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1. Introduction

In 1880 and 1939, Appell and Sheffer polynomials were introduced, as outlined in
the works of Appell and Sheffer [1,2], and they have a wide range of applications in fields
such as applied mathematics, theoretical physics, and approximation theory. A multitude
of scholars have studied these polynomials, employing distinct methodologies to deepen
our understanding. For example, Blasiak and colleagues established a connection between
the principle of monomiality and umbral calculus, as outlined in their work [3]. This
endeavour created explicit representations of the Heisenberg–Weyl algebra, shedding
light on the intricate interplay between fundamental algebraic principles and polynomial
structures. Meanwhile, Dattoli and fellow researchers have made notable contributions to
the field. In their works [4,5], they provided valuable insights by offering series expansions
and connection coefficients tailored to specific expressions of Appell polynomials. These
contributions have enriched our comprehension of these polynomial families’ intricate
properties and applications. Through these studies, researchers have gained a deeper
understanding of the complex structures underlying these polynomial frameworks and
their far-reaching implications across a variety of fields.

The discovery and examination of the 2-iterated Appell polynomials in [6] defined by
the following generating function:

J1(θ)J2(θ)eσθ =
∞

∑
n=0

J [2]
n (σ)

θn

n!
, (1)

where

J1(θ) =
∞

∑
k=0

rk
θk

k!
, r0 ̸= 0, (2)
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and

J2(θ) =
∞

∑
k=0

sk
θk

k!
, s0 ̸= 0. (3)

Furthermore, their multiplicative and derivative operators, as well as differential equations
and operational principles. For certain special cases of J1(θ) and J2(θ), the 2-iterated
Bernoulli, 2-iterated Euler and Bernoulli-Euler (or Euler-Bernoulli) polynomials are defined
as follows [6]: (

θ

eθ − 1

)2
eσθ =

∞

∑
n=0

B[2]
n (σ)

θn

n!
, (4)

(
2

eθ + 1

)2
eσθ =

∞

∑
n=0

E[2]
n (σ)

θn

n!
(5)

and (
2θ

e2θ − 1

)
eσθ =

∞

∑
n=0

BEn(σ)
θn

n!
. (6)

Recently, Shahid et al. introduced and examined the 2-iterated 2D Appell and related
polynomials in [7] defined by the generating function:

J1(θ)J2(θ)eσθ+µθ j
=

∞

∑
n=0

J [2,j]
n (σ, µ)

θn

n!
(7)

and derived families of differential equations. For certain special cases of J1(θ) and J2(θ),
the 2-iterated 2D Bernoulli, 2-iterated 2D Euler polynomials. The relationship between
trigonometric and hyperbolic secant functions and 2-iterated 2D Euler numbers warrants
attention. Their Taylor series expansions incorporate 2-iterated 2D Euler numbers and their
derivatives, serving as essential tools in diverse domains such as signal processing and
quantum field theory. As a result, 2-iterated 2D Euler numbers have become indispensable
in mathematical circles and interdisciplinary research pursuits. Furthermore, trigonometric
and hyperbolic secant functions share a profound connection with 2-iterated 2D Euler
numbers, integrating them into their expansions and extending their utility across various
scientific disciplines. They are defined as follows [7]:(

θ

eθ − 1

)2
eσθ+µθ j

=
∞

∑
n=0

B[2,j]
n (σ, µ)

θn

n!
(8)

and (
2

eθ + 1

)2
eσθ+µθ j

=
∞

∑
n=0

E [2,j]
n (σ, µ)

θn

n!
, (9)

respectively.

The 2-variable Appell polynomials emerge when J1(θ) equals unity and J2(θ) equals
J (θ). Conversely, setting µ to zero transforms the “2-iterated 2D Appell polynomials into
their 2-iterated counterparts”, by opting for J1(θ) to match J (θ) (of the Appell polynomi-
als) and appropriately selecting J2(θ). Therefore, we deduce the generating expressions
for the “2D Bernoulli-Appell, 2D Euler-Appell, and 2D Hermite-Appell polynomials”:

J (θ)
θ

eθ − 1
eσθ+µθ j

=
∞

∑
n=0

BJ
(j)

n (σ, µ)
θn

n!
, (10)

J (θ)
2

eθ + 1
eσθ+µθ j

=
∞

∑
n=0

EJ
(j)

n (σ, µ)
θn

n!
(11)
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and

J (θ)eσθ− θ2
2 +µθ j

=
∞

∑
n=0

HJ
(j)

n (σ, µ)
θn

n!
, (12)

respectively.

Again for J1(θ) = J2(θ) =
θ

eθ−1 , J1(θ) = J2(θ) =
2

eθ+1 and J1(θ) = J2(θ) = e
−θ2

2 ,
we possess the the generating functions of the 2-iterated 2D Bernoulli, Euler and Hermite
polynomials as follows:(

θ

eθ − 1

)2
ext+yθ j

=
∞

∑
n=0

B[2,j]
n (σ, µ)

θn

n!
, (13)(

2
eθ + 1

)2
ext+yθ j

=
∞

∑
n=0

E [2,j]
n (σ, µ)

θn

n!
(14)

and

ext−θ2+yθ j
=

∞

∑
n=0

H[2,j]
n (σ, µ)

θn

n!
, (15)

respectively.
Certain combinations of J1(θ) and J2(θ) can be used to derive the generating func-

tions of three types of 2D polynomials: “Bernoulli–Euler (also known as Euler–Bernoulli),
Hermite–Bernoulli (also known as Bernoulli–Hermite), and Hermite–Euler (also known
as Euler–Hermite)”. These polynomials are essential mathematical tools used in vari-
ous fields such as physics and engineering. The “2D Bernoulli–Euler polynomials” are
commonly used in the study of beam deflection, while the “2D Hermite–Bernoulli and
2D Hermite–Euler polynomials” are often used in the study of quantum mechanics and
statistical mechanics. They possess the following generating relations:(

2θ

e2θ − 1

)
eσθ+µθ j

=
∞

∑
n=0

HB
(j)
n (σ, µ)

θn

n!
, (16)(

θ

eθ − 1

)
eσθ− θ2

2 +µθ j
=

∞

∑
n=0

HB
(j)
n (σ, µ)

θn

n!
(17)

and (
2

eθ + 1

)
eσθ− θ2

2 +µθ j
=

∞

∑
n=0

HE
(j)
n (σ, µ)

θn

n!
, (18)

respectively.
The manuscript is structured as follows: Section 2 of the article introduces the oper-

ational identity for the 2-iterated 2D Appell polynomials which is then further used to
develop operational identity and the generating function for the generalized 2-iterated
2D Appell polynomials. Further, the explicit forms of these polynomials for these gener-
alized polynomials are established. Moving on to Section 3, we verify the monomiality
principle for this polynomial family. Section 4 establishes the operational identity, generat-
ing function, and explicit form for the “generalized 2-iterated 2D Bernoulli, generalized
2-iterated 2D Euler, and generalized 2-iterated 2D Genocchi polynomials”. Finally, the
article concludes with some remarks.

2. Main Results in View of Fractional Operators

Operational rules play a key role in mathematical analysis by providing structured pro-
cedures for manipulating mathematical expressions. In the domain of special polynomial
theory, operational rules offer guidance for performing algebraic operations, differentia-
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tion, integration, and other transformations on polynomials. They empower researchers
to discover new identities, solve equations, and efficiently investigate the properties of
polynomial functions. Operational rules enable the application of mathematical concepts
in various fields, such as physics, engineering, and computer science, thereby allowing
for the development of practical solutions to intricate problems and the advancement of
scientific understanding.

Moreover, we utilize the 2-iterated 2D Appell polynomials and establish their opera-
tional formalism in the following manner:

Differentiating expression (7) with respect to σ continuously, we find

∂

∂σ

[
J1(θ)J2(θ)eσθ+µθ j

]
= θ

[
J1(θ)J2(θ)eσθ+µθ j

]
(19)

which implies

∂

∂σ

[
∞

∑
n=0

J [2,j]
n (σ, µ)

θn

n!

]
=

[
∞

∑
n=0

J [2,j]
n (σ, µ)

θn+1

n!

]
. (20)

Further, upon replacing n → n − 1 in preceding expression and then comparing the coeffi-
cients of the same exponents θn

n! on both sides of the resultant expression, it follows that

∂

∂σ

[
J [2,j]

n (σ, µ)
]
= n

[
J [2,j]

n−1(σ, µ)
]
. (21)

Upon similar observations, we find that

∂2

∂σ2

[
J [2,j]

n (σ, µ)
]
= n(n − 1)

[
J [2,j]

n−2(σ, µ)
]

∂3

∂σ3

[
J [2,j]

n (σ, µ)
]
= n(n − 1)(n − 2)

[
J [2,j]

n−3(σ, µ)
]

...
... (22)

∂j

∂σj

[
J [2,j]

n (σ, µ)
]
= n(n − 1)(n − 2) · · · (n − j + 1)

[
J [2,j]

n−j (σ, µ)
]
.

Further, differentiating expression (7) with respect to µ, we have

∂

∂µ

[
J1(θ)J2(θ)eσθ+µθ j

]
= θ j

[
J1(θ)J2(θ)eσθ+µθ j

]
(23)

which implies

∂

∂µ

[
∞

∑
n=0

J [2,j]
n (σ, µ)

θn

n!

]
=

[
∞

∑
n=0

J [2,j]
n (σ, µ)

θn+j

n!

]
. (24)

Therefore, upon replacing n → n − j in preceding expression and then comparing the coef-
ficients of the same exponents θn

n! on both sides of the resultant expression, it follows that

∂

∂µ

[
J [2,j]

n (σ, µ)
]
= n(n − 1)(n − 2) · · · (n − j + 1)

[
J [2,j]

n−j (σ, µ)
]
. (25)

Thus, in view of expressions (22) and (25), it follows that

∂

∂µ

[
J [2,j]

n (σ, µ)
]
=

∂j

∂µj

[
J [2,j]

n (σ, µ)
]
. (26)

Thus, in view of expressions (21), (25) and (26) and under the initial condition,

J [2,j]
n (σ, 0) = J [2]

n (σ), (27)
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the 2-iterated 2D Appell polynomials possess the succeeding operational rule:

exp
(

µ
∂j

∂σj

){
J [2]

n (σ)

}
= J [2,j]

n (σ, µ). (28)

Note-1. For J1(θ) = 1, j = 2, the 2-iterated 2D Appell polynomials J [2,j]
n (σ, µ) re-

duces to the the 2D Appell polynomials J [2]
n (σ, µ) and thus satisfying the operational rule:

exp
(

µ
∂j

∂σj

){
Jn(σ)

}
= J [j]

n (σ, µ). (29)

Note-2. For j = 2, the 2-iterated 2D Appell polynomials J [2,j]
n (σ, µ) reduces to the the

2-iterated Hermite–Appell polynomials J [2,2]
n (σ, µ) and thus satisfying the operational rule:

exp
(

µ
∂2

∂σ2

){
J [2]

n (σ)

}
= J [2,2]

n (σ, µ). (30)

Note-3. For J1(θ) = 1, j = 2, the 2-iterated 2D Appell polynomials J [2,j]
n (σ, µ) reduces

to the the Hermite–Appell polynomials Jn(σ, µ) and thus satisfying the operational rule:

exp
(

µ
∂2

∂σ2

){
Jn(σ)

}
= Jn(σ, µ). (31)

The application of integral transforms to fractional derivatives was initiated by the work
of Riemann and Liouville [8,9]. An effective approach to fractional derivatives involves
combining integral transformations with specialized polynomials, as demonstrated in
works like [10,11]. This method effectively analyses and manipulates fractional deriva-
tives, enhancing our ability to comprehend and solve problems in various scientific and
engineering fields.

The Euler integral serves as a cornerstone for expanding and generalising special
polynomials into more diverse forms. In a groundbreaking study referenced as [10], Dattoli
and colleagues utilized the Euler integral to define operational relations and establish
generating relations for novel versions of special polynomials. Employing the Euler integral
as a fundamental tool effectively opened up new avenues for exploring special polynomial
theory. This approach broadens the applicability of special polynomials and facilitates
the investigation of their properties and relationships in various mathematical contexts.
Through their meticulous analysis and utilization of the Euler integral, Dattoli et al. [10,12]
contributed significantly to advancing the understanding and utility of special polynomials,
offering valuable insights into their broader mathematical significance. Consequently, their
work serves as a crucial reference point for researchers delving into the intricate interplay
between special polynomials and mathematical analysis.

The integral associated with Euler is referenced in [13] (p. 218);

δ−τ =
1

Γ(τ)

∫ ∞

0
e−λθθτ−1dθ, min{Re(τ), Re(λ)} > 0, (32)

this subsequently leads to the following [10]:(
β − ∂

∂σ

)−τ

h(σ) = 1
Γ(τ)

∫ ∞
0 e−βθθτ−1 eθ ∂

∂σ h(σ)dθ = 1
Γ(τ)

∫ ∞
0 e−βθθτ−1 h(σ + θ)dθ. (33)
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The following formula applies to second-order derivatives:(
β − ∂2

∂σ2

)−τ

h(σ) =
1

Γ(τ)

∫ ∞

0
e−βθθτ−1 eθ ∂2

∂σ2 h(σ)dθ. (34)

First, we derive the operational identity and generating expression by proving the
following result:

Theorem 1. The following operational definition applies to the generalized 2-iterated 2D Appell
polynomials (2I2DAP) J [2,j]

n,τ (σ, µ; β):(
β − µ

∂j

∂σj

)−τ

{J [2]
n (σ)} = J [2,j]

n,τ (σ, µ; β). (35)

Proof. Substituting δ with

(
β − µ ∂j

∂σj

)
in integral (32) and applying it to J [2]

n (σ), we have

the following transformation:(
β − µ

∂j

∂σj

)−τ

{J [2]
n (σ)} =

1
Γ(τ)

∫ ∞

0
e−βθθτ−1 exp

(
θµ

∂j

∂σj

)
J [2]

n (σ)dθ. (36)

Considering Equation (28), the previous expression transforms to(
β − µ

∂j

∂σj

)−τ

{J [2]
n (σ)} =

1
Γ(τ)

∫ ∞

0
e−βθθτ−1J [2,j]

n (σ, µθ)dθ. (37)

The polynomial set J [2,j]
n,τ (σ, µ; β) introduced on the right-hand side of Equation (37) is iden-

tified as the generalized 2-iterated 2D Appell polynomials and thus leads to the following:

J [2,j]
n,τ (σ, µ; β) =

1
Γ(τ)

∫ ∞

0
e−βθθτ−1J [2,j]

n (σ, µθ)dθ. (38)

Considering Equations (37) and (38), statement (35) is thereby demonstrated.

Remark 1. For, J1(θ) = 1, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the generalized 2DAP

J [j]
n (σ, µ) and thus satisfying the operational rule:(

β − µ
∂j

∂σj

)−τ

{Jn(σ)} = J [j]
n,τ(σ, µ; β).

Remark 2. For, J1(θ) = 1 and j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the

generalized 2VHAP Jn(σ, µ) and thus satisfying the operational rule:(
β − µ

∂2

∂σ2

)−τ

{Jn(σ)} = Jn,τ(σ, µ; β).

Remark 3. For, j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the generalized 2IAP

J [2]
n (σ, µ) and thus satisfying the operational rule:(

β − µ
∂2

∂σ2

)−τ

{Jn(σ)} = J [2]
n,τ(σ, µ; β).
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Theorem 2. The following generating expression applies to the generalized 2I2DAP J [2,j]
n,τ (σ, µ; β):

J1(w) J2(w) exp(σw)

(β − µwj)τ
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

wn

n!
. (39)

Proof. By multiplying Equation (38) with wn

n! on both sides and then summing over n, it
can be inferred that

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

wn

n!
=

∞

∑
n=0

1
Γ(τ)

∫ ∞

0
e−βθθτ−1J [2,j]

n (σ, µθ)
wn

n!
dθ. (40)

Utilizing the corresponding generating functions from (7) on the right-hand side of
Equation (40), it can be deduced that

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

wn

n!
=

J1(w) J2(w) exp(σwj)

Γ(τ)

∫ ∞

0
e−
(

β−µw
)

θθν−1dθ, (41)

thus, upon applying integral (32) on the right-hand side, assertion (39) is derived.

Remark 4. For J1(θ) = 1, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the generalized

2DAP J [j]
n (σ, µ) and thus satisfying the generating function:

J2(w) exp(σw)

(β − µwj)τ
=

∞

∑
n=0

J [j]
n,τ(σ, µ; β)

wn

n!
.

Remark 5. For J1(θ) = 1 and j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the

generalized 2VHAP Jn(σ, µ) and thus satisfying the operational rule:

J2(w) exp(σw)

(β − µw2)τ
=

∞

∑
n=0

Jn,τ(σ, µ; β)
wn

n!
.

Remark 6. For j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the generalized 2IAP

J [2]
n (σ, µ) and thus satisfying the operational rule:

J1(w) J2(w) exp(σw)

(β − µw2)τ
=

∞

∑
n=0

J [2,2]
n,τ (σ, µ; β)

wn

n!
.

Next, we derive the explicit forms for the generalized 2-iterated 2D Appell polynomials
by demonstrating the succeeding results:

Theorem 3. The generalized 2I2DAP J [2,j]
n,τ (σ, µ; β) satisfies the succeeding explicit form:

J [2,j]
n,τ (σ, µ; β) =

n

∑
k=0

(
n
k

)
rkJ

[j]
n−k,τ(σ, µ; β). (42)

Proof. Inserting expression (2) in the l.h.s. of the expression (39), we find

∞

∑
k=0

rk
θk

k!

∞

∑
n=0

J [j]
n,τ(σ, µ; β)

θn

n!
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
. (43)

Therefore, upon replacing n → n − k in the preceeding expression and then comparing the
coefficients of the same exponents θn

n! on both sides of the resultant expression, assertion (42)
is obtained.
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Theorem 4. The generalized 2I2DAP J [2,j]
n,τ (σ, µ; β) satisfies the succeeding explicit form:

J [2,j]
n,τ (σ, µ; β) = n!

n

∑
k=0

[ k
j ]

∑
p=0

(τ)p sk−jp µp

(n − k)! p! (k − jp)! βp Jn−k(σ). (44)

Proof. Taking J1(w) = J (θ) in the l.h.s. of the expression (39), it becomes

J (θ) exp(σθ) J2(θ) exp(σθ)

(β − µθ j)τ
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
. (45)

Inserting expression (1) with J2(θ) = 1, (3) and the expansion

(1 − θ)−c =
∞

∑
k=0

(c)k
θk

k!
, |θ| < 1,

in preceding expression, we have

∞

∑
n=0

Jn(σ)
θn

n!

∞

∑
k=0

sk
θk

k!

∞

∑
p=0

(τ)p
µpθ jp

βp p!
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
, (46)

thus, upon replacing k → k − jp in the l.h.s. of the preceding expression, it follows that

∞

∑
n=0

Jn(σ)
∞

∑
k=0

[ k
j ]

∑
p=0

(τ)p sk−jp
µpθn+k

βp (k − jp)! n! p!
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
. (47)

Again, upon replacing n → n − k in the l.h.s. of the preceding expression and then compar-
ing the coefficients of the same exponents θn

n! on both sides of the resultant expression, the
assertion (44) is obtained.

Theorem 5. The generalized 2I2DAP J [2,j]
n,τ (σ, µ; β) satisfies the succeeding explicit form:

J [2,j]
n,τ (σ, µ; β) = n!

[ n
j ]

∑
p=0

(τ)p µp

p! (n − jp)! βp J
[2]

n−jp(σ). (48)

Proof. Inserting expression (1) and the expansion

(1 − θ)−c =
∞

∑
k=0

(c)k
θk

k!
, |θ| < 1,

in expression (39), we have

∞

∑
n=0

J [2]
n (σ)

θn

n!

∞

∑
p=0

(τ)p
µpθ jp

βp p!
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
. (49)

Thus, upon replacing n → n − jp in the l.h.s. of the preceding expression, it follows that

∞

∑
n=0

[ n
j ]

∑
p=0

n!
(τ)p µp

p! (n − jp)! βp J
[2]

n−jp(σ)
θn

n!
=

∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!
. (50)

Therefore, comparing the coefficients of the same exponents θn

n! on both sides of the resultant
expression, assertion (48) is obtained.
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In the next section, the monomiality principle and recurrence relations for the general-
ized 2I2DAP J [2,j]

n,τ (σ, µ; β) are derived.

3. Monomiality Principle and Recurrence Relations

The idea of monomiality can be traced back to 1941 when Steffenson introduced the
poweroid notion [14]. It was later refined by Dattoli [12]. The principle of monomiality
is crucial in the theory of polynomials, especially in the field of special functions. It is a
fundamental criterion that verifies the orthogonality and completeness of polynomial sets,
which helps in the rigorous analysis of their properties and applications. By ensuring that
polynomials satisfy the principle of monomiality, researchers can use them for various
mathematical and computational tasks, such as function approximation, numerical analysis,
and solving differential equations. Additionally, the principle enables the establishment
of recurrence relations and explicit formulas, which enhances our understanding and uti-
lization of these polynomial families across diverse scientific disciplines. The operators M̂
and D̂ can be used as both multiplicative and derivative operators for a set of polynomials
{Φm(σ)}m∈N. These polynomials satisfy the following expressions:

Φm+1(σ) = M̂{Φm(σ)} (51)

and
m Φm−1(σ) = D̂{Φm(σ)}. (52)

The set of operators manipulating the quasi-monomial {Φm(σ)}m∈N must adhere to
the following formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂, (53)

thus displaying a Weyl group structure.
The characteristics of the quasi-monomial set {Φm(σ)}m∈N depend on the properties

of M̂ and D̂, satisfying the following axioms:

(i) Φm(σ) satisfies the differential equation:

M̂D̂{Φm(σ)} = m Φm(σ), (54)

provided M̂ and D̂ possesses differential recognitions.
(ii) The explicit representation of Φm(σ) is presented by

Φm(σ) = M̂m {1}, (55)

with Φ0(σ) = 1.
(iii) The exponential form of the generating relation for Φm(σ) can be expressed as

eθM̂{1} =
∞

∑
m=0

Φm(σ)
θm

m!
, |θ| < ∞ , (56)

on utilizing identity expression (55).

The monomiality principle is used to define raising and lowering operators. Ad-
ditionally, we define the generalized 2I2DAP J [2,j]

n,τ (σ, µ; β) within this framework by
demonstrating the succeeding results:

Theorem 6. For the generalized 2I2DAP J [2,j]
n,τ (σ, µ; β), the succeeding multiplicative and deriva-

tive operators hold true:

M̂
J [2,j]

n,τ (σ,µ;β)
= σ +

J ′
1(

∂
∂σ )

J1(
∂

∂σ )
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )
+

jτµ ( ∂
∂σ )

j−1(
β − µ ∂

∂σ

j) (57)



Fractal Fract. 2024, 8, 382 10 of 15

and
D̂

J [2,j]
n,τ (σ,µ;β)

=
∂

∂σ
. (58)

Proof. By differentiating expression (39) with respect to θ, it follows that

∂

∂σ

[
J1(θ) J2(θ) exp(σθ)

(β − µθ j)τ

]
=

∂

∂σ

[
∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!

]
(59)

which further gives(
σ +

J ′
1(θ)

J1(θ)
+

J ′
2(θ)

J2(θ)
+

j τ µ θ j−1(
β − µσj

))[J1(θ) J2(θ) exp(σθ)

(β − µθ j)τ

]
=

∞

∑
n=0

n J [2,j]
n,τ (σ, µ; β)

θn−1

n!
. (60)

Also, differentiating (39) with respect to σ, it follows that

∂

∂σ

[
J1(θ) J2(θ) exp(σθ)

(β − µθ j)τ

]
= θ

[
J1(θ) J2(θ) exp(σθ)

(β − µθ j)τ

]
(61)

which further can be written as

∂

∂σ

[
∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!

]
=

[
∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn+1

n!

]
. (62)

Using expression (61) in (60), assertion (57) is proven.

Further, replacing n → n − 1 in expression (62), we have

∂

∂σ

[
∞

∑
n=0

J [2,j]
n,τ (σ, µ; β)

θn

n!

]
=

[
∞

∑
n=0

J [2,j]
n−1,τ(σ, µ; β)

θn

n!

]
(63)

which proves assertion (58) while comparing same powers of θ both sides.

Remark 7. For J1(θ) = 1, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the generalized 2DAP

J [j]
n (σ, µ) and thus satisfying the succeeding multiplicative and derivative operators:

M̂
J [2,j]

n,τ (σ,µ;β)
= σ +

J ′
2(

∂
∂σ )

J2(
∂

∂σ )
+

jτµ ( ∂
∂σ )

j−1(
β − µ ∂

∂σ

j)
and

D̂
J [2,j]

n,τ (σ,µ;β)
=

∂

∂σ
.

Remark 8. For J1(θ) = 1 andj = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the general-

ized 2VHAP Jn(σ, µ) and thus satisfying the succeeding multiplicative and derivative operators:

M̂Jn,τ(σ,µ;β) = σ +
J ′

2(
∂

∂σ )

J2(
∂

∂σ )
+

2τµ ( ∂
∂σ )(

β − µ ∂
∂σ

2)
and

D̂Jn,τ(σ,µ;β) =
∂

∂σ
.
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Remark 9. For, j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the generalized 2IAP

J [2]
n (σ, µ) and thus satisfying the succeeding multiplicative and derivative operators:

M̂
J [2,2]

n,τ (σ,µ;β)
= σ +

J ′
1(

∂
∂σ )

J1(
∂

∂σ )
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )
+

2τµ ( ∂
∂σ )(

β − µ ∂
∂σ

2)
and

D̂
J [2,2]

n,τ (σ,µ;β)
=

∂

∂σ
.

Theorem 7. The generalized 2I2DAP J [2,j]
n,τ (σ, µ; β) satisfy the succeeding differential equation:[

σ
∂

∂σ
+

J ′
1(

∂
∂σ )

J1(
∂

∂σ )

∂

∂σ
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )

∂

∂σ
+

j τ µ ( ∂
∂σ )

j(
β − µ ∂

∂σ

j) − n

]
J [2,j]

n,τ (σ, µ; β) = 0. (64)

Proof. Inserting expressions (57) and (58) in expression (54), we obtain assertion (64).

Remark 10. For J1(θ) = 1, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the generalized 2DAP

J [j]
n (σ, µ), thus satisfying the succeeding differential equation:[

σ
∂

∂σ
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )

∂

∂σ
+

j τ µ ( ∂
∂σ )

j(
β − µ ∂

∂σ

j) − n

]
J [2,j]

n,τ (σ, µ; β) = 0.

Remark 11. For J1(θ) = 1 and j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the

generalized 2VHAP Jn(σ, µ), thus satisfying the succeeding differential equation:[
σ

∂

∂σ
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )

∂

∂σ
+

2 τ µ ( ∂
∂σ )

2(
β − µ ∂

∂σ

2) − n

]
J [2,j]

n,τ (σ, µ; β) = 0.

Remark 12. For j = 2, the generalized 2I2DAP J [2,j]
n (σ, µ) reduces to the the generalized 2IAP

J [2]
n (σ, µ), thus satisfying the succeeding differential equation:[

σ
∂

∂σ
+

J ′
1(

∂
∂σ )

J1(
∂

∂σ )

∂

∂σ
+

J ′
2(

∂
∂σ )

J2(
∂

∂σ )

∂

∂σ
+

2 τ µ ( ∂
∂σ )

2(
β − µ ∂

∂σ

2) − n

]
J [2,j]

n,τ (σ, µ; β) = 0.

Next, we proceed to establish the recurrence relations for the generalized 2I2DAP
J [2,j]

n,τ (σ, µ; β) by leveraging their generating relation (39). A recurrence relation defines
a sequence or array of values recursively, where each subsequent term depends on the
preceding ones.

Starting with the differentiation of generating function (39) with respect to σ, µ, and β,
we obtain the following recurrence relations for J [2,j]

n,τ (σ, µ; β):

∂

∂σ

(
J [2,j]

n,τ (σ, µ; β)
)

= n J [2,j]
n−1,τ(σ, µ; β),

∂

∂µ

(
J [2,j]

n,τ (σ, µ; β)
)

= τ
n!

(n − j + 1)!
J [2,j]

n−j+1,τ(σ, µ; β),

∂

∂β

(
J [2,j]

n,τ (σ, µ; β)
)

= −τ J [2,j]
n,τ+1(σ, µ; β). (65)
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Based on these relations, we deduce that

∂

∂µ

(
J [2,j]

n,τ (σ, µ; β)
)
= − ∂j−1

∂σj−2∂β
J [2,j]

n,τ (σ, µ; β). (66)

4. Examples

The Appell polynomial family comprises a set of polynomials that can be derived by
selecting suitable functions, such as J1(θ) and J2(θ). A detailed compilation of diverse
members of this family, featuring their names, generating functions, series definitions, and
corresponding numerical values, is presented in Table 1. This valuable information can
greatly assist those engaged in research or professional work involving polynomials.

Table 1. Expressions for select Appell family members.

S. Name and J1(θ) = J2(θ) Generating Expression Series Representation
No. Polynomials/Numbers

I. Bernoulli
(

θ
eθ−1

)2 (
θ

eθ−1

)2
eθσ =

∞
∑

k=0
B[2]

k (σ) θk

k! B[2]
k (σ) =

k
∑

m=0
( k

m)B
[2]
m uk−m

polynomials and
numbers

(
θ

eθ−1

)2
=

∞
∑

k=0
B[2]

k
θk

k!

[15] B[2]
k := B[2]

k (0)

II. Euler
(

2
eθ+1

)2 (
2

eθ+1

)2
eσu =

∞
∑

k=0
E [2]

k (σ) uk

k! E [2]
k (σ) =

k
∑

m=0
( k

m)
E [2]

m
2m

(
σ − 1

2

)k−m

polynomials and
numbers

(
2eθ

e2θ+1

)2
=

∞
∑

k=0
E [2]

k
θs

s!

[15] E [2]
k := 2kE [2]

k

(
1
2

)
III. Genocchi

(
2θ

eθ+1

)2 (
2θ

eθ+1

)2
eσu =

∞
∑

k=0
G [2]

k (σ) θk

k! G [2]
k (σ) =

k
∑

m=0
( k

m)G
[2]
m σk−m

polynomials and
numbers

(
2θ

eθ+1

)2
=

∞
∑

k=0
G [2]

k
θs

s!

[16] G [2]
k := G[2]

k (0)

The “Bernoulli, Euler, and Genocchi numbers” are of paramount importance in the
field of mathematics, finding extensive applications across diverse domains. Similarly, Euler
numbers, forming an integer sequence, are widely utilized in various mathematical areas
such as algebraic topology, geometry, and number theory. They are pivotal in studying
elliptic curves and modular forms, which are crucial for cryptography and coding theory.
Conversely, Genocchi numbers, also integers, are valuable in combinatorial tasks like
counting labelled rooted trees and up-down sequences, contributing significantly to graph
and automata theory. Their collective significance in these fields is undeniable, making
them indispensable tools for mathematicians and researchers alike.

Trigonometric and hyperbolic secant functions closely intertwine with Euler numbers
through their Taylor series expansions, incorporating Euler numbers and their derivatives.
This integration facilitates applications in signal processing and quantum field theory,
rendering Euler numbers valuable beyond mathematics. Additionally, due to their rational
nature, Bernoulli numbers play essential roles in mathematical formulas like Bernoulli
polynomials and the Euler–Maclaurins formula, spanning number theory, numerical analy-
sis, and combinatorics. Similarly, Euler numbers, as integer sequences, are indispensable
in various mathematical fields such as algebraic topology, geometry, and number theory,
especially in cryptography and coding theory. Conversely, Genocchi numbers, also integer
sequences, contribute to combinatorial problems like counting labelled rooted trees and
up-down sequences, impacting graph theory and automata theory.
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By substituting J1(θ) = J2(θ) =
(

θ
eθ−1

)2
, the generalized 2I2DAP J [2,j]

n,τ (σ, µ; β)

reduces to the generalized 2-iterated 2D Bernoulli polynomials B[2,j]
n,τ (σ, µ; β). Thus, for

J1(θ) = J2(θ) =
(

θ
eθ−1

)2
in the expressions (35), (39) and (48), the corresponding op-

erational connection, generating function and explicit form for the generalized 2I2DBP
B[2,j]

n,τ (σ, µ; β) are as follows:(
β − µ

∂j

∂σj

)−τ

{B[2]
n (σ)} = B[2,j]

n,τ (σ, µ; β) (67)(
θ

eθ−1

)2
exp(σθ)

(β − µθ j)τ
=

∞

∑
n=0

B[2,j]
n,τ (σ, µ; β)

θn

n!
(68)

B[2,j]
n,τ (σ, µ; β) = n!

[ n
j ]

∑
p=0

(τ)p µp

p! (n − jp)! βp B
[2]
n−jp(σ). (69)

The first few polynomials of the generalized 2I2DBP B[2,j]
n,τ (σ, µ; β) are as follows:

B[2,j]
0,τ (σ, µ; β) = β−τ ,

B[2,j]
1,τ (σ, µ; β) = (σ − 1)β−τ ,

B[2,j]
2,τ (σ, µ; β) =

(
σ2

2
+

1
6
− 2σ

)
β−τ .

Further, substituting J1(θ) = J2(θ) =
(

2
eθ+1

)2
, the generalized 2I2DAP J [2,j]

n,τ (σ, µ; β)

reduces to the generalized 2-iterated 2D Euler polynomials E [2,j]
n,τ (σ, µ; β). Thus, for

J1(θ) = J2(θ) =
(

2
eθ+1

)2
in the expressions (35), (39) and (48), the corresponding op-

erational connection, generating function and explicit form for the generalized 2I2DEP
E [2,j]

n,τ (σ, µ; β) are as follows:(
β − µ

∂j

∂σj

)−τ

{E [2]
n (σ)} = E [2,j]

n,τ (σ, µ; β) (70)(
2

eθ+1

)2
exp(σθ)

(β − µθ j)τ
=

∞

∑
n=0

E [2,j]
n,τ (σ, µ; β)

θn

n!
(71)

E [2,j]
n,τ (σ, µ; β) = n!

[ n
j ]

∑
p=0

(τ)p µp

p! (n − jp)! βp E
[2]
n−jp(σ). (72)

The first few polynomials of the generalized 2I2DEP E [2,j]
n,τ (σ, µ; β) are as follows:

E [2,j]
0,τ (σ, µ; β) = 4β−τ ,

E [2,j]
1,τ (σ, µ; β) = (4σ − 8)β−τ ,

E [2,j]
2,τ (σ, µ; β) =

(
4 + 4σ2 − 8

)
β−τ .

Further, substituting J1(θ) = J2(θ) =
(

2θ
eθ+1

)2
, the generalized 2I2DAP J [2,j]

n,τ (σ, µ; β)

reduces to the generalized 2-iterated 2D Genocchi polynomials G [2,j]
n,τ (σ, µ; β). Thus, for

J1(θ) = J2(θ) =
(

2θ
eθ+1

)2
in the expressions (35), (39) and (48), the corresponding op-
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erational connection, generating function and explicit form for the generalized 2I2DGP
G [2,j]

n,τ (σ, µ; β) are as follows:(
β − µ

∂j

∂σj

)−τ

{G [2]
n (σ)} = G [2,j]

n,τ (σ, µ; β) (73)(
2θ

eθ+1

)2
exp(σθ)

(β − µθ j)τ
=

∞

∑
n=0

G [2,j]
n,τ (σ, µ; β)

θn

n!
(74)

G [2,j]
n,τ (σ, µ; β) = n!

[ n
j ]

∑
p=0

(τ)p µp

p! (n − jp)! βp G
[2]
n−jp(σ). (75)

The first few polynomials of the generalized 2I2DGP G [2,j]
n,τ (σ, µ; β) are as follows:

G [2,j]
0,τ (σ, µ; β) = 0,

G [2,j]
1,τ (σ, µ; β) = 0,

G [2,j]
2,τ (σ, µ; β) = 4β−τ ,

G [2,j]
2,τ (σ, µ; β) = (4σ − 8)β−τ .

Similarly, all other corresponding results are established for the other mixed polyno-
mials coming under the umbrella of the generalized 2I2DAP family.

5. Conclusions

This research extends the groundwork laid by [7] and introduces a fresh set of the
generalized 2I2DAP, denoted as J [2,j]

n,τ (σ, µ; β), utilizing fractional operators. In Section 2,
we delineate the operational guidelines according to Theorem 1, establish the generating
expression per Theorem 2, and furnish explicit formulations as presented in Theorems 3–5,
along with pertinent remarks detailing their special instances. Section 3 is devoted to
validating the monomiality principle for these polynomials and deriving the recurrence
relations for the generalized 2-iterated 2D Appell polynomials. In Section 4, we showcase
the broad applicability of the outcomes outlined in Section 2 by providing analogous find-
ings for generalized “2-iterated 2D Bernoulli, Euler, and Genocchi polynomials”. These
specialized polynomials, linked with Appell polynomials, hold significant sway in both
mathematical and physical realms. Notably, their ties to quantum mechanics and prob-
ability theory, particularly to the normal distribution, underscore their importance in
probability theory.

The use of operational methodologies is exceedingly important when it comes to
creating new sets of functional equations and fully understanding their inherent qualities,
which can include both standard and specialized functions. The remarkable contributions
made by researchers like Dattoli et al. (as seen in works such as [10,12,17,18]) serve as
a prime example of just how crucial operational methods are to the analysis of special
functions and their practical implications.

Possible avenues for future research include exploring symmetric identities and de-
terminant forms and investigating the ∆h and degenerate forms associated with the poly-
nomials mentioned above. Another potential direction is to consider implicit summation
equations to gain additional insights. Moreover, validating the monomiality principle
and examining the sequence of upward and downward operators more closely may be
worthwhile, as these could provide fruitful opportunities for further observations.
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