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Abstract: To investigate the mechanical properties and energy evolution laws of rocks under true
triaxial unloading conditions, a study was conducted using a true triaxial rock testing system
on three different types of rocks: coal, sandy mudstone, and siltstone. The study examined the
mechanical behavior, failure patterns, and fractal dimensions of these rocks under true triaxial
unloading conditions. The tests revealed significant variations in stress–strain curves and failure
patterns among the different rock types. Observation indicated that rocks with lower peak strength
exhibited higher fractal dimensions and increased fragmentation upon failure. Subsequently, based
on the experimental data of siltstone, the impact of the unloading rate and particle size distribution
on the energy evolution under true triaxial single-sided unloading paths was further investigated
using the three-dimensional particle flow software PFC3D 6.0, revealing the micro-mechanisms of
rock energy evolution. The study revealed that when the initial stress unloading level was low, the
total energy and strain energy at the peak strength exhibited a strong linear relationship with the
unloading rate. Before the stress peak, the dissipative energy was mainly composed of frictional
energy. After the stress peak, the dissipative energy consisted of frictional energy, damping energy,
and kinetic energy. The heterogeneity of rock significantly affected the distribution of dissipative
energy, with an increase in rock heterogeneity leading to a decrease in frictional energy and an
increase in kinetic energy.

Keywords: true triaxial unloading; mechanical behavior; energy evolution; fractal dimension;
numerical simulation

1. Introduction

Before the excavation of underground engineering, the original rock mass is in a
triaxial stress state (σ1 > σ2 > σ3). The activities of engineering excavation will disrupt
the original stress equilibrium of the rock mass, leading to the redistribution of the stress
field in the rock mass. Specifically, unloading during underground engineering excavation
can cause the rock mass to experience uni-directional or bi-directional stress unloading,
changing the stress state of the surrounding rock mass from triaxial compression to uni- or
bi-directional compression [1,2]. In high-stress environments, stress unloading of the sur-
rounding rock mass may induce geological disasters, such as rockbursts, collapses, and roof
falls, which seriously threaten the safety of the engineering project [3]. Hence, it is essential
to investigate the mechanical properties, energy transformation, and fracture mechanisms
of rocks in true triaxial unloading scenarios to accurately assess and forecast the stability of
deep rock projects and ensure the security of deep underground constructions.
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In order to study the mechanical behavior and failure characteristics of rock masses
under three-dimensional unloading stress paths, numerous scholars have conducted ex-
tensive indoor triaxial tests. However, early rock loading and unloading tests primarily
focused on conventional triaxial confined compression tests. Conventional triaxial tests
can only apply axial and lateral stresses to cylindrical rock samples (σ1 > σ2 = σ3), placing
the rock in a stress state that is axisymmetric and cannot reflect the actual general stress
state experienced by the rock (σ1 ̸= σ2 ̸= σ3). This is inconsistent with the stress evolution
characteristics of rock masses caused by actual excavation disturbances.

In recent years, some researchers have begun conducting true triaxial loading and
unloading tests to gain a better understanding of rock unloading failure mechanisms. For
instance, He et al. [4] used a true triaxial unloading rockburst test system to replicate
the stress path changes caused by excavation by unilaterally unloading the minimum
principal stress to induce instantaneous rockburst failure. Feng et al. [5] studied marble and
highlighted the important role of stress paths in brittle rock failure. Li et al. [6] discovered
that the height-to-width ratio and intermediate principal stress influence the failure modes,
peak strength, and damage extent in hard rocks through true triaxial unloading tests. Zhao
et al. [7] investigated the effect of the unloading rate on granite rock failure processes, while
Du et al. [8] conducted tests on different rock types under different excavation unloading
paths, emphasizing that rock failure in true triaxial unloading tests is primarily influenced
by rock type. Si et al. [9] investigated the strength reduction effect of rockbursts under
triaxial unloading conditions and found that higher confining pressures led to a more
significant strength reduction effect in rocks, resulting in a change from shear-tension
composite failure to tensile failure.

Fractal geometry is used to describe irregular and chaotic phenomena and behaviors
in nature. Since its establishment by B.B. Mandelbrot in 1977, fractal geometry has become
an effective tool for studying the irregular, fragmented, and statistically self-similar prop-
erties of objects in nature. It was rapidly introduced into the field of rock fragmentation
studies [10–12]. In other words, the fractal dimension of fragments reflects the fracture
characteristics of rock formations, which are in response to the specific structure of the
rocks themselves and loading and unloading conditions. Therefore, the fractal dimension
not only directly reflects the fracture pattern of rocks, but also indirectly reflects the stress
state and loading/unloading path of rocks. To date, there has been a considerable amount
of research conducted on the fractal characteristics of rock fracturing under uniaxial or
triaxial compression [13–16]. Nevertheless, there is a lack of extensive research on the
fractal properties of rock fracture under true triaxial unloading conditions. For instance, Li
et al. [13] investigated how the fractal characteristics of rock surfaces relate to the proba-
bility of rock failure. Their findings indicated that rocks with a significant increase in the
fractal dimension during uniaxial compression exhibited a strong tendency for rockbursts.
Zhou et al. [14] studied the evolution of energy and fractal properties of granite samples
with different length-to-diameter ratios during dynamic compression and established a
relationship between dynamic loading parameters and the fractal dimension. In addition,
Zhang et al. [15] conducted experiments on the localization of acoustic emission events in
sandstone samples under uniaxial compression and discovered that a significant reduc-
tion in the fractal dimension could act as a precursor to buckling failure of rocks under
such conditions.

According to the laws of thermodynamics, energy conversion is a critical aspect
of material physical processes, while material destruction is a state of instability fueled
by energy. The process of rock deformation and failure involves the dissipation and
release of energy [17–20]. For instance, Li et al. [19] investigated the energy evolution
behavior of granite specimens under conventional triaxial loading and unloading paths.
They found that the total energy, strain energy, and dissipated energy of the granite
specimens exhibited different phase characteristics over time. Zhang et al. [20] conducted
tests on marble specimens using different loading paths and established a nonlinear energy
evolution model for rocks based on the interaction mechanism of energy accumulation
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and dissipation. Meng et al. [21] performed conventional triaxial compression tests at
different initial unloading levels and showed that an increase in the initial unloading level
resulted in linear increases in the total energy, strain energy, dissipated energy, and energy
dissipation rate at the peak stress location. Currently, ongoing research is mainly focused on
investigating the true triaxial energy evolution laws in the context of rockburst phenomena.
For example, Su et al. [22] conducted rockburst simulation tests on granite and found that
the kinetic energy associated with rockburst expulsion accounted for less than 1% of the
total releasable elastic strain energy before peak confinement was reached. Using 3DEC,
Sun et al. [23] performed rockburst simulations on granite under true triaxial single-sided
unloading conditions. The research results suggest that the key factors contributing to
rockburst projectile failure are the accumulation of sufficient elastic strain energy and the
achievement of a high loading rate.

Previous studies have identified various factors that influence rock unloading, such
as the stress path, unloading rate, intermediate principal stress, and rock type. However,
existing studies have primarily focused on the mechanical behavior and failure characteris-
tics of rocks under true triaxial unloading conditions, with little attention paid to the fractal
characteristics and energy evolution of rocks. The objective of this study is to conduct a true
triaxial unloading test on three representative rocks: coal, sandy mudstone, and siltstone.
By analyzing the fractal characteristics and energy conversion rules of rock fracture under
true triaxial loading and unloading conditions, we aim to gain a deeper understanding
of the damage evolution and energy transformation within the rock. This will facilitate a
more comprehensive understanding of the rupture mechanism.

2. Experimental Materials and Program
2.1. Experimental Samples and Equipment

As stated by Du et al. [8], the failure mode of rock under true triaxial unloading
conditions is dependent on the rock type. Therefore, this study selected coal, sandy
mudstone, and siltstone, three common rock types in underground tunnel engineering,
to conduct indoor single-sided unloading tests. As illustrated in Figure 1, the specimen
dimensions were 100 mm in length, width, and height, with a flatness error of ±0.05 mm
on the end face and a verticality error of ±0.25◦.
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In this study, we employed the true triaxial disturbance unloading rock testing sys-
tem, independently developed by Anhui University of Science and Technology, China, as
depicted in Figure 2. The testing system allows for three-axis independent loading and
unloading experiments, with a maximum load of 3000 kN in the X direction and 5000 kN in
the Y and Z directions. The system is equipped with mutually independent control systems,
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which allow for independent loading and unloading of different displacements and stress
rates in the three directions of X, Y, and Z. This enables the simulation of the stress changes
of a real rock mass during different loading and unloading processes. Furthermore, the test
system is also equipped with DS5 acoustic emission monitoring equipment, which allows
for the microscopic damage characteristics of rock materials to be monitored during the
test process.
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2.2. Experimental Program

Figure 3a illustrates the stress state diagram of the surrounding rocks before and
after excavation in the deeply buried tunnel. Before excavation, the surrounding rocks are
subjected to three-dimensional stress. Following excavation, the stress in the surrounding
rocks redistributes, with an increase in the tangential stress on the free face of the tunnel
rocks and an instantaneous change to zero in the radial stress [24]. It should be pointed out
that σ3, σ2, and σ1 represent the minimum principal stress, intermediate principal stress,
and maximum principal stress, respectively. The maximum principal stress, σ1, was set
along the Z direction, the intermediate principal stress, σ2, was set along the Y direction,
and the minimum principal stress, σ3, was set along the X direction. In order to simulate the
change process of surrounding rock stress after tunnel excavation, this study adopted the
experimental method of “true triaxial loading–horizontal single-sided unloading–vertical
loading”, and the loading path is shown in Figure 3b. First, the force loading control
method was employed to load σ1, σ2, and σ3 to their respective initial confining pressures
at loading rates of 60 kN/min, 40 kN/min, and 10 kN/min, respectively. Since coal is
the rock type with the lowest triaxial strength among the three types, it was assumed that
before the excavation of the coal tunnel, the coal rock structure was intact and in the elastic
stage. Therefore, the unloading stress point for this test was set not to exceed 50% of the
coal rock’s triaxial strength. Here, σ1 = 30 MPa, σ2 = 20 MPa, and σ3 = 5 MPa. Subsequently,
the σ3 direction was unloaded on one side to simulate the rapid unloading of excavation.
Finally, σ2 remained unchanged and σ1 continued to be loaded until the rock reached failure
to simulate stress concentration after excavation.
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3. Experimental Results and Analysis
3.1. Stress–Strain Curve Analysis

The stress–strain curves of various types of rocks under loading and unloading stages
are depicted in Figure 4, with the initial strain at unloading serving as the baseline for
measurement. The deformation process of different types of rocks under loading and
unloading conditions was generally consistent, including three stages: elastic, yielding,
and softening.
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1. Elastic stage (OA): In this stage, as the maximum principal stress increased, the
relationship between stress and strain showed linear growth. In triaxial compression
tests, the rock sample was initially loaded to a predetermined initial stress state. Due
to the presence of initial confining pressure, the internal pore and fracture structures
of the rock sample were compacted, and the development of new fractures during
subsequent loading was not significant. Therefore, after reaching the initial stress and
unloading, the rock sample was basically in the elastic stage.

2. Yielding stage (AB): As the maximum principal stress continued to be loaded, the
slope of the curve gradually decreased in a convex shape to peak stress, and the rock
underwent plastic deformation. In this stage, there was a qualitative change in the
development of microcracks within the rock sample, manifested by the initiation and
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expansion of new fractures. As stress continued to increase, the intensity and length
of new fractures increased, while the overall stiffness of the rock sample gradually
decreased. This resulted in a gradual decrease in the slope of the stress–strain curve.

3. Softening stage (BC): After reaching peak strength, the internal structure of the speci-
men was damaged, causing stress to gradually decrease as strain continued to rise,
resulting in a negative slope of the curve. Stress decreased to residual stress levels
and then remained constant, while strain continued to increase until the specimen
underwent noticeable breakdown, and the curve tended to develop along a horizontal
path. Due to the low initial unloading level in this study, the single-sided transient
unloading in the X direction did not directly cause rock failure. In contrast, constant
loading was maintained in the Y direction, and continued loading in the Z direction
resulted in rock failure. Therefore, under certain confining pressure, frictional forces
were formed between the fractured rock blocks, providing residual bearing capacity.

From Figure 4, it is evident that there were significant differences in the stress–strain
curves of different types of rocks. These differences can be attributed to inherent differences
in their mineral composition, grain size, and structural characteristics. In the context of
single-sided unloading conditions, the peak strengths observed in coal, sandy mudstone,
and siltstone were 64.68 MPa, 116.13 MPa, and 119.00 MPa, respectively, showing an
increasing trend. The peak strains at instability for different types of rocks varied, but
the overall trend was that as the axial stress increased, the maximum principal strain, ε1,
continued to increase, while the intermediate principal strain, ε2, showed a decreasing
trend, indicating dilation. This phenomenon can be attributed to the constant intermediate
principal stress during the loading and unloading process, and the Z-direction compression
led to X- and Y-direction expansion due to the Poisson effect. In addition, the X-direction
unloading surface acted as the primary expansion surface, resulting in the expansion in the
Y direction being less than that in the X direction.

3.2. Failure Pattern Analysis

Figure 5 illustrates the variation in macroscopic failure patterns of different rock types
under true triaxial unloading conditions. In a single-sided unloading stress state, it was
observed that all types of surrounding rock mainly deformed along the direction of the
minimum principal stress, X1, while the fracture surface was parallel to the intermediate
principal stress Y direction. Rock failure was mainly concentrated near the unloading
free surface X1, forming distinct V-shaped failure pits accompanied by a large number of
rock fragments and debris. Small V-shaped cracks were also observed near the X2 surface,
but no rock detachment was observed. In the middle of the X-direction loading surfaces,
mainly shear cracks were present, with fewer fine cracks.
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(b) sandy mudstone, and (c) siltstone.

Under single-sided unloading conditions, the coal was most severely damaged. Due
to the presence of numerous original cracks in the coal body and its high heterogeneity, the
internal damage was deepest during failure, resulting in deep V-shaped pits with rough



Fractal Fract. 2024, 8, 387 7 of 19

fracture surfaces and a large amount of small fragments. The overall failure patterns of
sandy mudstone and siltstone were similar, with the interior of the V-shaped pits being
smoother and containing more powder and debris. However, the fractured rock fragments
inside the V-shaped failure pits of siltstone were larger, indicating overall tensile failure
characteristics, while the failure of sandy mudstone was more fragmentary, with rougher
fracture surfaces compared to siltstone.

To quantitatively analyze the degree of rock damage for different rock types, fractal
dimensions were used for analysis in this study. The advantage of fractal theory lies
in its ability to discover potential patterns in disordered geometric bodies, achieving a
combination of disorder and order. To assess the effect of unloading on the fracture behavior
of different rock types, a sieving tool was used to collect and classify the debris generated in
the experiments into nine particle sizes. The specific grades and sieving results are shown
in Figure 6. After weighing the debris for each particle size, different fractal dimensions of
rock fragments were calculated by using the mass data of debris of different particle sizes
with the reference standard of placing a 10 mm black square.
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We calculated the fractal dimension of the rock using Equation (1) [25]:

D = 3 − α (1)

where,

α =
lg(MR/M)

lgR
(2)

where α is the slope of MR/M—R in a double logarithmic coordinate system, MR is the
mass of the debris when the equivalent side length is R, and M is the total mass of the
debris in the computational scale.

Research has shown that the self-similarity of fragments may only exist in a specific
local area [25,26]. When statistical analysis was performed on fragments within a range of
70 mm, the results showed good consistency. Figure 7 shows the relationship between the
lg(MR/M) and lgR of fragments after different rock unloading experiments, as well as the
linear fitting, as shown in Equation (3):

y = 0.312x − 1.341 R2 = 0.836 Coal
y = 0.457x − 1.650 R2 = 0.870 Sandy mudstone
y = 0.618x − 2.156 R2 = 0.803 Siltstone

(3)
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As the statistical diameter of the fragments increased, the relationship between
lg(MR/M) and lgR exhibited a good linear correlation, with R2 values all above 0.8. The
fractal dimension, D, ranking of rocks was as follows: coal > sandy mudstone > siltstone.
Studies indicated that the larger the fractal dimension, the higher the degree of fragment
crushing, indicating a narrower range of quality distribution for each grade, with fewer
large fragments and more small fragments. The fractal dimension of coal was the largest,
indicating that the quality variation range of larger fragments at different particle sizes was
smaller, and the cracks were more fully developed. Therefore, the degree of fragmentation
of unloading rocks was inversely related to their hardness, i.e., the smaller the peak strength
of the rock, the larger the fractal dimension of the final fragmented material, the higher the
fragmentation degree, and the more fully developed the crack in the failure zone. These
experimental results provide a certain reference base for underground construction in
different types of rock.

4. Numerical Simulation

At present, the methods of laboratory tests and numerical simulation methods have
been widely applied in research on rock energy. However, it is important to note that
indoor testing can often only determine a single or limited energy parameters, such as
elastic strain energy and dissipation energy, which are not sufficient to fully describe the
dynamic changes in rock energy during true triaxial loading and unloading processes.
This process involves the conversion between multiple forms of energy (including elas-
tic strain energy, dissipation energy, kinetic energy, frictional energy, and other related
energies), as well as the proportional relationships between these energy components
relative to the total system energy, details that are critical to a deeper understanding of
rock failure mechanisms. Fortunately, advanced numerical simulation techniques, such
as Discrete Element Method (DEM) [27], Finite Element Method (FEM) [28], and Finite
Discrete Element Method (FDEM) [29], have proven effective in complementing the limita-
tions of experimental methods. In particular, DEM can not only effectively visualize the
process of rock fracturing but can also accurately quantify the conversion and distribution
of different energy components. Numerous studies have confirmed the effectiveness of
DEM in analyzing the energy evolution characteristics during rock deformation and failure
processes [30].

4.1. Numerical Models and Schemes

Under the same loading (unloading) conditions, the differences in mechanical proper-
ties exhibited by coal, sandy mudstone, and siltstone used in the test are mainly attributed
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to their inherent heterogeneity. From a microscopic perspective, rock heterogeneity is
mainly due to geometric heterogeneity caused by grain shape and size, mechanical prop-
erty heterogeneity caused by elastic properties at grain contacts, and initial microcrack
heterogeneity caused by features such as microcracks or grain boundary voids [31,32].
Extensive research indicates that during loading, the geometric structural heterogeneity
of rocks at the mineral grain scale can induce significant non-uniform stress distribution
within the material, and particularly when microcracks begin to interact, the geometric
structural heterogeneity can influence the internal stress state of the rock and potentially
lead to material yield [33]. In addition, mineral grains, as the basic units of which rocks
are composed, are the physical basis of rock heterogeneity and a primary factor inducing
micro-scale heterogeneity in rocks. Therefore, in this study, we constructed numerical
models considering different grain size distributions, focusing on analyzing the effect of
geometric heterogeneity on the mechanical behavior and energy properties of different
rock types under true triaxial unloading conditions.

A series of numerical simulations were conducted utilizing the Particle Flow Code soft-
ware PFC3D, developed by Cundall [34]. Based on the Discrete Element Method, PFC3D is
capable of more accurately simulating the microscopic structure and particle interactions
of rock and similar granular materials. In PFC3D, a range of contact models are provided,
with the linear parallel bond model being widely adopted for effectively reproducing the
behavior of rock-like materials during tension or shear fracture simulations [35]. Conse-
quently, this study employed the linear parallel bond model to characterize the bonding
between rock particles. The numerical computational model will maintain consistency
with the dimensions of laboratory test specimens, specifically a cubic model measuring
100 mm × 100 mm × 100 mm. Figure 8 illustrates schematic diagrams of the differ-
ent PFC3D models utilized in this study. Three different particle size distributions were
considered: dmax/dmin = 1.3, 1.7, and 2.0. The minimum particle size, dmin, was fixed at
1.1 mm. It should be noted that the larger the value of dmax/dmin, the stronger the geometric
heterogeneity of the rock.
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In this experiment, the single-sided transient unloading of rock mass excavation was
investigated. It is well established that the unloading rates resulting from different methods
of cave excavation vary, which in turn affects the distribution and dynamic response
characteristics of the surrounding rock. In order to observe the influence of the unloading
rate on the energy conversion law during the unloading and damage process of rock
excavation, five different unloading rates were set in the numerical simulation: 5 kN/min,
10 kN/min, 25 kN/min, 100 kN/min, and instantaneous unloading.

4.2. Calibration of Micro-Parameters

In this study, the triaxial unloading stress–strain curves obtained from laboratory
experiments on siltstone were used as a basis for adjusting the micro-parameters. The nu-
merical model used for calibration was a 100 mm cube containing a total of 383,310 particles
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and 190,168 contact surfaces, with particle radii ranging from 1.1 to 1.9 mm. The micro-
parameters were adjusted continuously using a “trial-and-error” method until the macro-
scopic mechanical parameters produced by the numerical simulation matched those ob-
tained from laboratory experiments. The parameters of the calibrated model are shown in
Table 1. Figure 9 compares the stress–strain curves and failure modes obtained from nu-
merical simulations and laboratory experiments. The blue lines indicate shear cracks, while
the red portion represents tensile cracks in the numerical model. Figure 9 illustrates that
the stress–strain curve of the numerical simulation aligned closely with the experimental
curve, and the failure modes were also comparable, indicating that the calibrated micro-
parameters in this study effectively reflected the macroscopic mechanical behavior of rock
materials in the laboratory. It is noteworthy that during the true triaxial loading–unloading
simulation process, the loading was conducted using the force control mechanism built
into PFC to align with the experimental setup.

Table 1. Micro-parameters of the numerical model.

Particle Parameters Value Parallel Bond Parameters Value

Density (kg·m−3) 3178 Parallel bond modulus (GPa) 2.0
Young’s modulus (GPa) 6.3 Parallel bond tensile strength (MPa) 26.6 ± 4

Friction coefficient 0.3 Parallel bond shear strength (MPa) 16.6 ± 2
Minimum particle radius (mm) 1.1 Parallel bond stiffness ratio 1.5
Maximum particle radius (mm) 1.9

Ratio of normal to shear stiffness 0.8
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4.3. Energy Mechanism in PFC

The discrete element software PFC enables the tracking of changes in energy storage
and release during the simulation process, facilitating a more direct analysis of test results
from an energy perspective. The laws of thermodynamics posit that energy conversion is
the intrinsic essence of changes in the physical characteristics of matter, and rock damage
can be regarded as state instability driven by energy. In the absence of heat exchange with
the external environment, the total input strain energy generated by the external force can
be absorbed by the rock, resulting in a total absorbed energy, U, as follows:

U = Ue + Ud (4)

where Ue represents releasable elastic strain energy, and Ud is the dissipated energy, which
is dissipated in the initiation, expansion, and penetration of cracks.
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In the PFC program, the boundary energy, U, is defined as the total work performed
by the loading plate and wall surface on the specimen. The dissipated energy is comprised
of particle kinetic energy, sliding friction energy, and damping energy. The strain energy
is further divided into parallel adhesion strain energy, Upb, and particle strain energy, Uc;
that is,

Ue = Uc + Upb (5)

Uc =
1
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where Nc and Npb represent the number of particle contacts and parallel bonds, respectively.
The variable i represents the i-th contact or parallel bond, Fn

i and Fn
i are the normal forces of

contact and parallel bond, respectively, while Fs
i and Fs

i are the tangential forces of contact
and parallel bond, respectively. Here, kn and k

n
are the normal stiffnesses of contact and

parallel bond, respectively, while ks and k
s

are the tangential stiffnesses of contact and
parallel bond, respectively. Mn

i and Ms
i are the parallel bond bending moment and torque,

A is the cross-sectional area of the parallel bond, and I and J are the moment of inertia and
extreme moment of inertia of the parallel bond cross-section, respectively.

4.4. Energy Evolution Analysis

Table 2 depicts the correlation between total energy and stress–strain. From the table,
it can be observed that as the unloading rate increased, the stress–strain curve tended to
become smoother, indicating a more stable crack development during the failure process.
When the unloading rate was low, the stress–strain curve exhibited fluctuations, which
may be attributed to frequent local stress fluctuations caused by long-term single-sided
unloading and stress concentration, resulting in the degradation of unstable areas and
crack propagation. Furthermore, it can be observed from the table that under identical
particle size distribution coefficient conditions, the peak strength increased with an in-
crease in the unloading rate. Conversely, under identical unloading rate conditions, peak
strength was observed to decline with an increase in the particle size distribution coeffi-
cient. For instance, with a particle size distribution coefficient of 1.3, the peak strengths
of specimens unloaded at rates of 5 kN/min, 10 kN/min, 25 kN/min, 100 kN/min, and
instantaneous unloading were 111.86 MPa, 113.02 MPa, 117.60 MPa, 125.04 MPa, and
125.47 MPa, respectively. When the unloading rate was fixed at 10 kN/min, the peak
strengths of specimens with particle size coefficients of 1.3, 1.7, and 2.0 were 113.02 MPa,
101.42 MPa, and 97.29 MPa, respectively.

Table 2. Total energy evolution curves at different unloading rates.

dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0

5
kN

/m
in

Fractal Fract. 2024, 8, 387 12 of 21 
 

 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

 dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 

   

 1 2 3 

10
 k

N
/m

in
 

   

 4 5 6 

Fractal Fract. 2024, 8, 387 12 of 21 
 

 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

 dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 

   

 1 2 3 

10
 k

N
/m

in
 

   

 4 5 6 

Fractal Fract. 2024, 8, 387 12 of 21 
 

 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

 dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 

   

 1 2 3 

10
 k

N
/m

in
 

   

 4 5 6 



Fractal Fract. 2024, 8, 387 12 of 19

Table 2. Cont.

dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0

10
kN

/m
in

Fractal Fract. 2024, 8, 387 12 of 21 
 

 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

 dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 
   

 1 2 3 

10
 k

N
/m

in
 

   

 4 5 6 

Fractal Fract. 2024, 8, 387 12 of 21 
 

 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

 dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 
   

 1 2 3 

10
 k

N
/m

in
 

   

 4 5 6 

Fractal Fract. 2024, 8, 387 12 of 21 

that both boundary energy and strain energy showed a nonlinear increasing trend. In the 
initial loading stage of unloaded rock, the energy accumulation rate was slow, with most 
of the absorbed energy stored elastically in the rock. Consequently, the growth rate of 
dissipation energy was lower than that of elastic strain energy, used for microcrack 
compression and frictional loss. As the loading process continued, the rock entered the 
stage of elastic deformation, and the slope of the energy change curve gradually increased 
before stabilizing at a certain level, indicating a stable transitional period of energy in the 
rock. Approaching the failure stage, numerous microcracks began to form and develop in 
the rock, with the friction between these new microcracks leading to the release of a 
significant amount of energy. Consequently, there was a noticeable increase in the growth 
rate of dissipation energy, and the accumulation rate of elastic strain energy began to slow 
down. Upon reaching the peak strength load, the specimen began to undergo damage, 
resulting in a decrease in the rate of elastic strain energy accumulation. In the post-peak 
stage, there was a rapid increase in dissipation energy, surpassing the growth of strain 
energy, indicating that the material was undergoing macroscopic structural changes and 
rapid energy release. 

Table 2. Total energy evolution curves at different unloading rates. 

dmax/dmin = 1.3 dmax/dmin = 1.7 dmax/dmin = 2.0 

5 
kN

/m
in

 
1 2 3

10
 k

N
/m

in
 

4 5 6

25
kN

/m
in

Fractal Fract. 2024, 8, 387 13 of 21 
 

 

25
 k

N
/m

in
 

   

 7 8 9 

10
0 

kN
/m

in
 

   

 10 11 12 

Tr
an

si
en

t u
nl

oa
di

ng
 

   

 13 14 15 

For models with the same grain size coefficient, there was a slight fluctuation in the 
strain energy proportion at the peak strength point with an increase in unloading rate, 
showing an overall trend of first increasing and then decreasing. With a fixed unloading 
rate, an increase in the grain size distribution coefficient of the model resulted in a gradual 
decrease in strain energy proportion at the peak strength point. While there was little 
variation in the strain energy proportion at the peak strength among different models, 
significant changes occurred in the total strain energy, elastic strain energy, and dissipated 
energy at peak stress. Figure 10 illustrates the relationship between total energy, elastic 
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showing an overall trend of first increasing and then decreasing. With a fixed unloading 
rate, an increase in the grain size distribution coefficient of the model resulted in a gradual 
decrease in strain energy proportion at the peak strength point. While there was little 
variation in the strain energy proportion at the peak strength among different models, 
significant changes occurred in the total strain energy, elastic strain energy, and dissipated 
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For models with the same grain size coefficient, there was a slight fluctuation in the 
strain energy proportion at the peak strength point with an increase in unloading rate, 
showing an overall trend of first increasing and then decreasing. With a fixed unloading 
rate, an increase in the grain size distribution coefficient of the model resulted in a gradual 
decrease in strain energy proportion at the peak strength point. While there was little 
variation in the strain energy proportion at the peak strength among different models, 
significant changes occurred in the total strain energy, elastic strain energy, and dissipated 
energy at peak stress. Figure 10 illustrates the relationship between total energy, elastic 

In terms of the real-time evolution curve of total energy, the changes in energy can be
classified into two stages: accumulation and release. Prior to reaching the peak strengths
of specimens, boundary energy mainly converted into strain energy. Using models with
a particle size distribution coefficient of 2.0 as an example, it can be observed that both
boundary energy and strain energy showed a nonlinear increasing trend. In the initial
loading stage of unloaded rock, the energy accumulation rate was slow, with most of the
absorbed energy stored elastically in the rock. Consequently, the growth rate of dissipation
energy was lower than that of elastic strain energy, used for microcrack compression and
frictional loss. As the loading process continued, the rock entered the stage of elastic defor-
mation, and the slope of the energy change curve gradually increased before stabilizing at
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a certain level, indicating a stable transitional period of energy in the rock. Approaching
the failure stage, numerous microcracks began to form and develop in the rock, with the
friction between these new microcracks leading to the release of a significant amount of
energy. Consequently, there was a noticeable increase in the growth rate of dissipation
energy, and the accumulation rate of elastic strain energy began to slow down. Upon
reaching the peak strength load, the specimen began to undergo damage, resulting in a
decrease in the rate of elastic strain energy accumulation. In the post-peak stage, there was
a rapid increase in dissipation energy, surpassing the growth of strain energy, indicating
that the material was undergoing macroscopic structural changes and rapid energy release.

For models with the same grain size coefficient, there was a slight fluctuation in the
strain energy proportion at the peak strength point with an increase in unloading rate,
showing an overall trend of first increasing and then decreasing. With a fixed unloading
rate, an increase in the grain size distribution coefficient of the model resulted in a gradual
decrease in strain energy proportion at the peak strength point. While there was little
variation in the strain energy proportion at the peak strength among different models,
significant changes occurred in the total strain energy, elastic strain energy, and dissipated
energy at peak stress. Figure 10 illustrates the relationship between total energy, elastic
strain energy, and unloading rate for various grain size distribution coefficient models under
peak stress. Under the same grain size distribution coefficient conditions, the total energy
and strain energy increased approximately linearly with the increase in unloading rate.
This phenomenon is primarily due to rocks experiencing long-term unloading disturbances
at low unloading rates, leading to uneven stress changes during unloading, as evidenced by
the stress–strain curve. At high unloading rates, the influence of unloading disturbances on
the loading process diminished, resulting in more uniform stress adjustment and reduced
sudden unstable expansion, leading to less damage to the rocks. Additionally, it can be
observed from the graph that, under fixed unloading rates, the grain size distribution
coefficient of the model affected the energy evolution characteristics of rock samples. As
the heterogeneity of the samples increased, there was a decrease in the total energy and
strain energy stored at peak stress.
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particle size distribution models: (a) boundary energy and (b) strain energy.

Tables 3 and 4 exhibit the evolution curves of strain energy and dissipation energy at
various unloading rates. It is noticeable from the tables that strain energy was predomi-
nantly stored and accumulated in the form of particle contact strain energy and parallel
bond strain energy. Once the peak strength was reached, the parallel bond strain energy
was released before the particle contact strain energy, indicating that the parallel bond strain
energy between particles must be overcome before microcracks develop. Subsequently,
microcracks expanded under the influence of particle contact strain energy. The frictional
energy increased with the degree of frictional slip of the microcracks and increased steeply
at the peak stress point due to macroscopic crack penetration. Prior to the peak stress point,



Fractal Fract. 2024, 8, 387 14 of 19

dissipation energy consisted mainly of frictional energy, with damping energy and kinetic
energy being negligible. After peak stress, the dominance of frictional energy in dissipation
energy persisted owing to the significant increase in the number of microcracks and their
propagation and penetration. Moreover, both damping energy and kinetic energy showed a
rapid growth trend. Furthermore, for different particle size distribution coefficient models,
it was observed that the dissipated energy increased with the increase of the unloading
rate. Specifically, frictional energy was positively correlated with the unloading rate, while
kinetic energy was negatively correlated with it. For instance, in a model with a coefficient
of 1.4, at 85% of the peak strength in the post-peak stage, the corresponding frictional
energies for unloading rates of 5 kN/min, 10 kN/min, 25 kN/min, 100 kN/min, and
instantaneous unloading were 319.9 J, 355.1 J, 455.1 J, 540.4 J, and 609.1 J, respectively,
and the corresponding kinetic energies were 95.2 J, 87.2 J, 80.9 J, 76.6 J, and 67.2 J. This
indicates that the more kinetic energy was converted into particles and rock block ejection,
the less fully developed the cracks in the specimen were. Under a fixed unloading rate,
frictional energy decreased with an increase in the rock particle size distribution coefficient,
while kinetic energy increased with it. This suggests that the heterogeneity of rocks had a
significant impact on the distribution of dissipative energy.

Table 3. Strain energy evolution curves at different unloading rates.
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5. Discussion 
1. Rocks are formed by the mutual adhesion of internal mineral particles, and the 

geometric and mechanical characteristics of mineral particles and adhesion, 
including particle size, shape, arrangement, adhesion contact relationships, adhesion 
fracture criteria, etc., determine the macro-mechanical properties of rock media, such 
as fracture characteristics. This study examined how micro-factors influence the 
mechanical properties and energy evolution of rocks under true triaxial unloading 
paths, with a focus on particle size distribution. Due to the complexity of micro-
factors, further discussion is needed on spatial factors, such as mineral composition, 
adhesion contact relationships, and adhesion fracture criteria, not covered in this 
paper, as these variations in micro-factors have a significant impact on macro-
mechanical properties. 

2. The mechanical properties and failure process of rock samples can be affected by 
several factors, including intermediate principal stress, unloading stress level, and 
unloading rate. Previous studies have indicated that as the unloading rate decreases, 
the peak strength of rocks and particle ejection kinetic energy decrease. This study 
reached a conclusion that is entirely at odds with previous findings. The discrepancy 
can be attributed to the unloading level. The unloading level selected for this study 
was below the rock’s damage stress, and single-sided unloading did not result in rock 
failure. The failure of the rocks occurred when the axial pressure continued to 
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5. Discussion

1. Rocks are formed by the mutual adhesion of internal mineral particles, and the geo-
metric and mechanical characteristics of mineral particles and adhesion, including
particle size, shape, arrangement, adhesion contact relationships, adhesion fracture
criteria, etc., determine the macro-mechanical properties of rock media, such as frac-
ture characteristics. This study examined how micro-factors influence the mechanical
properties and energy evolution of rocks under true triaxial unloading paths, with
a focus on particle size distribution. Due to the complexity of micro-factors, further
discussion is needed on spatial factors, such as mineral composition, adhesion con-
tact relationships, and adhesion fracture criteria, not covered in this paper, as these
variations in micro-factors have a significant impact on macro-mechanical properties.

2. The mechanical properties and failure process of rock samples can be affected by
several factors, including intermediate principal stress, unloading stress level, and
unloading rate. Previous studies have indicated that as the unloading rate decreases,
the peak strength of rocks and particle ejection kinetic energy decrease. This study
reached a conclusion that is entirely at odds with previous findings. The discrepancy
can be attributed to the unloading level. The unloading level selected for this study
was below the rock’s damage stress, and single-sided unloading did not result in rock
failure. The failure of the rocks occurred when the axial pressure continued to increase
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after unloading. Consequently, the impact of the unloading level will be the focus of
the next stage of research.

6. Conclusions

This research primarily investigated the mechanical characteristics and energy evolu-
tion laws of rocks under true triaxial unloading conditions. Coal, sandstone, and siltstone
were chosen as representative rock types for the true triaxial single-sided unloading tests
conducted along the vertical loading–horizontal constant load–radial unloading path using
a true triaxial disturbance unloading rock testing system. Furthermore, the influence of rock
particle size distribution and the unloading rate on energy evolution under true triaxial
single-sided unloading was investigated using PFC3D. The findings of this study led to the
following conclusions:

1. The stress–strain curves and failure modes of different types of rocks varied signif-
icantly under true triaxial unloading conditions. In this study, coal had the lowest
peak strength and suffered the most severe damage, while sandstone had the high-
est peak strength and a more intact failure mode. The peak strength of rocks was
negatively correlated with fractal dimension, meaning that rocks with lower peak
strength exhibited larger final fractal dimensions of fragments and higher degrees of
fragmentation.

2. The unloading rate had a significant impact on the mechanical behavior and energy
evolution of rocks. As the unloading rate increased, the peak strength, total energy,
strain energy, and dissipation energy of rocks all showed an upward trend. It was
noted that frictional energy played a key role in dissipation energy, with frictional
energy positively correlated with the unloading rate, while kinetic energy was neg-
atively correlated with the unloading rate. Additionally, under the same particle
size distribution coefficient conditions, the total energy and strain energy of rocks
approximately increased linearly with the increasing unloading rate.

3. The heterogeneity of rocks played a crucial role in influencing the energy evolution
characteristics of rock samples. As the heterogeneity of the sample increased, the
total energy and strain energy stored at peak stress decreased. Additionally, the
heterogeneity of rocks had a considerable influence on the distribution of dissipated
energy. The frictional energy of a rock sample decreased as the grain size distribution
coefficient increased, while the kinetic energy of the same sample increased as the
grain size distribution coefficient increased.
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