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Abstract: This study proposes a fractional-order model in the Caputo sense to describe the interaction
between tumor and immune macrophages by assuming that the pro-tumor macrophages induce a
Holling type-II response to the tumor. Then, the basic properties of the solutions to the model are
studied. Local stability analysis is conducted at each of the equilibria in the model, and a numerical
study is performed with varying activation rates of type-II or pro-tumor macrophages and the order
of the fractional operator. The numerical findings suggest that type-I or anti-tumor macrophages
can stabilize the system if the activation rate of type-II or pro-tumor macrophages is low. Still, for a
higher value of the activation rate for type-II or pro-tumor macrophages, the proliferation of tumor
cells is uncontrollable and the system becomes unstable. Furthermore, the stability of the system
decreases as the order of the fractional operator increases.

Keywords: fractional derivatives; mathematical operators; tumor; macrophages; stability; numerical
study

1. Introduction and Background

Mathematical models in cancer research play a crucial role in controlling the disease
and predicting the efficacy of cancer treatment through obtaining the optimum amount
of drug. Cancer is a disease that occurs due to the appearance of malignant tumors
in the human body. While malignant tumor cells are developed, various chemokines,
cytokines, and cells of the immune system are responsible for promoting or resisting
the tumor [1]. At the early stage of the tumor, natural killer (NK) and CD8+ T cells are
responsible for eliminating more immunogenic tumor cells [2]. After the first phase of
elimination, less immunogenic tumor cells are detectable and can increase by invading
the immune system. At this stage, tumor cells interact with dendritic cells (DCs), B cells,
neutrophils, CD4+ T cells, antibodies, and macrophages of the immune system [3,4].
Several mathematical studies have been performed to assess the roles of immune effector
cells, such as natural killer (NK) cells, CD8+ T cells, dendritic cells (DCs), B cells, and CD4+

T cells, in tumor development and elimination processes [5–14]. Pillis et al. [15] formulated
a valid mathematical model to describe the functions of NK and CD8+ T cells in tumor–
immune interactions. The role of cytotoxic T lymphocytes in tumor regression processes
was explored in Refs. [16–18]. Li et al. [19] described the association between cancer cells
and endothelial cells, considering the angiogenic growth factors secreted by the tumor that
help the tumor grow. The immune response of CD4+ anti-tumor Th1 and Th2 cells against
skin tumors was discussed in Ref. [20]. In Ref. [21], the effect of immune antibodies in
cancer suppression has been discussed, and it was suggested that antibody therapy may
also be used in cancer treatment. Makhlouf et al. [22] studied the role of CD4+ T cells that
secrete cytokines for killing tumor cells in the tumor progression stage and propounded
that CD4+ T cell therapy would also be used for eliminating tumors. A mathematical
study [23] has been performed to discuss the interaction between tumor cells and immune
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T lymphocytes, which revealed that the flow rate of mature T lymphocytes plays a crucial
role in controlling tumor growth.

However, a few modeling studies have discussed the interaction between tumors and
immune macrophages [24–28]. Macrophages are innate immune cells that show two kinds
of responses to tumor cells. Type-I or anti-tumor macrophages suppress tumor growth
through secreting IL-4 or IL-13. Type-II or pro-tumor macrophages help the proliferation of
tumor cells by driving LPS, or interferon-γ [29]. Thus, it is necessary to explore the dual role
of both macrophages in the processes of tumor regression and proliferation. To describe
tumor–macrophage interactions, a mathematical model was analyzed in Ref. [30], which
suggests that tumor dormancy is associated with an increase in the clonal heterogeneity of
tumor cells and the phenotypic heterogeneity of macrophages. Shu et al. [31] revealed that
not only the direct activation of anti-tumor and pro-tumor macrophages destroy tumor
cells, but also the combined effect of the transition between both macrophages. In Ref. [32],
a spatiotemporal brain tumor model was proposed to examine the associations among
glioma cells, macrophages, and immune cells. The effect of time delay on the activation of
pro-tumor macrophages in tumor–macrophage interactions were studied in Ref. [33]. The
saturated response of M2 macrophages due to tumor cells was explored in Ref. [34], which
demonstrated that tumor cells quickly spread in the body for a relatively higher activation
rate of M2 macrophages.

To date, fractional calculus has been widely used to formulate mathematical models in
various fields due to its memory effect [35–38], including in cancer research
too [39–44]. Farman et al. [45] proposed a fractal fractional-order model to study the
association between cancer cells, IL-12 cytokines, and anti-PD-L1 inhibitors. The effects of
CD8+ T cells, dendritic cells (DCs), IL-2, and CD4+ T cells on the dynamics of cancer cells
to the fractal order was observed in Ref. [46]. In Ref. [47], the role of immune macrophages
was investigated by analyzing a fractional-order mathematical model for lung cancer in the
presence of normal cells. A Caputo-type fractional-order tumor–macrophage interaction
model has been investigated in Ref. [48], to observe the stability and Hopf bifurcation of the
model under the influence of multiple time delays. Padder et al. [49] observed the effect of
fractional order on the dynamics of tumor–immune macrophage interactions. The efficacy
of the combined therapy of surgery and immunotherapy for treating lung cancer with
varying fractional orders was investigated in Ref. [50]. Thus, based on the above literature,
in this study, we formulated a fractional-order model in the Caputo sense that describes the
tumor–macrophage interaction. The remainder of this study is assembled in the following
manner: In Section 2, we formulate our fractional-order tumor–macrophages model and
study the characteristics of the solutions of the model. The local stability of the model
is investigated in Section 3. Numerical studies of the model are performed in Section 4.
Section 5 deals with concluding remarks.

2. The Model

Before formulating our proposed model, we define the Caputo fractional derivative
and the corresponding integral.

Definition 1 ([51,52]). For Ψ : [a, b] → R, n − 1 < v ≤ n, and n ∈ N, the Caputo fractional
derivative of order v is expressed as

cDv
t Ψ(t) =

1
Γ(n − v)

∫ t

a
Ψ(n)(s)(t − s)n−v−1ds. (1)

Furthermore, the associated fractional integral can be presented as

c Iv
t Ψ(t) =

1
Γ(v)

∫ t

a
Ψ(s)(t − s)v−1ds. (2)
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Here, we formulate a fractional-order tumor–macrophages interaction model by mod-
ifying the model proposed in Refs. [31,34]. The modification is made on account of the
saturated response of pro-tumor macrophages. Suppose M(t), A(t), and P(t) denote the
number of malignant tumor cells, type-I or anti-tumor macrophages, and type-II or pro-
tumor macrophages at time t > 0, respectively. Then, the proposed model takes on the
following form: 

dM
dt

= a1M(1 − b1M)− c1MA + c2MP

dA
dt

= a2MA − b2 A − d1 A + d2P

dP
dt

=
a3MP
g + M

− b3P + d1 A − d2P.

(3)

Here, a1M(1 − b1M) denotes the logistic growth of malignant tumor cells with a
proliferation rate a1 and carrying capacity 1

b1
. Due to the presence of type-I macrophages,

the tumor cells die off at a rate of c1 and, due to the presence of type-II macrophages,
the tumor cells can increase at a rate of c2. The term a2MA denotes the activation of type-I
macrophages by pro-inflammatory cytokines due to the presence of tumor cells at the rate
a2. Furthermore, b2 is the natural mortality rate of type-I macrophages, d1 is the transition
rate for type-I macrophages to type-II macrophages, and d2 is the transition rate for type-II
macrophages to type-I macrophages. It is evident that, due to the presence of tumor cells,
the type-II macrophages can be increased through the stimulation of tumor cells. We
account for this response using a nonlinear term a3 MP

g+M , where a3 is the activation rate of
type-II macrophages and g is the threshold rate of type-II macrophages [53,54]. The natural
mortality rate of type-II macrophages is denoted by b3.

The initial condition corresponding to the system (3) is considered as:

T(0) = T0 ≥ 0, A(0) = A0 ≥ 0, P(0) = P0 ≥ 0. (4)

We refer to Ref. [31] for a detailed description, including the values and units of the
parameters, of the model represented by (3).

To investigate the basic characteristics of the solutions, along with the linear stability
of the proposed model (3), we transform the model (3) to its dimensionless form through as-
suming x = M

M(0) , y = A
A(0) , z = P

P(0) and τ = a2M(0)t. Taking cDv
t as the Caputo fractional

differential with fractional order v ∈ (0, 1] and t ∈ (0, T], then the model (3) becomes
cDv

t x(t) = αvx(1 − βvx)− γv
1 xy + γv

2 xz
cDv

t y(t) = xy − ηvy − δv
1 y + δv

2 z

cDv
t z(t) =

ρvxz
σv + x

− µvz + δv
1 y − δv

2 z,

(5)

where α = a1
a2 M(0) , β = b1M(0), γ1 = c1

a2
, γ2 = c2

a2
, η = b2

a2 M(0) , δ1 = d1
a2 M(0) , δ2 = d2

a2 M(0) ,

ρ = a3
a2 M(0) , σ = g

M(0) , and µ = b3
a2 M(0) . The new state variables x(t), y(t), and z(t)

denote the number of malignant tumor cells, type-I macrophages, and type-II immune
macrophages at time t > 0, respectively. The model (5) reduces to an integer-order model
when v → 1. Furthermore, the initial condition corresponding to the system (5) is

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0. (6)

The model (5) can be expressed as

cDv
t W(t) = G[W(t)], t ∈ (0, T], W(0) = W0, (7)
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where

W =

x
y
z

, W0 =

x0
y0
z0

, G(W) =

αvx(1 − βvx)− γv
1 xy + γv

2 xz
xy − ηvy − δv

1 y + δv
2 z

ρvxz
σv+x − µvz + δv

1 y − δv
2 z

.

For G, we define a supremum norm as

||G|| = sup
t∈(0,T]

|G(t)|

and, for the matrix B = [bij(t)], we define a norm as

||B|| = ∑
i,j

sup
t∈(0,T]

|bij(t)|.

Now, using the definition of the Caputo fractional derivative (1), the solution of the
system (7) has the following form:

W(t) = W0 +
1

Γ(v)

∫ t

0
(t − s)v−1F(W(s))ds = Θ(W).

This gives the equality

Θ(W1)− Θ(W2) =
1

Γ(v)

∫ t

0
(t − s)v−1(G(W1(s))− G(W2(s)))ds.

Hence, we have

||Θ(W1)− Θ(W2)|| =
1

Γ(v)
||
∫ t

0
(t − s)v−1(G(W1(s))− G(W2(s)))ds||

≤ 1
Γ(v)

∫ t

0
(t − s)v−1||(G(W1(s))− G(W2(s)))||ds

≤ ϕ||W1 − W2||,

where

ϕ = Lvmax
{(

αv + (2αvβv + γv
1 + γv

2)ξ
)
, (ξ + η + δ1),

(
δv

2 + ρv(1 − σv

ξ
)
)}

,

Lv =
Tv

Γ(v + 1)
,

and Ω = {(x, y, z) : max(|x|, |y|, |z|)} ≤ ξ.

Therefore, a unique solution exists for the system (7) if the mapping Θ(W) is a con-
traction mapping; that is, if ϕ < 1 [55]. Thus, we obtain the following results:

Theorem 1. There exists a unique solution for the system (7) corresponding to the initial condition
W(0) = W0 in the region Ω × (0, T], where t ∈ (0, T], Ω = {(x, y, z) : max(|x|, |y|, |z|)} ≤ η,
if

Lvmax
{(

αv + (2αvβv + γv
1 + γv

2)ξ
)
, (ξ + η + δ1),

(
δv

2 + ρv(1 − σv

ξ
)
)}

< 1,

where Lv = Tv

Γ(v+1) .
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Again, it is clear that
cDv

t x(t)|x=0 = 0
cDv

t y(t)|y=0 = δv
2 z ≥ 0, where z(t) ≥ 0, δ2 > 0

cDv
t z(t)|z=0 = δv

1 y ≥ 0, where y(t) ≥ 0, δ1 > 0.

(8)

Thus, on each plane bounding the non-negative octant, the vector field points into R3
+.

Thus, the solution will remain in R3
+ [56]. Therefore, we can state the following result:

Theorem 2. All solutions of the considered fractional-order system (5) remain in R3
+.

3. Local Stability

To check the stability of the system (5), we solve cDv
t x(t) = 0, cDv

t y(t) = 0, cDv
t z(t) = 0

to find the equilibrium points of the system (5).
We found three biologically valid equilibrium points for the system (5), and the

corresponding stability analysis is as follows:

• Suppose there are no tumor cells in the body, then the macrophages do not emerge
in the body in action; thus, in this sense, we take y = 0 and z = 0. Then, we get the
tumor-free trivial equilibrium as Ev

1 = (0, 0, 0), which always exists.
The Jacobian matrix of the system (5) evaluated at the tumor-free equilibrium Ev

1 =
(0, 0, 0) is:

JEv
1
=

αv 0 0
0 −ηv − δv

1 δv
2

0 δv
1 −µv − δv

2

. (9)

It is clear that αv is one of the eigenvalues of the matrix (9), while the other two
eigenvalues are the roots of the following equation:

λ2 + (ηv + δv
1 + µv + δv

2)λ + ηvµv + ηvδv
2 + µvδv

1 = 0. (10)

As one eigenvalue of the matrix (9) is αv > 0, this implies the instability of the
tumor-free trivial equilibrium Ev

1 = (0, 0, 0). Thus, we can state this result as follows:

Theorem 3. The tumor-free trivial equilibrium Ev
1 = (0, 0, 0) always exists and shows

unstable behavior.

• Suppose there are tumor cells in the body; however, the macrophages have not
emerged in the body in action yet. Thus, in this sense, we take y = 0 and z = 0.
Then, we have found the tumor dominant equilibrium as Ev

2 = ( 1
βv , 0, 0), which also

always exists.
The Jacobian matrix of the system (5) evaluated at tumor dominant equilibrium
Ev

2 = ( 1
βv , 0, 0) is:

JEv
2
=

−αv 0 0
0 1

βv − ηv − δv
1 δv

2

0 δv
1

ρv

βvσv+1 − µv − δv
2

. (11)

Clearly, −αv is an eigenvalue of the matrix (11), while the other two eigenvalues will
be the roots of the following equation:

λ2 + (ηv + δv
1 + µv + δv

2 −
1
βv − ρv

βvσv + 1
)λ +

[
(

1
βv − ηv − δv

1)

(
ρv

βvσv + 1
− µv − δv

2)− δv
1 δv

2
]
= 0.

(12)
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As −αv < 0, for the stability of the system (5), the Equation (12) must have all negative
roots. Equation (12) possesses both roots as negative if the following conditions hold:

ηv + δv
1 + µv + δv

2 −
1
βv − ρv

βvσv + 1
> 0, and

(
1
βv − ηv − δv

1)(
ρv

βvσv + 1
− µv − δv

2)− δv
1 δv

2 > 0.
(13)

Thus, we can state the following theorem:

Theorem 4. The tumor-dominant equilibrium Ev
2 = ( 1

βv , 0, 0) always exists and it is asymp-

totically stable if ηv + δv
1 + µv + δv

2 > 1
βv +

ρv

βvσv+1 and ρv

βv(βvσv+1) + ηvµv + ηvδv
2 + δv

1 µv >

µv+δv
2

βv +
(ηv+δv

1 )ρ
v

βvσv+1 ; otherwise, it is unstable.

• Suppose that all three cells emerge in the body at the same time. Then, for x ̸= 0 and
x ̸= 1

βv , we obtain the co-axial equilibrium as

Ev
3(x∗, y∗, z∗) =

Ev
3

(
x∗,

αvδv
2(1 − βvx∗)

γv
1δv

2 + γv
2(x∗ − ηv − δv

1)
,
(δv

1 + ηv − x∗)αv(1 − βvx∗)
γv

1δv
2 + γv

2(x∗ − ηv − δv
1)

)
,

(14)

where x∗ is given by the following equation:

(ρv − µv − δv
2)x2 − {ρvηv + ρvδv

1 + µvσv + δv
2 σv − δv

1 µv − ηvµv − ηvδv
2}x

+(δv
1 µv + ηvµv + ηvδv

2)σ = 0.
(15)

For positive x∗, we must have the discriminant of the Equation (15) greater than
zero and

ηv + δv
1 −

γv
1δv

2
γv

2
< x∗ < ηv + δv

1 <
1
βv .

Now, we investigate the stability of the system (5) around the co-axial equilibrium
Ev

3(x∗, y∗, z∗). For x ̸= 0 and x ̸= 1
βv , we obtain the following relations at the co-axial

equilibrium Ev
3(x∗, y∗, z∗):

αv + γv
2z∗ = αvβvx∗ + γv

1y∗,

x∗ − ηv − δv
1 = −

δv
2 z∗

y∗
,

ρvx∗

σv + x∗
− µv − δv

2 = −
δv

1 y∗

z∗
.

(16)

Using the relations (16), we obtain the Jacobian matrix at co-axial equilibrium Ev
3(x

∗, y∗, z∗)
as:

JEv
3
=


−αvβvx∗ −γv

1 x∗ −γv
2 x∗

y∗ − δv
2 z∗

y∗ δv
2

ρvσvz∗

(σv+x∗)2 δv
1 − δv

1 y∗

z∗

. (17)

The eigenvalues of the Jacobian (17) are the roots of the following equation:

λ3 + Φ1λ2 + Φ2λ + Φ3 = 0, (18)

where
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Φ1 = αvβvx∗ +
δv

2 z∗

y∗
+

δ1y∗

z∗
,

Φ2 = αvβvx∗(
δ1y∗

z∗
+

δv
2 z∗

y∗
) + x∗

[
γv

1y∗ −
ρvσvγv

2z∗

(σv + x∗)2

]
,

Φ3 = αvx∗(1 − βvx∗)
[ ρvδv

2 σvz∗

y∗(σv + x∗)2 +
δv

1 y∗

z∗
]
.

According to the Routh–Hurwitz criterion, the system (5) is locally asymptotically
stable if all the roots of the Equation (18) are negative or have negative real parts; that
is, if

Φ1 > 0, Φ2 > 0, Φ3 > 0 and Φ1Φ2 − Φ3 > 0, (19)

which implies that x∗ < 1
βv and

[
αvβvx∗ +

δv
2 z∗

y∗
+

δ1y∗

z∗
][

αvβvx∗(
δ1y∗

z∗
+

δv
2 z∗

y∗
)+x∗

[
γv

1y∗ −
ρvσvγv

2z∗

(σv + x∗)2

]]
> αvx∗(1 − βvx∗)

[ ρvδv
2 σvz∗

y∗(σv + x∗)2 +
δv

1 y∗

z∗
]
.

Thus, we can state the following result:

Theorem 5. There exists a positive co-axial equilibrium Ev
3(x∗, y∗, z∗) for the system (5) if

ηv + δv
1 −

γv
1δv

2
γv

2
< x∗ < ηv + δv

1 <
1
βv ,

and it is locally asymptotically stable if x∗ < 1
βv and

[
αvβvx∗ +

δv
2 z∗

y∗
+

δ1y∗

z∗
][

αvβvx∗(
δ1y∗

z∗
+

δv
2 z∗

y∗
)+x∗

[
γv

1y∗ −
ρvσvγv

2z∗

(σv + x∗)2

]]
> αvx∗(1 − βvx∗)

[ ρvδv
2 σvz∗

y∗(σv + x∗)2 +
δv

1 y∗

z∗
]
.

4. Numerical Study

This section is devoted to a numerical study of the proposed model for verification
of the analytical findings. To observe the effect of the fractional order v on the stability
of the model (5), we arbitrarily take four values for v as follows: 0.91, 0.94, 0.97, and 1.
We set the values of the non-dimension parameters in the numerical study as follows:
α = 0.565, β = 5 × 10−4, γ1 = 2, γ2 = 0.1, η = 0.2, δ1 = 0.05, δ2 = 0.04, σ = 0.1 (assumed),
and µ = 0.2. The parameter values were chosen arbitrarily and based on the previous
literature [31,34].

We also varied the parameter ρ to observe the effect of the activation rate of type-II
macrophages due to the emergence of tumor cells on the system (5). For this purpose,
we assumed that the range of ρ is [0, 1.1] and considered three cases: (i) ρ = 0.1 (low
activation rate of type-II macrophages), (ii) ρ = 0.5358 (medium activation rate of type-II
macrophages), and (iii) ρ = 1.062 (high activation rate of type-II macrophages).

In Figures 1–3, we show the densities of malignant tumor cells x(t), type-I macrophages
y(t), and type-II macrophages z(t) when the activation rate of type-II macrophages due to
the emergence of tumor cells is low (i.e., ρ = 0.1). It can be observed that all three cell pop-
ulations tend to be stable as time increases. However, the cell populations show oscillatory
behavior initially, while the order of the fractional derivative increases. This means that,
even if the type-II macrophages activate at a slow rate, the type-I macrophages can keep
the system stable around the positive co-axial equilibrium Ev

3(x∗, y∗, z∗). In Table 1, we



Fractal Fract. 2024, 8, 394 8 of 15

show the stability of the system (5) around its equilibrium point based on the eigenvalues
of the corresponding Jacobian of the system (5).
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Figure 1. Densities of malignant tumor cell populations x(t) with activation rate of pro-tumor
macrophages ρ = 0.1.
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Figure 2. Densities of type-I or anti-tumor macrophages y(t) with activation rate of pro-tumor
macrophages ρ = 0.1.

Table 1. Stability of the system for the case ρ = 0.1.

Equilibrium Point Eigenvalues Stability

Ev
1(0, 0, 0) −0.2000,−0.2900, 0.5650 unstable

Ev
2(2000, 0, 0) −0.1400, 1999.7500,−0.565 unstable

Ev
3(0.2382, 0.2867, 0.0845) −0.0034 + 0.37ι,−0.0034 −

0.37ι,−0.1745 asymptotically stable
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Figure 3. Densities of type-II or pro-tumor macrophages z(t) with activation rate of pro-tumor
macrophages ρ = 0.1.

In Figures 4–6, we show the densities of malignant tumor cells x(t), type-I macrophages
y(t), and type-II macrophages z(t) when the activation rate of type-II macrophages due
to the emergence of tumor cells is medium (i.e., ρ = 0.5358). It can be observed that all
three cell populations show periodic oscillatory behavior, with this behavior increasing
as the order of the fractional derivative increases. This result suggests that, for a medium
activation rate of type-II macrophages, the type-I macrophages compete with the malignant
tumor cells and type-II macrophages to stabilize the system for which periodic solutions
are observed. In Table 2, we show the stability of the system (5) around its equilibrium
point, based on the eigenvalues of the corresponding Jacobian of the system (5).
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Figure 4. Densities of malignant tumor cell populations x(t) with activation rate of pro-tumor
macrophages ρ = 0.5358.
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Figure 5. Densities of type-I or anti-tumor macrophages y(t) with activation rate of pro-tumor
macrophages ρ = 0.5358.
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Figure 6. Densities of type-II or pro-tumor macrophages z(t) with activation rate of pro-tumor
macrophages ρ = 0.5358.

Table 2. Stability of the system for the case ρ = 0.5358.

Equilibrium Point Eigenvalues Stability

Ev
1(0, 0, 0) −0.2000,−0.2900, 0.5650 unstable

Ev
2(2000, 0, 0) 0.2958, 1999.7500,−0.565 unstable

Ev
3(0.0744, 0.3619, 1.5887) 0.0268 + 0.30ι, 0.0268 −

0.30ι,−0.2406 unstable

In Figures 7–9, we show the densities of malignant tumor cells x(t), type-I macrophages
y(t), and type-II macrophages z(t) when the activation rate of type-II macrophages due
to the emergence of tumor cells is high (i.e., ρ = 1.062). It can be observed that all three
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cell populations show high periodic oscillatory behavior, where this behavior increases as
the order of the fractional derivative increases. This finding suggests that, when there is
a high activation rate of pro-tumor macrophages, the type-I macrophages compete with
the malignant tumor cells and type-II macrophages to keep the system stable, which is
why high periodic solutions are seen. In Table 3, we show the stability of the system (5)
around its equilibrium point, based on the eigenvalues of the corresponding Jacobian of
the system (5).
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Figure 7. Densities of malignant tumor cell populations x(t) with activation rate of pro-tumor
macrophages ρ = 1.062.
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Figure 8. Densities of type-I or anti-tumor macrophages y(t) with activation rate of pro-tumor
macrophages ρ = 1.062.
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Figure 9. Densities of type-II or pro-tumor macrophages z(t) with activation rate of pro-tumor
macrophages ρ = 1.062.

Table 3. Stability of the system for the case ρ = 1.062.

Equilibrium Point Eigenvalues Stability

Ev
1(0, 0, 0) −0.2000,−0.2900, 0.5650 unstable

Ev
2(2000, 0, 0) 0.8220, 1999.7500,−0.565 unstable

Ev
3(0.0280, 0.3911, 2.1728) 0.0675 + 0.33ι, 0.0675 −

0.33ι,−0.3662 unstable

It can be observed, from the above scenarios, that the oscillatory behavior of the
system (5) increases as the order of the fractional derivative increases, and that each order
depends on its previous order, which verifies the memory effect of the fractional operator.
Furthermore, ρ (i.e., the activation rate of pro-tumor macrophages due to the emergence
of tumor cells) highly impacts the stability of the system (5), as it affects the proliferation
of tumor cells. The proliferation of tumor cells is relatively slow. At the same time, when
the activation rate of type-II macrophages is low, the type-I macrophages can stabilize the
system to the co-axial equilibrium point. When the activation rate of type-II macrophages
increases to a medium value, the proliferation of tumor cells also increases, which results
in mild competition among all three cell populations, and the system presents an unstable
periodic solution around the co-axial equilibrium point. However, with further increases in
the activation rate of type-II macrophages to a high value, the proliferation of tumor cells is
very high and the type-I macrophages compete with the other two cells. Still, they cannot
suppress the growth of tumor cells, which may result in the disease persisting in the body.

5. Conclusions

In this study, we developed a fractional-order mathematical model in the Caputo sense
that describes the interactions between tumors and immune macrophages. The main objec-
tive of the work was to describe the role of the activation rate of type-II macrophages and
to observe the effect of fractional order on the model. First, we examined the fundamental
properties of the model’s solutions. The local stability of the model was checked at each
of the biologically feasible equilibria, and it was found that the tumor-free equilibrium
presents unstable behavior, whereas the tumor-dominant and co-axial equilibria show
stable behavior, provided that certain conditions hold. A numerical study was conducted
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by varying the activation rates of type-II macrophages and the order of the fractional
operator. The numerical findings suggest that type-I macrophages can stabilize the system
if the activation rate of type-II macrophages is low. However, with a higher activation rate
of type-II macrophages, the proliferation of tumor cells becomes uncontrollable and the
system is unstable. Furthermore, the stability of the system decreases as the order of the
fractional operator increases.

Comparing our results with those of a previous study [31], we noticed that, while
pro-tumor macrophages respond to the tumor in the Holling type-II form, the system shows
oscillatory behavior for a lower value of activation rate of pro-tumor macrophages than the
value obtained in Ref. [31]. Additionally, in comparison with Refs. [34,48], we discussed the
effect of the saturated response of M2 macrophages due to tumor cells in a fractional-order
tumor–macrophages model in the Caputo sense. The results of this study will be beneficial
for clinicians and oncologists to develop treatments that target the immune macrophages
to control the abnormal growth of tumor cells.

One of the main limitations of this study is that the type-I macrophages can also
respond to the tumor in the Holling type-II form. Considering this fact, one could extend
this study. Furthermore, the model could be extended using other families of fractional
operators, such as the Caputo–Fabrizio fractional operator, conformable and β-conformable
fractional operators in the Liouville–Caputo (LC) sense, and the Atangana–Baleanu frac-
tional operator with different kernels. For example, the model with Caputo–Fabrizio
fractional operator can be expressed as:

CFDv
t x(t) = αvx(1 − βvx)− γv

1 xy + γv
2 xz

cDv
t y(t) = xy − ηvy − δv

1 y + δv
2 z

cDv
t z(t) =

ρvxz
σv + x

− µvz + δv
1 y − δv

2 z,

(20)

and the model with Caputo–Fabrizio fractional operator can be expressed as:
ABCDv

t x(t) = αvx(1 − βvx)− γv
1 xy + γv

2 xz
ABCDv

t y(t) = xy − ηvy − δv
1 y + δv

2 z

ABCDv
t z(t) =

ρvxz
σv + x

− µvz + δv
1 y − δv

2 z.

(21)

We hope to carry out works to address the above limitations and focus on extension of the
proposed model in the future.
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