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Abstract: A fully discrete scheme is proposed for numerically solving the strongly nonlinear time-
fractional parabolic problems. Time discretization is achieved by using the Grünwald–Letnikov
(G–L) method and some linearized techniques, and spatial discretization is achieved by using the
standard second-order central difference scheme. Through a Grönwall-type inequality and some
complementary discrete kernels, the optimal time-stepping error estimates of the proposed scheme
are obtained. Finally, several numerical examples are given to confirm the theoretical results.
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1. Introduction

In this paper, we present time-stepping error estimates of the Grünwald–Letnikov (G–
L) difference scheme for the following strongly nonlinear time-fractional parabolic problem

∂α
t u = q(u)

d

∑
i=1

∂2u
∂x2

i
+ f (u), (x, t) ∈ Ω × (0, T] (1)

with homogeneous Dirichlet boundary conditions and the initial condition u(x, 0) = u0(x),
where x ∈ Ω ⊂ Rd (d = 1, 2, 3), q(u) ≥ 0, f (u) ∈ C(R) is the nonlinear function, and ∂α

t u is
the Riemann–Liouville fractional derivative with 0 < α < 1. The fractional equations have
been widely used as mathematical models in the fields of physics [1–4], economics [5,6],
biology [7,8], and so on.

In recent years, there have been plenty of numerical results on the error estimates
of different schemes, e.g., L1 schemes [9,10], L2-type schemes [11,12], fast time-stepping
schemes [13,14], and so on. These convergence results usually give maximum errors
for time-fractional problems. Recently, many numerical methods have given a lower
convergence order as t tends to zero and a higher convergence order as t is far away from the
beginning. This results in investigations into the time-stepping error estimates of different
numerical algorithms. For example, Gracia et al. [15] studied the time-stepping error
estimates of the L1 scheme on uniform time mesh to solve the linear fractional convection–
diffusion equation and proved that the time error estimate is proportional to τtα−1

n , where
tn = nτ, with τ being the time step. Kopteva [16] further considered the time-stepping
error estimate of the L1 scheme on quasi-uniform temporal mesh. Li et al. [17] developed
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some fractional discrete Grönwall-type inequalities and obtained a time-stepping error
estimate of the L1 scheme under general regularity assumptions. Yan et al. [18] obtained
time-stepping error estimates of a modified L1 scheme. Jin et al. [19] obtained time-stepping
error estimates of the k-th backward differentiation formula (BDF) convolution quadrature
method for solving time-fractional equations. Zhang et al. [20] studied the time-stepping
error estimates of the fractional BDF method and the fractional Crank–Nicolson-type
method. Li et al. [21] further improved the results by using a novel discrete fractional
Grönwall-type inequality. Santra and Mohapatra [22] solved the multi-term time-fractional
differential equation by using the L1 scheme and obtained related time-stepping error
estimates. Recently, Chen et al. [23] studied the time-stepping error estimates of the G–L
scheme for the equations ∂α

t u + c(t)u(t) = f (t), where c(t) > 0. In the case of c(t) > 0,
the errors decrease in time and the principle of induction can be applied. The analytical
methods do not work for the general nonlinear fractional differential Equation (1). To the
best of the authors’ knowledge, the time-stepping error estimates of the G–L scheme with
maximum norm are still missing for nonlinear time-fractional problems.

In this paper, we propose a fully discrete linearized numerical scheme to solve the
nonlinear fractional differential Equation (1). In the temporal direction, the G–L method
and the linearized method are applied. In the spatial direction, the second-order central
difference scheme is used to approximate the spatial derivatives. A sharp time-stepping
error estimate of the proposed scheme is obtained. The results imply that the temporal
convergence order is of τα as t tends to 0 and of 1 as t is far away from t = 0. Numerical
results are given to confirm the theoretical results.

The key to the proof of the convergence results is the complementary discrete ker-
nels, which were proposed to investigate the maximum errors of L1-type schemes for
time-fractional problems [10,24]. In this study, we continue to study the complementary
discrete kernels for the G–L scheme and obtain time-stepping truncation errors for the time-
fractional problems. Thanks to the time-stepping truncation errors and a Grönwall-type
inequality, we obtain the optimal time-stepping error estimates of the G–L scheme for the
nonlinear problems.

The paper is organized as follows: In Section 2, we construct the fully discrete nu-
merical scheme for problems (1). In Section 3, the convergence results of the scheme are
rigorously proved. In Section 4, several numerical examples are provided to confirm the
theoretical results in the paper. Throughout the paper, we declare that C and Ci (i = 1, 2)
have different values in different places.

2. Numerical Scheme

In this section, we derive a full discrete scheme for solving Equation (1) numerically.
Without loss of generality, we set d = 2 and Ω = (a, b)2.

Let τ = T/N be the time step and hx = (b − a)/Mx, hy = (b − a)/My the mesh-
size, where N, Mx, and My are positive integers. Denote tn = nτ, n = 0, 1, 2, . . . , N,
xi = a + ihx, i = 0, 1, 2, . . . , Mx, yj = a + jhy, j = 0, 1, 2, . . . , My, Ωτ = {tn | 0 ≤ n ≤ N},
Ω̄h = {(xi, yj) | 0 ≤ i ≤ Mx, 0 ≤ j ≤ My}, Ωh = Ω̄h ∩ Ω, ∂Ωh = Ω̄h ∩ ∂Ω,
ω = {(i, j) | (xi, yj) ∈ Ωh}, ∂ω = {(i, j) | (xi, yj) ∈ ∂Ωh}, ω̄ = ω ∪ ∂ω. Let
Uh = {v = (vi,j) | 0 ≤ i ≤ Mx, 0 ≤ j ≤ My} be the grid function space which is defined
on Ω̄h. For v ∈ Uh, we introduce some notations:

δ2
△vi,j =

1
h2

x
(vi+1,j − 2vi,j + vi−1,j) +

1
h2

y
(vi,j+1 − 2vi,j + vi,j−1), ∥v∥∞ = max

1≤i≤Mx
1≤j≤My

|vi,j|.

As in ([25], p. 6, (16)), we assume that the solution u(x, y, t) of (1) has the following form:

u(x, y, t) = ∑
(j,k)α

γj,ktj+kα φ(x, y) + Y(x, y, t), 0 ≤ t ≤ T, (2)
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where (j, k)α := {(j, k) : j, k ∈ N0, j + kα < 2}, N0 = {0, 1, 2, · · · }, γj,k are some con-
stants, Y(x, y, t) ∈ C2[0, T]. Here, the functions φ(x, y) and Y(x, y, t) are smooth in the
spatial direction.

The G–L approximation ([23], p. 54, (2.5)) of ∂α
t u(·, tn) is as follows:

∂α
t u(·, tn) ≈ A0u(·, tn)−

n−1

∑
k=1

(An−k−1 − An−k)u(·, tk)− An−1u(·, t0)

=
n

∑
k=1

An−k
(
u(·, tk)− u(·, tk−1)

)
:= Dα

τu(·, tn), (3)

where Ak−1 = 1
τα d(α)k with d(α)k = Γ(k−α)

Γ(1−α)Γ(k) for k ≥ 1. The truncation errors of the G–L
approximation is stated below.

Lemma 1 ([23], p. 56, Lemma 3.2). Under the assumption (2), it holds that

|∂α
t u(·, tn)− Dα

τu(·, tn)| ≤ C(n−2 + τγ−αn−(1+α−γ)), γ = min{1, 2α}, 1 ≤ n ≤ N.

Now, we begin to present the fully discrete scheme of (1). First, we consider Equation (1)
at the grid point (xi, yj, tn). For (i, j) ∈ ω and 1 ≤ n ≤ N, it holds that

Dα
τu(xi, yj, tn) = q(u(xi, yj, tn−1))δ

2
△u(xi, yj, tn) + f (u(xi, yj, tn−1)) + Rn

i,j, (4)

where Rn
i,j is the truncation error. Using Lemma 1, one can obtain

Rn
i,j ≤ C

(
(h2

x + h2
y) + τ + n−2 + τγ−αn−(1+α−γ) + τ(h2

x + h2
y)
)

. (5)

With the notation Un
i,j = u(xi, yj, tn), Equation (4) can be rewritten as

Dα
τUn

i,j = q(Un−1
i,j )δ2

∆Un
i,j + f (Un−1

i,j ) + Rn
i,j. (6)

Omitting small term Rn
i,j and replacing Un

i,j with un
i,j, we obtain the following numerical

scheme: for (i, j) ∈ ∂ω, 0 ≤ n ≤ N,

Dα
τun

i,j = q(un−1
i,j )δ2

△un
i,j + f (un−1

i,j ), (i, j) ∈ ω, 1 ≤ n ≤ N, (7)

u0
i,j = u0(xi, yj), (i, j) ∈ ω̄, (8)

un
i,j = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ N. (9)

3. Numerical Analysis

In this section, the time-stepping error estimates of scheme (7)–(9) are rigorously
proved. For the G–L approximation, one can check that

A0 ≥ A1 ≥ A2 ≥ · · · ≥ Am−1 > 0, 1 ≤ m ≤ M.

Now, we construct a family of complementary discrete kernels Pn−j satisfying

j

∑
k=m

Pj−k Ak−m ≡ 1, 1 ≤ m ≤ j ≤ M, (10)
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which implies, for given coefficients Ak−m,

P0 :=
1

A0
, Pj :=

1
A0

j−1

∑
k=0

(Aj−k−1 − Aj−k)Pk. (11)

Below, we present several lemmas for the complementary discrete kernels.

Lemma 2 ([23], p. 57, Lemma 4.1, Corollary 4.1). It holds that

τα(n + 1)α−1

Γ(α)
< Pn =

ταΓ(n + α)

Γ(α)Γ(n + 1)
<

ταnα−1

Γ(α)
, n ≥ 1. (12)

Lemma 3. It holds that

n

∑
k=1

|Rk
i,j|Pn−k ≤ C

(
tα
n(h

2
x + h2

y) + τtα−1
n

)
. (13)

Proof. The desired result is an immediate consequence of Lemma 4.3 in [23] and inequal-
ity (5).

Lemma 4 ([26], p. 625, Theorem 2.1). Let {wi}N
i=0 be a sequence of non-negative real num-

bers satisfying

wi ≤ η +
φ

(iτ)1−α
+ Mτα

i−1

∑
j=0

wj

(i − j)1−α
,

where 0 < α < 1, φ and η are non-negative constants and M is a positive constant independent of
τ. Then, it holds

wi ≤ ηEα(MΓ(α)(iτ)α) +
φΓ(α)
(iτ)1−α

∞

∑
n=0

(MΓ(α)(iτ)α)n

Γ(α(n + 1))
, 0 ≤ i ≤ N,

where Eα(z) = ∑∞
k=0

zk

Γ(1+kα)
is the MittaG–Leffler function.

Theorem 1. Let Um = (Um
i,j) = u(xi, yj, tn) be the exact solutions of problelms (1). Let

um = (um
i,j) ∈ Uh be numerical solution of scheme (7)–(9). Then, there exists a positive con-

stant τ∗ such that when τ ≤ τ∗, the following error estimate holds

∥Um − um∥∞ ≤ C
(

τtα−1
m + tα

n(h
2
x + h2

y)
)

, 0 ≤ m ≤ N. (14)

Proof. We prove the main results by using mathematical induction. First, the time-stepping
error holds for m = 0. Suppose that the error estimates (14) hold for m = 0, 1, · · · , n − 1.
Then, substituting (6) from (7) and denoting em

i,j = um
i,j − Um

i,j, we can obtain

Dα
τem

i,j = q(um−1
i,j )δ2

△um
i,j − q(Um−1

i,j )δ2
∆Um

i,j + f (um−1
i,j )− f (Um−1

i,j ) + Rm
i,j, (i, j) ∈ ω. (15)

For the first two terms in the right-hand side of (15), we have

q(um−1
i,j )δ2

△um
i,j − q(Um−1

i,j )δ2
∆Um

i,j

=q(um−1
i,j )δ2

△um
i,j − q(um−1

i,j )δ2
∆Um

i,j + q(um−1
i,j )δ2

∆Um
i,j − q(Um−1

i,j )δ2
∆Um

i,j

=q(um−1
i,j )δ2

△em
i,j +

(
q(um−1

i,j )− q(Um−1
i,j )

)
δ2

∆Um
i,j.
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Thus, Equation (15) can be further rewritten as

Dα
τem

i,j = q(um−1
i,j )δ2

△em
i,j +

(
q(um−1

i,j )− q(Um−1
i,j )

)
δ2

∆Um
i,j + f (um−1

i,j )− f (Um−1
i,j ) + Rm

i,j. (16)

Let em = (em
i,j) ∈ Uh and suppose that em

im ,jm = ∥em∥∞. At the grid point (xim , yjm , tm),
we have

Dα
τem

im ,jm =q(um−1
im ,jm)δ

2
△em

im ,jm+
(

q(um−1
im ,jm)−q(Um−1

im ,jm)
)

δ2
∆Um

im ,jm+ f (um−1
im ,jm)− f (Um−1

im ,jm)+Rm
im ,jm ,

which implies

(
A0 +

2q(um−1
im ,jm)

h2
x

+
2q(um−1

im ,jm)

h2
y

)
em

im ,jm

= q(um−1
im ,jm)

em
im+1,jm + em

im−1,jm

h2
x

+ q(um−1
im ,jm)

em
im ,jm+1 + em

im ,jm−1

h2
y

+
m−1

∑
k=1

(Am−k−1 − Am−k)ek
im ,jm +

(
q(um−1

im ,jm)− q(Um−1
im ,jm)

)
δ2

∆Um
im ,jm

+ f (um−1
im ,jm)− f (Um−1

im ,jm) + Rm
im ,jm .

From the fact that Ak > Ak+1, it follows that

(
A0 +

2q(um−1
im ,jm)

h2
x

+
2q(um−1

im ,jm)

h2
y

)
|em

im ,jm |

≤ q(um−1
im ,jm)

∣∣∣∣ em
im+1,jm + em

im−1,jm

h2
x

∣∣∣∣+ q(um−1
im ,jm)

∣∣∣∣ em
im ,jm+1 + em

im ,jm−1

h2
y

∣∣∣∣
+

m−1

∑
k=1

(Am−k−1 − Am−k)|ek
im ,jm |+

∣∣∣(q(um−1
im ,jm)− q(Um−1

im ,jm)
)

δ2
∆Um

im ,jm

∣∣∣
+ | f (um−1

im ,jm)− f (Um−1
im ,jm)|+ |Rm−1

im ,jm |.

Noting that |em
im+1,jm |+ |em

im−1,jm | ≤ 2|em
im ,jm |, |e

m
im ,jm+1|+ |em

im ,jm−1| ≤ 2|em
im ,jm |, we have

A0|em
im ,jm | ≤

m−1

∑
k=1

(Am−k−1 − Am−k)|ek
im ,jm |+ | f (um−1

im ,jm)− f (Um−1
im ,jm)|+ C|em−1

im ,jm |+ |Rm
im ,jm |.

Now, by the assumptions that (14) hold when n = m + 1, we conclude that

|Un−1
im ,jm | ≤ |un−1

im ,jm |+ 1.

whenever τ, hx and hy are sufficiently small. As a result, there exists a constant C such that

| f (um−1
im ,jm)− f (Um−1

im ,jm)| < C|um−1
im ,jm − um−1

im ,jm | = Cem−1
im ,jm .

Therefore,

A0∥em∥∞ ≤
m−1

∑
k=1

(Am−k−1 − Am−k)∥ek∥∞ + C∥em−1∥∞ + |Rm
im ,jm |.
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Multiplying both sides of the above inequality by Pn−m, summing over for m from 1 to n
and using equality (3), we arrive at

n

∑
m=1

Pn−m

m

∑
k=1

Am−k(∥ek∥∞ − ∥ek−1∥∞) ≤
n

∑
m=1

Pn−m
(
C∥em−1∥∞ + |Rm

im ,jm |
)
. (17)

Applying identity (10), we rewrite the left-hand side of inequality (17) as

n

∑
m=1

Pn−m

m

∑
k=1

Am−k(∥ek∥∞ − ∥ek−1∥∞) =
n

∑
k=1

(∥ek∥∞ − ∥ek−1∥∞)
n

∑
m=k

Pn−m Am−k

= ∥en∥∞ − ∥e0∥∞.

(18)

Substituting (18) into inequality (17) leads to

∥en∥∞ − ∥e0∥∞ ≤
n

∑
m=1

Pn−m
(
C∥em−1∥∞ + |Rm

im ,jm |
)
. (19)

Using Lemmas 2 and 3, and noticing the fact 1
(n−m)1−α ≤ 21−α

(n−m+1)1−α for n > m, one can
obtain the following from (19)

∥en∥∞ ≤ C1τα
( n

∑
m=1

∥em∥∞

(n − m + 1)1−α
+

n

∑
m=1

∥em−1∥∞

(n − m + 1)1−α

)
+ C2

(
tα
n(h

2
x + h2

y) + τtα−1
n

)
.

Thanks to Lemma 4, we can derive

∥en∥∞ ≤ C
(

τtα−1
n + tα

n(h
2
x + h2

y)
)

.

Therefore, the error estimates hold for m = n. This closes the mathematical induction and
completes the proof.

4. Numerical Experiments

In this section, we conduct several numerical examples to verify the theoretical results
in the paper. All the computations are performed by MATLAB 2018b.

Example 1. Consider the following one-dimensional nonlinear fractional differential equation:

∂α
t u = uxx + u − u2 + g(x, t), 0 < x < 1, 0 < t ≤ T,

where g(x, t), initial boundary conditions are given by the exact solution

u(x, t) = tα sin(πx).

In order to test the convergence order in time direction, we set Mx = 1000 and
T = 1. The errors and convergence orders at the last time with N = 20, 40, 80, 160, 320
are displayed in Table 1. The maximum errors and convergence orders at the last time
with N = 320, Mx = 1000, T = 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9 are listed in Table 2.
These results show that the convergence order of the scheme is of 1 when t is far away from
the initial time and of α when t is close to the initial time. We test the convergence order in
the spatial direction with N = 10, 000 and Mx = 4, 8, 16, 32, 64. The maximum errors and
convergence orders at t = 1 are listed in Table 3. The results indicate that the convergence
order is of 2 in the spatial direction. These numerical results verify the theoretical results in
the paper.
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Example 2. Consider the following two-dimensional nonlinear fractional differential equation:

∂α
t u = (1 + u2)(uxx + uyy) + u − u3 + g(x, y, t), (x, y) ∈ (0, 1)2, t ∈ (0, T],

subject to homogeneous boundary conditions. The initial condition and g(x, y, t) are determined by
using the exact solution

u(x, y, t) = (x − x2)(y − y2)(tα + t2).

Table 1. The errors and convergence orders at t = 1 in the time direction for Example 1.

N
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

20 1.9119E-02 – 2.8577E-02 – 3.8115E-02 –
40 9.4595E-03 1.0152 1.4165E-02 1.0152 1.8921E-02 1.0104
80 4.7039E-03 1.0079 7.0520E-03 1.0063 9.4227E-03 1.0051

160 2.3448E-03 1.0044 3.5180E-03 1.0044 4.7049E-03 1.0026
320 1.1702E-03 1.0027 1.7567E-03 1.0019 2.3500E-03 1.0015

Table 2. The errors and convergence orders at the last time in the time direction for Example 1.

T
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

10−3 6.2044E-04 – 1.1365E-05 – 1.4471E-06 –
10−4 1.7885E-05 0.5402 1.8707E-06 0.7836 1.6928E-07 0.9319
10−5 5.3146E-06 0.5270 3.9938E-07 0.6706 2.5282E-08 0.8258
10−6 1.7576E-06 0.4806 9.5724E-08 0.6204 3.9679E-09 0.8042
10−7 6.3740E-07 0.4405 2.3752E-08 0.6053 6.2788E-10 0.8007
10−8 2.4350E-07 0.4179 5.9478E-09 0.6013 9.9488E-11 0.8001
10−9 9.5287E-08 0.4075 1.4929E-09 0.6003 1.5767E-11 0.8000

Table 3. The errors and convergence orders at t = 1 in the spatial direction for Example 1.

N
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

4 4.4921E-02 – 4.4905E-02 – 4.4776E-02 –
8 1.1055E-02 2.0227 1.1036E-02 2.0246 1.0990E-02 2.0266
16 2.7260E-03 2.0198 2.7072E-03 2.0274 2.6813E-03 2.0351
32 6.5285E-04 2.0620 6.3405E-04 2.0941 6.1335E-04 2.1282
64 1.3513E-04 2.2724 1.1635E-04 2.4462 9.6931E-05 2.6617

In order to test the convergence order in time direction, we set Mx = My = 40 and
T = 1. The errors and convergence orders at the last time with N = 20, 40, 80, 160, 320 are
displayed in Table 4. The maximum errors and convergence orders at the last time with
N = 10, Mx = My = 40, T = 10−4, 10−5, 10−6, 10−7, 10−8, 10−9 are listed in Table 5. Again,
we can see that the scheme is of order 1 when t is far away from the initial time and of
order α when t is near the initial time.

Table 4. The errors and convergence orders at t = 1 in the time direction for Example 2.

N
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

20 7.5426E-03 – 8.1545E-03 – 8.7658E-03 –
40 3.8026E-03 0.9881 4.1081E-03 0.9891 4.4155E-03 0.9893
80 1.9090E-03 0.9942 2.0617E-03 0.9947 2.2158E-03 0.9948

160 9.5638E-04 0.9971 1.0327E-03 0.9974 1.1099E-03 0.9974
320 4.7865E-04 0.9986 5.1682E-04 0.9987 5.5543E-04 0.9987
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Table 5. The errors and convergence orders as t → 0 in the time direction for Example 2.

T
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

10−4 4.5550E-05 – 4.2083E-06 – 3.4867E-07 –
10−5 1.2815E-05 0.5508 8.2348E-07 0.7085 5.0240E-08 0.8414
10−6 3.8886E-06 0.5179 1.9169E-07 0.6330 7.8361E-09 0.8069
10−7 1.3330E-06 0.4650 4.7188E-08 0.6088 1.2388E-09 0.8011
10−8 4.9542E-07 0.4299 1.1792E-08 0.6022 1.9625E-10 0.8002
10−9 1.9157E-07 0.4126 2.9583E-09 0.6006 3.1102E-11 0.8000

Example 3. Consider the following one-dimensional nonlinear fractional differential equation with
homogeneous boundary conditions:

∂α
t u = (1 + u4)uxx + u − u3, 0 < x < 1, 0 < t ≤ T, (20)

whose initial value is taken as

u(x, 0) = 2x sin(2πx), 0 ≤ x ≤ 1.

In this example, we set hx = 0.1. The numerical solutions computed by the proposed
scheme with N = 2048 and τ = T/N are used as the reference solutions in the accuracy
test. To verify the convergence order far away from initial time, the errors and convergence
orders at time t = 1 are contained in Table 6. To test the convergence order near initial time,
the errors and convergence orders at the time t = 10−4, 10−5, 10−6, 10−7, 10−8, 10−9 with
N = 10 are displayed in Table 7. Clearly, the proposed scheme is of order 1 when t far away
from initial time and of order α when t is near initial time.

Table 6. The errors and convergence orders at t = 1 in the time direction for Example 3.

N
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

8 3.8667E-05 – 5.2839E-05 – 5.2703E-05 –
16 1.8713E-05 1.0471 2.5169E-05 1.0699 5.4107E-05 1.1284
32 9.1542E-06 1.0315 1.2221E-05 1.0423 1.1499E-05 1.0679
64 4.4738E-06 1.0329 5.9512E-06 1.0381 5.5528E-06 1.0502

128 2.1575E-06 1.0521 2.8649E-06 1.0547 2.6622E-06 1.0606

Table 7. The errors and convergence orders as t → 0 in the time direction for Example 3.

T
α = 0.4 α = 0.6 α = 0.8

errors Orders errors Orders errors Orders

10−4 6.9689E-05 – 3.3337E-05 – 1.6673E-05 –
10−5 3.8249E-05 0.2605 1.9890E-05 0.2243 2.1532E-06 0.8889
10−6 2.1335E-05 0.2535 6.7966E-06 0.4663 2.8157E-07 0.8835
10−7 1.7114E-05 0.0958 1.7214E-06 0.5964 4.2738E-08 0.8188
10−8 1.0875E-05 0.1969 4.2407E-07 0.6085 6.7243E-09 0.8032
10−9 5.6239E-06 0.2864 1.0576E-07 0.6031 1.0645E-09 0.8005

5. Conclusions

In this paper, we present a fully discrete linearized numerical scheme for solving the
nonlinear fractional differential equation. The Caputo fractional derivative is discretized
by the G–L method. The spatial discretization is achieved by using the standard second-
order finite difference scheme. With the help of the discrete fractional Grönwall inequality,
the optimal error estimates of the scheme are rigorously analyzed. Finally, several numerical
examples are shown to confirm our theoretical results.
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