that can effectively
handle uncertainties, disturbances, and variations in motor parameters. By leveraging
advanced control techniques, such as VGSTSMC and fractional-order sliding manifolds, we
aim to precisely track the desired trajectories while ensuring robust performance despite
external disturbances. The proposed controller architecture integrates variable gains and
adaptive compensation mechanisms to enhance the robustness and adaptability to changing
operating conditions. Through rigorous theoretical analysis and simulation studies, we
demonstrated the effectiveness and reliability of the proposed speed controller in real-world
motor-control applications.

4.1. Variable-Gain Super-Twisting SMC Design

The STA is tailored for systems with a relative degree of 1 to mitigate chattering
effects. This algorithm results in trajectories on two sliding planes that exhibit twisting
behavior around the origin. The overall control effort remains continuous when the two
continuous controls are combined. The first control segment is a continuous function
of the sliding variable, and the subsequent part illustrates the continuous integral of its
discontinuous time derivative. Super-twisting control guarantees the preservation of all
the fundamental properties of the first-order SMC, even in the presence of smooth-matched
bounded disturbances. The super-twisting controller can be mathematically represented
as follows:

ρ = −M1|η|0.5 sign(η)−
∫ t

0
M2 sign(η) (11)

Tenoch Gonzalez et al. [34] and Davila et al. [42] introduced a variable super-twisting
control action to address chattering in the first-order sliding mode. This variant adapts the
gain based on the actual bound of the disturbance, as proposed by Utkin et al. [43] and
Utkin et al. [44]. By selecting suitable constants M1 and M2, as indicated by Levant [45],
the system can attain precise finite-time convergence to the second sliding set, denoted
by η(t) = ˙η(t) = 0 for all t ≥ T. The formulated variable super-twisting control action is
as follows:

ρsw = −M1(η, t)χ1(η)−
∫ t

0
M2(η, t)χ2(η) (12)
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with
χ1(η) = |η|0.5 sign(η) + M3η, M3 > 0

χ2(η) = χ
′
1(η).χ1(η) =

1
2

sign(η) +
2
3

M3|η|0.5 sign(η) + M2
3η

where M1(η, t) and M2(η, t) are switching gains.

4.2. Fractional-Order Variable-Gain Super-Twisting SMC Design

In this section, the fractional-order VGSTSMC is designed to permit ωm, the state
variable, to track Ωre f , the target trajectory, and the tracking error ϵΩ to approach zero.
This tracking error can be defined as ϵΩ = Ωre f − Ωm and its derivative is ϵ̇Ω = Ω̇re f − Ω̇m.
To accomplish this control objective, we define a novel fractional-order sliding manifold,
as follows:

η = ϵΩ + L1Dα−1[sig(ϵΩ)β] + L2sig(ϵΩ)
1
β α, β ∈ (0, 1) (13)

where sig(·) = sign(·)| · |, L1 and L2 symbolize positive constants, and Dα−1 refers to the
fractional-order calculus outlined in preliminaries.

Taking the derivative of the sliding manifold, we obtain

η̇ = ϵ̇Ω +
dL1Dα−1[sig(ϵΩ)β]

dt
+

L2

β
ϵ

1−β
β

Ω ϵ̇Ω (14)

Remark 2. To address the potential generation of complex numbers when raising the signum func-
tion to non-integer powers in our control method, several mitigation strategies can be employed, such
as limiting the range of fractional orders, utilizing smooth approximations, and implementing nu-
merical techniques that are robust to complex calculations. Through rigorous validation and testing,
we ensured the stability and reliability of the proposed control algorithm in practical applications.

Furthermore, as per Equations (9) and (11), the motor dynamic equation can be
formulated as

Ω̇m =
Pnϕmiq

2J
− 1

J
TL −

B
J

Ωm (15)

Considering uncertain disturbances, we can express Equation (14) as follows:

Ω̇m = A1niq − A3nΩm + d(t) (16)

where A1 = A1n + ∆A1 = Pnϕm
2J , A2 = A2n + ∆A2 = 1

J , and A3 = C3n + ∆A3 = B
J . Here,

A1n, A2n, and A3n represent the nominal values of the parameters, while ∆A1, ∆A2, and
∆A3 represent the parameter variations.

d(t) = ∆A1iq − A2TL − ∆A3Ωm (17)

The proposed control method satisfies the following assumptions.

Assumption 1. The motor parameter uncertainties and external load disturbances are assumed to
be bounded by a positive constant ξ; that is, |d(t)| ≤ ξ.

To derive the equivalent control law ρeq, Equation (16) is utilized, whereas the discon-
tinuous control component ρdis is designed according to VGSTSMC theory. The complete
control law ρoverall is formulated as follows:

ρoverall = ρeq + ρdis (18)

When η̇ = 0 is established, the equivalent control input can be derived as follows:
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ρeq =
1

A1n

(
A3nΩm + d(t)− Ω̇re f − L1

dDα−1[sig(ϵω)β]

dt
− L2

β
ϵ

1−β
β

ω ϵ̇ω

)
(19)

Remark 3. For PMSM applications, a newly designed sliding manifold (Equation (13)) ensures
rapid and seamless response, facilitating precise control. In contrast, a freshly formulated switching
controller (Equation (12)) exhibits a unique architecture that promotes quick and stable conver-
gence. The variable-gain structure offers several advantages over traditional methods, particularly
in managing significant reference accelerations, as illustrated by Equation (19), where ρeq inte-
grates both feedback and feedforward terms. Engineers commonly use feedforward to enhance
performance [46,47]. Incorporating a feedforward method ensures the completion of the SMC
and improves the overall performance of the PMSM. The effectiveness of the proposed approach is
thoroughly validated through simulations and experiments, as described in Section 4.

4.3. Stability Analysis of VGFOSTSMC

By substituting Equation (18) into a dynamic model of the PMSM, as shown in
Equation (16), the dynamics of η can be obtained as follows.

η̇ = A1n(
1

A1n
(A3nΩm − Ω̇re f + d(t)− L1

dDα−1

dt
(sig(ϵΩ)β)− L2

β
ϵ

1−β
β

Ω ϵ̇Ω

− M1(η, t)χ1(η)−
∫ t

0
M2(η, t)χ2(η))− A3nΩm + d(t)

(20)

Equation (20) can be further rewritten as

η̇ = −M1(η, t)χ1(η)−
∫ t

0
M2(η, t)χ1(η) + h1(η) + h2(η) (21)

with
h1(η) = ∆A1M1(η, t)χ(η)− ∆A1Ω̇re f − ∆A1L1Dα[sig(ϵ)β] + d(t) (22)

and

h2(η) = A3nΩm − ∆A1n

∫ t

0
M1(η, t)χ1(η) (23)

According to Equations (22) and (23), and Assumption 1, it can be concluded that
|h1(η)| and | dh2(η)

dt | are both bounded with

|h1(η)| ≤ B1|χ1(η)|+ B2 (24)

|dh2(η)

dt
| ≤ B3|η|+ B4|χ2(η)| (25)

where B1, B2, B3, and B4 are positive arbitrary constants that satisfy B1 ≥ |∆A1n||M1(η, t)|,
B2 ≥ |∆A1n||Ω̇re f |+ |L1

dDα−1[sig(ϵΩ)]β

dt |+ |d(t)|, B3 ≥ |A3nΩm|, and B4 ≥ |∆A1n||M2(η, t)|.

Theorem 1. The performance of the system described by Equation (16) critically depends on the
appropriate selection of the controller variable gains M1(η, t) and M2(η, t). The proper selection
of these gains ensures the desired system performance and finite-time convergence of the sliding
variable η to the specified region. Specifically, the gains are defined as follows.

M1(η, t) =
q4

q3
2 − q1q2q4

(
(−q2ρ1 + q4ρ2)

2

4
+

q2
2q1

q4
+ q2

2ρ2 − q1q2ρ1

)
, (26)

M2(η, t) =
1
q4
(q1 − q2M1(η, t)), (27)

with the constraints
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q1q4 − q2
2 > 0, q1 > 0, q2 < 0, (28)

where
ρ1 = B1 +

B2

χ1(γ)
, (29)

ρ2 = B3|η|+ B4. (30)

Under these conditions, the sliding variable η will converge to the region

Γ = {η | η ≤ γ}, γ > 0, (31)

within finite time, ensuring that the system achieves the desired performance outcomes.

Proof. For simplification, we have rewritten this as follows (21):

η̇ = −M1(η, t)χ1(η) + h1(η) + y (32)

ẏ = −M2(η, t)χ1(η) +
dh2(η)

dt
(33)

Consider the following Lyapunov function:

W = ΞTQΞ

=
[
χ1(η) y

][q1 q2
q2 q4

][
χ1(η)

y

] (34)

where Ξ is defined as Ξ =
[
χ1(η) y

]T and Q is defined as Q =

[
q1 q2
q3 q4

]
. It can be

observed from Equation (28) that Q ≥ 0, which fulfills the condition for selection as a
Lyapunov function candidate.

Taking the derivative of the Lyapunov function, one obtains

Ẇ =

(
dΞ
dt

)T
QΞ + ΞTQ

dΞ
dt

(35)

In Equation (35), dΞ
dt can be computed as

dΞ
dt

=
[
χ
′
1(η)η̇ ẏ

]T

= χ
′
1(η)

[
n1(η) 1
n2(η) 0

][
χ1(η)

y

] (36)

where n1(η) and n2(η) are computed as

n1(η) = −M1(η, t) +
h1(η)

χ1(η)
(37)

n2(η) = −M2(η, t) +
dh2(η)

dt
1

χ2(η)
(38)

By substituting Equation (36) into Equation (35), one obtains

Ẇ = χ
′
1(η)Ξ

T
[

2q1n1(η) + 2q2n2(η) ∗
q1 + q2n1(η) + q4n2(η) 2q2

]
Ξ

∆
= χ

′
1(η)Ξ

T
[

A B
B C

]
Ξ

(39)
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With respect to the definitions of n1(η) and n2(η), we have

A = −2q1M1(η, t)− 2q2M2(η, t) + 2q1
h1(η)

χ1(η)
+ 2q2

dh2(η)

dt
1

χ1(η)
(40)

By substituting Equations (26) and (27) into Equation (40), one obtains

A =

(
2q2

2
q4

− 2q1

)
M1(η, t)− 2q1q2

q4
+ 2q1

h1(η)

χ1(η)
+ 2q2

dh2(η)

dt
1

χ1(η)

=
(−q2ρ1 + q4ρ2)

2

2q2
+ 2q1

(
h1(η)

χ1(η)
− ρ1

)
+ 2q2

(
ρ2 +

dh2(η)

dt
1

χ2(η)

) (41)

When sliding variable η is outside Γ, defined as |η| > γ > 0, we can conclude that
χ1(γ) is less than |χ1(η)|. Based on Equations (29) and (22), we can conclude that

ρ1 = B1 +
B2

χ1(γ)
> B1 +

B2

|χ1(η)|
≥ |h1(η)|

|χ1(η)|
(42)

For ρ2, one obtains

ρ2 = B3
η

χ2(η)
+ B4 ≥ 1

|χ2(η)|

∣∣∣∣dh2(η)

dt

∣∣∣∣ (43)

Based on these conditions, we can conclude that q1 > 0 and q2 < 0. By substituting
Equations (42) and (43) into (40), we ultimately obtain A < 0.

On the other hand, one has∣∣∣∣A B
B C

∣∣∣∣ = 2q2(2q1n1(η)) + 4q2
2n2(η)−

(
q2

h1(η)

χ1(η)
+ q4

dh2(η)

dt
1

χ1(η)

)2

= −4q1q2M1(η, t)− 4q2
2M2(η, t) + 4q1q2

h1(η)

χ1(η)
+ 4q2

2
dh2(η)

dt
1

χ(η)

−
(

q2
h1(η)

χ1(η)
+ q4

dh2(η)

dt
1

χ2(η)

)2

(44)

By substituting Equations (26) and (27) into Equation (44), one obtains∣∣∣∣A B
B C

∣∣∣∣ = 4q2
2

(
dh2(η)

dt
1

χ2(η)
+ ρ2

)
−
(

a2
h1(η)

χ1(η)
+ q4

dh2(η)

dt
1

χ2(η)

)2

+ 4q1q2

(
h1(η)

χ1(η)
− ρ1

)
+ (−q2ρ1 + q4ρ2)

2 > 0

As it is evident from the fact that χ1(η) > 0 holds true when |η| > γ, it can be
inferred that

χ
′
1ΞT

[
A B
B C

]
Ξ < 0 (45)

Hence, with the appropriate selection of the variable gains M1(η, t) and M2(η, t), the
sliding variable η converges to the region Γ within a finite time. This ensures that the
system meets the desired performance criteria as stipulated. This serves as evidence for
Theorem 1, thereby concluding the proof.

A block diagram of the VGFOSTSMC is presented in Figure 3.
In practical engineering, the disturbance term d(t) described by Equation (17) signifi-

cantly impacts the system’s control performance. However, this disturbance often exceeds
the measurement range of the available sensors. Consequently, designing an observer that
can accurately estimate and observe d(t) in real time is crucial.



Fractal Fract. 2024, 8, 368 11 of 30

ò

Figure 3. Block diagram of VGFOSTSMC.

Remark 4. Integrating an observer in practical applications allows for the real-time estimation of
the disturbance value, serving as a valuable feedforward active compensation. This compensation is
then used to modify the output of the improved sliding-mode speed controller, effectively mitigating
the influence of disturbances and leading to a superior control performance. By incorporating this
observed disturbance compensation, the control scheme achieves enhanced disturbance rejection and
overall system stability, thereby improving its robustness and reliability in real-world scenarios.
Integrating advanced SMC techniques with observer-based disturbance estimation yields a more
efficient control scheme, capable of addressing uncertain disturbances, thereby ensuring a smoother
and more precise speed regulation of the PMSM system.

4.4. Sliding-Mode Disturbance Observer Design

In developing an SMC scheme, it is vital to consider the existence of a disturbance
d(t), which typically stems from load disturbances and is often presumed to be constant.
However, obtaining a constant value for disturbance with precision can be difficult in
practical applications. SMDO is introduced to estimate the disturbance from the system
output and address this issue.

By employing Equation (16), the PMSM speed system can be represented as follows:

Ω̇m = A1niq − A3nΩ̂m + d(t)

ḋ(t) = 0
(46)

Therefore, the SMDO model can be designed according to Equation (46).

˙̂Ωm = A1niq − A3nΩm + d̂(t) + ρsmo

˙̂d(t) = −gρsmo

(47)

where g > 0 denotes the observer gain, ρsmo denotes the design of the SMC law, d̂(t)
denotes the estimated value of d(t), and Ω̂m denotes the estimated value of Ωm.

Combining Equations (46) and (47), one can obtain

ϵ̇s = ϵd − A3nϵs − ρsmo,

ϵ̇d = −gρsmo
(48)

The integral sliding manifold is formulated as follows:

ηsmdo = ϵs + c1

∫ t

0
ϵsdt (49)

where c1 is a positive constant. The following reaching law is selected:

η̇s = −a1sign(ηs)− a2ηs (50)
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where a1 and a2 denote positive real values. Deriving the derivative of Equation (49), and
then, merging it with Equation (50), results in

ρsmo = ϵd A3nϵs + c1ϵs + a1sign(ηs) + a2ηs (51)

Without considering the uncertainty term ϵd, we obtain.

ρsmo = A3nϵs + c1ϵs + a1sign(ηs) + a2ηs (52)

The following Lyapunov function candidate is presented:

V =
1
2

η2
s (53)

whose time derivative can be written as

V̇ = ηs(cϵs − A3nϵs − ϵd − ρsmo)

= ηs(−a1 sign(ηs)− a2ηs − ϵd)

≤ −a1|ηs| − a2η2
s + |ηs||ϵd|

(54)

This condition ensures that dotV < 0, when a1 > |ϵd| and a2 > 0; this condition ensures
that V̇ < 0. Consequently, the observer is stable when a1 and a2 satisfy the specified require-
ments.

A block diagram of SMDO is shown in Figure 4.

ò

ò

Figure 4. Block diagram of SMDO.

Figure 5 shows a computational flowchart for implementing the proposed control strategy.

Start

1. Initialize system (PMSM) parameters

2. Set simulation time, tsim

t £ tsim

Seelction of reference speed profile

Fine tuned control law and observer 

gain

Select control law VGFOSTSMC

Perform closed-loop simulation for 

tracking the reference speed

End

Yes

Start

SMDO goals:

1. Highly stable

2. Fast response

3. Less oscillations

4. Minimum chattering

5. Estimate disturbance

Tuning SMDO control law

Goals:

1. Less oscillations

2.. Minimum chattering

3. Accurate tracking

Goals met=?
NoYes

No

Figure 5. Computational flowchart of the proposed control technique.
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5. Results and Discussion

In this section, simulations and experiments are performed to verify the effectiveness of the
proposed VGFOSTSMC method. The specifications of the PMSM used in both the simulation
and experimental phases are listed in Table 1. Four different controllers are discussed and
compared in various aspects to ensure convincing results for a better understanding.

1. PI Controller.
2. CSMC: ρCSMC = 1

A1n

(
Ω̇re f − A3nΩ − d̂(t) + k1 sign(η)

)
3. Super-twisting sliding-mode control (STSMC) [27]: ρSTSMC = 1

A1n

(
c1Ω̇re f − c1 A3nΩ−

c1d̂(t) + c1ϵ̈Ω − k1|s|
1
2 sign(η)− k2

∫
sign(s)

)
4. Proposed VGFOSTSMC: 1

A1n

(
A3nΩm + d(t)− Ω̇re f − L1

dDα−1[sig(ϵω)β ]
dt − L2

β ϵ
1−β

β
ω ϵ̇ω −

M1(η, t)χ1(η)−
∫ t

0 M2(η, t)χ2(η)
)
, χ1(η) = |η|0.5sign(η) + M3η,

χ2(η) = χ
′
1(η).χ1(η) =

1
2 sign(η) + 2

3 M3|η|0.5sign(η) + M2
3η, M3 > 0

Table 1. Quantitative list of parameters of PMSM.

Parameter Symbol Value

Flux Φm 0.181 Wb
System inertia J 0.00079 kgm2

Number of pole pairs pn 3
Viscous friction coefficient B 0.00001 Nms/rad

dq-axis inductances Ld, Lq 11.58 mH
Stator resistance Rs 3.45 Ω

Rated speed ωm 3001 rpm
Rated power P 1.21 kW

5.1. Simulation Verification

The PMSM is controlled using a vector control scheme with a speed loop and two
current loops. Vector control strategy idre f = 0 is employed to achieve decoupling. The
currents along the d- and q-axes are stabilized using two PI controllers in the current loops.
In this study, a speed controller and disturbance observer are introduced to implement
the speed loop. Figure 1 illustrates the control structure of the PMSM speed-regulation
system based on the VGFOSTSMC. The proposed control method is compared with existing
SMC techniques under different scenarios to assess its performance. Subsequently, the
effectiveness of the proposed approach is evaluated under a range of conditions.

We carefully tuned the parameters for an optimal control performance to ensure a fair
comparison. The parameters for the CSMC are configured as k1 = 800. For STSMC, the
parameters are set to c1 = 200, k1 = 500, and k2 = 800. The VGFOSTSMC parameters are
defined as L1 = 100, L2 = 500, α = 0.5, β = 0.5, q1 = 0.5, q2 = 0.1, and q4 = 0.6. For the
SMOD, the parameters are g = 500, c1 = 700, a1 = 700, and a2 = 1000. In addition, a PI
regulator with consistent parameters is applied in the current loop, where the proportional
gain kp is set to 10 and the integral gain ki is set to 5.

5.1.1. Comparative Performance Analysis of the Proposed Controller with Alternative
Control Techniques

To assess the efficacy of the VGFOSTSMC method, we conducted four tests encompass-
ing the diverse operational parameters of the PMSM. A comparative examination employed
three distinct control methodologies: PI controller, classical sliding-mode controller (CSMC),
and standard STSMC. These analyses aimed to validate the robustness of the proposed
approach. The simulations are executed within the MATLAB R2023a framework.
Case 1:

The initial test case involved starting the motor at a constant no-load speed of
500 r/min. Figures 6–8 illustrate the comparison of the simulation results for speed
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tracking, error deviation, and control input of the PMSM under standard conditions. This
validation process aims to prove the enhanced robustness of the proposed VGFOSTSMC
strategy. The analysis in Figure 6 reveals that VGFOSTSMC exhibits a minimal overshoot of
0.0013, outperforming STSMC (0.0080), CSMC (0.6366), and PI control (0.0693). Regarding
the response speed, the VGFOSTSMC achieved a settling time of 0.0034, which is notably
faster than those of the STSMC (0.0038), CSMC (0.0062), and PI control (0.0094). These
findings underscore the ability of VGFOSTSMC to quickly reach a steady state and exhibit
reduced oscillation during the initial motor startup, demonstrating superior performance
compared to other methodologies. Examining Figure 7 reveals that the VGFOSTSMC con-
troller outperforms the STSMC, CSMC, and PI controls in terms of accuracy, demonstrating
its resilience to initial disturbances and capacity for finite-time convergence. The associated
current variation, which is indicative of control action adjustments, is shown in Figure 8.
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Figure 6. Comparative analysis of speed-tracking performance of VGFOSTSMC alongside other SMC
and PI controllers under nominal conditions.
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Figure 7. Comparative analysis of speed-tracking mismatch of VGFOSTSMC alongside other SMC
and PI controllers under nominal conditions.
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Figure 8. Comparative analysis of control action of VGFOSTSMC alongside other SMC and PI
controllers under nominal conditions.

Case 2:
A comparative study focused on the dynamic performance of various control strate-

gies to address the frequent speed changes encountered during PMSM operation. In the
second scenario, the motor is initiated under no-load conditions and is operated at 500 rpm.
At 1 s, a sudden reference speed transition to 700 rpm is introduced, followed by a return
to 500 rpm. This specific case aims to validate the efficacy of the proposed VGFOSTSMC in
achieving a superior dynamic performance. The simulation results depicted in Figures 9–11
highlight the performance of the VGFOSTSMC in comparison with conventional control
paradigms, such as PI control, CSMC, and STSMC. Figure 9 illustrates that VGFOSTSMC
exhibits a minimal overshoot of 0.82 r/min, notably smaller than PI (1.29 rpm), CSMC
(2.70 rpm), and STSMC (0.97 rpm), affirming its superior capability in minimizing over-
shoot. Furthermore, the VGFOSTSMC demonstrated enhanced responsiveness, achieving
a settling time of 0.0075 s, outpacing the PI control (0.0396 s), CSMC (0.097 s), and STSMC
(0.092 s), as is evident from the simulation results shown in Figure 9. The accuracy of speed
tracking is evaluated through the speed-tracking mismatch illustrated in Figure 10, which
indicates VGFOSTSMC’s superior tracking accuracy of VGFOSTSMC compared with other
control techniques. Moreover, Figure 11 depicts the rapid adjustment of the current via the
VGFOSTSMC towards the desired value, showing its superior agility compared with the PI,
CSMC, and STSMC. The findings support the conclusion that VGFOSTSMC outperforms
conventional control strategies in terms of minimum overshoot, responsiveness, tracking
accuracy, and current adjustment speed, thereby validating its efficacy in addressing the
dynamic challenges encountered in PMSM operations.
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Figure 9. Comparative assessment of speed-tracking performance between VGFOSTSMC, other SMC,
and PI controllers for upward and downward reference speed scenarios.
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Figure 11. Comparative assessment of control input performance between VGFOSTSMC, other SMC,
and PI controllers for upward and downward reference speed scenarios.

Case 3:
To address the challenges associated with speed changes in PMSM, this study proposes

and evaluates a novel approach referred to as VGFOSTSMC. In the third scenario, the motor
underwent a series of speed transitions, starting at 500 rpm, reversing direction at 1 s, and
ramping to 1000 rpm for 1.5 s. The simulation results, presented in Figures 12–14, highlight
the efficacy of VGFOSTSMC in mitigating the overshoot in rotational speed compared with
alternative SMC methods and PI control. Figure 12 shows that the VGFOSTSMC yields a
minimal overshoot in the rotational performance of its PI, CSMC, and STSMC counterparts.
Furthermore, VGFOSTSMC exhibits superior response speed with a settling time of 0.01 s,
notably faster than PI (0.0487 s), CSMC (0.0275 s), and STSMC (0.0148 s). In terms of the
steady-state performance, the VGFOSTSMC demonstrated a steady-state error of 0.029
rpm, which is significantly lower than those of the PI (0.096 rpm), CSMC (0.064 rpm),
and STSMC (0.055 rpm). Figure 13 illustrates that the tracking error of VGFOSTSMC is
smoother than that of the alternative methods, indicating its robustness in maintaining
desired speed trajectories. In addition, Figure 14 shows the ability of the VGFOSTSMC to
adjust the motor current swiftly and smoothly to achieve the desired values, distinguishing
it from the PI, CSMC, and STSMC strategies. Overall, the proposed VGFOSTSMC approach
presents a promising solution for addressing speed variations in PMSMs, offering enhanced
performance in terms of overshoot mitigation, response speed, steady-state accuracy, and
tracking error reduction compared with conventional control methods.
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Figure 12. Comparative analysis of speed-tracking performance between VGFOSTSMC and other
SMC controllers, along with PI, during speed reversal.
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Figure 13. Comparative analysis of speed-tracking error between VGFOSTSMC and other SMC
controllers, along with PI, during speed reversal.
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Figure 14. Comparative analysis of control input between VGFOSTSMC and other SMC controllers,
along with PI, during speed reversal.

Case 4:
A fourth case scenario is devised to address load disturbances in the operation of

PMSMs, in which the motor is initiated at a constant no-load speed of 500 rpm. At 0.49 s,
the load suddenly increases to 2 Nm, followed by a further increase to 6 Nm at 1.65 s,
then a negative direction decreases to 4 Nm at the same timestamp. The simulation
results depicted in Figures 15–17 aim to validate the enhanced robustness of the proposed
VGFOSTSMC strategy. Figure 15 shows a comparison of the speed-tracking performance.
The proposed control method performed better than other SMC methods, achieving a faster
reference speed and reduced error. Figures 16 and 17 further demonstrate the effectiveness
of VGFOSTSMC, showing precise tracking and smooth control input, distinguishing it
from the PI, CSMC, and standard STSMC approaches.
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Figure 15. Comparative evaluation of speed-tracking performance between VGFOSTSMC and other
SMC controllers, along with PI, during load change.
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Figure 16. Comparative evaluation of speed-tracking mismatch between VGFOSTSMC and other
SMC controllers, along with PI, during load change.
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Figure 17. Comparative evaluation of control input between VGFOSTSMC and other SMC controllers,
along with PI, during load change.

The comprehensive performance comparisons conducted in these simulations reaf-
firmed the efficacy of the proposed VGFOSTSMC method, demonstrating its superiority
in speed regulation for PMSMs compared to the PI controller, traditional CSMC, and
STSMC approaches.

In addition, specific error data are collected to quantitatively illustrate the performance
of different methods, as outlined in Table 2. The tracking performance of the four tech-
niques is assessed by computing four error indicators: integral square error (ISE), integral
absolute error (IAE), integral time squared error (ITSE), and integral time absolute error
(ITAE), defined as follows: ISE =

∫ ∞
0 e2(t)dt, IAE =

∫ ∞
0 |e(t)|dt, ITSE =

∫ ∞
0 te2(t)dt, and

ITAE =
∫ ∞

0 t|e(t)|dt. Figure 18 depicts ISE, IAE, ITSE, and ITAE for a constant reference
speed of 500 rpm. In all the scenarios, the cumulative error for each control method in-
creased with time. Nevertheless, the VGFOSTSMC approach exhibited the most stable error



Fractal Fract. 2024, 8, 368 21 of 30

profile and the lowest error rates, outperforming its counterparts. However, the inherent
chattering issue in classical SMC results in the highest error compared to other methods,
making the STSMC approach the second most effective control method.

Table 2. Quantitative assessment of performance index errors.

Index PI CSMC STSMC VGFOSTSMC

ISE 819.5 548.5 310.6 310.1
IAE 2.464 1.948 1.164 1.002
ITSE 1.94 0.9211 0.2809 0.2553
ITAE 0.03458 0.3291 0.2494 0.1207

Figure 18. Performance indices.

A quantitative discussion based on attributes such as steady-state errors, maximum
percentage overshoot, and settling time is presented in Table 3 to provide a more precise
and comprehensive analysis. This table provides a detailed comparison of the different
control techniques and clearly evaluates their respective performances in addressing the
specified criteria.

Table 3. Error data.

Specifications PI CSMC STSMC VGFOSTSMC

Steady-state error 0.0102 0.1983 0.1143 0.0614
Maximum overshoot [%] 0.0693 0.6666 0.0054 0.0041

Settling time (s) 0.0094 0.0062 0.0038 0.0034

5.1.2. Comparative Performance of the Proposed Speed Controller under
Different Conditions

The robustness of the proposed controller is thoroughly assessed through a series
of simulations to examine its performance under diverse external and parametric condi-
tions. Figure 19 shows the excellent tracking performance of the proposed VGFOSTSMC
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controller when subjected to a wide range of reference speeds (300–1000 rpm). The re-
sults showed minimal overshoot and shorter settling time, indicating superior tracking
capabilities with reduced oscillations. Notably, the controller effectively managed external
disturbances such as sudden changes in the reference speed, demonstrating its robustness
and adaptability. Figure 20 illustrates the controller’s exceptional tracking performance
under a challenge in which the load torque varies from 2 Nm to 8 Nm while maintaining
a desired speed of 500 rpm. Despite significant fluctuations in the load torque, the con-
troller precisely tracked the reference speed with only a slight decrease in the observed
speed of 0.7%. This demonstrates the robustness and the ability of the controller to reject
external disturbances, thereby ensuring that the desired speed is maintained. Figure 21
illustrates the adaptability of the VGFOSTSMC scheme to changes in the system inertia,
demonstrating its robustness in managing dynamic changes within the system. The system
inertia is initially set to J0 = 0.8 × 10−3 kg.m2. When the system inertia changes, the pro-
posed control approach demonstrates excellent adaptability, thereby confirming its ability
to handle dynamic variations. The proposed control scheme demonstrated exceptional
tracking performance, consistently achieving precise and rapid reference-speed tracking
across various system inertia variations. Notably, the settling time remains impressively
low (consistently below 0.1 s for all system inertia values, demonstrating the controller’s
remarkable adaptability and robustness. Figure 22 further demonstrates the robustness
of the proposed control law, showing tracking performance under flux-linkage variations.
Despite the rotor flux value changes, the proposed VGFOSTSMC scheme maintained a
stable and precise tracking performance, exhibiting robustness to these variations. No-
tably, the settling time remains consistent and unaffected by changes in the system inertia,
thereby highlighting the adaptability and ability of the scheme to handle dynamic changes
in the system.
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Figure 19. Speed response of VGFOSTSMC under variance reference speeds.
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Figure 20. Speed tracking of VGFOSTSMC under variance load torques.
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Figure 21. Speed tracking of VGFOSTSMC under varying inertia.

The VGFOSTSMC controller demonstrated resilience in the management of internal
parameter variations and external disturbances. The simulation results underscored its
effectiveness as a robust anti-disturbance controller for controlling PMSM speed, surpassing
the performance of conventional SMC controllers. The consistent and reliable performance
of the proposed control paradigm reaffirms its potential for practical implementation in
PMSM speed-regulation applications.
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Figure 22. Speed tracking of VGFOSTSMC under varying flux linkage.

5.2. Experimental Validation

This section aims to provide experimental verification to further validate the effec-
tiveness of the proposed method on a comprehensive motor speed regulation and loading
platform. The alignment of the motor parameters used in the experimental platform with
those employed in the simulation verification is confirmed in Table 1. In addition, Figure 23
visually depicts the experimental setup, providing insight into the testing environment and
equipment arrangement.

Load motor Drive motor

Rigid Coupling

MicroLab BoxServo driver

D
C

 S
o

u
rc

e

Monitoring PC

Figure 23. Experimental setup.

The experimental setup primarily consisted of power distribution lines, a monitoring
PC, a DC source, servo drivers, rigid couplings, a drive motor, a load motor, and a Microlab
Box dSpace. Before conducting the motor speed control experiment, the electronic version
of the proposed control method is uploaded to Microlab Box-dSpace. All the platform
parameters are carefully checked to ensure normal functioning. Real-time experimental
data, collected and analyzed using a monitoring PC, confirm the feasibility and effectiveness
of the proposed approach. The experimental results provide practical evidence for the
performance of the proposed VGFOSTSMC controller and its potential for successful
implementation in real-world applications.

The experimental verification involves several scenarios to assess the motor perfor-
mance. Initially, the motor is smoothly started and maintained at a speed of 500 rpm for 5 s
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without any external load applied. In the second scenario, the motor operates at 500 r/min
for 2.5 s. However, after this period, a sudden load disturbance of approximately 10% of
the rated torque of the motor is introduced for 1 s before removal. In the third case, the
engine is operated at 500 r/min for 1.5 s. Subsequently, the speed is increased to 700 rpm
for 2 s and then returned to 500 rpm for an additional 1.5 s. The experimental setup is
employed to examine and compare the CSMC and the proposed VGFOSTSMC methods.
The speed curves are carefully documented and are illustrated in Figures 24–26.

Distinct differences are observed by analyzing the speed-tracking performance of the
CSMC and VGFOSTSMC based on the experimental results depicted in Figure 24. Specifi-
cally, regarding settling time, CSMC had a value of 0.8453, whereas VGFOSTSMC had a
notably lower value of 0.5083, suggesting faster settling for the latter. Additionally, when
comparing the overshoot percentages, the CSMC exhibits a higher value of 4.1319% com-
pared to VGFOSTSMC’s significantly lower value of 0.4538%, indicating better control over
overshooting tendencies with the VGFOSTSMC. Furthermore, by examining the steady-
state error, the CSMC registers a higher value of 0.4545%, in contrast to VGFOSTSMC’s
substantially reduced value of 0.0383%, suggesting improved precision and accuracy in
maintaining the desired speed of VGFOSTSMC.
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Figure 24. speed-tracking comparison under nominal conditions using (a) CSMC and (b) VGFOSTSMC.
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According to the findings from the load experiments illustrated in Figure 25, the
conventional SMC system displayed considerable speed fluctuations, averaging 14.51%
during load changes. In contrast to the CSMC method, the VGFOSTSMC system demon-
strated significantly reduced speed fluctuations, measuring only 5.84%. This indicates
that the VGFOSTSMC exhibits a superior system response speed and higher resilience to
load disturbances.
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Figure 25. Comparison of speed tracking during loading and unloading using controllers (a) CSMC
and (b) VGFOSTSMC.

The experimental results presented in Figure 26 reveal significant differences in per-
formance between the conventional sliding-mode controller (CSMC) and the variable-gain
fractional-order super-twisting sliding-mode controller (VGFOSTSMC). Notably, the VG-
FOSTSMC method achieved a substantially shorter settling time of 0.5071 s compared
with 4.0550 s for the CSMC. Furthermore, the VGFOSTSMC method exhibited a lower
overshoot of 0.5314 and steady-state error of 0.4042, whereas the CSMC method had a
higher overshoot of 5.6587 and steady-state error of 0.4495. These results demonstrate the
superior effectiveness of the VGFOSTSMC approach in reducing settling time, overshoot,
and steady-state error in a permanent magnet synchronous motor (PMSM) system when
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responding to changes in reference speed. This highlights the potential of the VGFOSTSMC
method in enhancing the stability, responsiveness, and overall performance of the system.
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Figure 26. Comparison of speed tracking during speed-up and speed-down experiments using
(a) CSMC and (b) VGFOSTSMC.

The experimental findings are in close agreement with the simulated results, validating
the reliability of the proposed scheme. The simulation and experimental data demonstrate
the outstanding speed-tracking performance of the algorithm, marked by negligible errors
and robustness against load disturbances. This confirms the efficacy of the algorithm in
regulating PMSM system speeds and offers a promising solution for efficient speed control
in practical applications, thereby showcasing its potential for real-world applications.

6. Conclusions

This paper presents a novel approach for controlling the speed of permanent magnet
synchronous motor (PMSM) drive systems by leveraging a novel variable-gain fractional-
order super-twisting (VGFOST) controller. The sliding-mode (SM) controller embedded
within the sliding-mode algorithm (STA) features a unique sliding surface and an adaptive
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gain structure. In addition, a sliding-mode disturbance observer (SMDO) is developed to
estimate and mitigate system disturbances. The integration of VGFOST and SMDO forms
a robust composite control strategy, significantly enhancing the system’s ability to reject
disturbances and maintain optimal performance. Theoretical analyses are performed to
evaluate the stability and assess the accuracy of the controller and SMDO. These analyses
highlight the benefits of the proposed composite-control method. The simulation and
experimental results confirm the theoretical conclusions, illustrating that the proposed
method provides numerous benefits including high precision, uncertainty resilience, and
minimal chattering amplitude. These characteristics guarantee the exceptional performance
of PMSM drive systems. Moreover, thorough simulations and experimental outcomes,
coupled with quantitative analyses, offer substantiating evidence for the effectiveness of
the proposed algorithm when implemented in PMSM drive systems.

Future studies will focus on optimizing the parameter-tuning process and implement-
ing adaptive control strategies to further enhance the performance and robustness of the
proposed controller in real-world PMSM drive applications.
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