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Abstract: In this paper, we present a highly efficient analytical method that combines the Laplace
transform and the residual power series approach to approximate solutions of nonlinear time-
fractional partial differential equations (PDEs). First, we derive the analytical method for a general
form of fractional partial differential equations. Then, we apply the proposed method to find
approximate solutions to the time-fractional coupled Berger equations, the time-fractional coupled
Korteweg-de Vries equations and time-fractional Whitham-Broer-Kaup equations. Secondly, we
extend the proposed method to solve the two-dimensional time-fractional coupled Navier—Stokes
equations. The proposed method is validated through various test problems, measuring quality and
efficiency using error norms E; and E, and compared to existing methods.

Keywords: differential equations; Laplace transform; residual power series; time-fractional
differential equations

1. Introduction

Fractional calculus (FC) extends classical calculus to explore derivatives and integrals
of non-integer order, allowing for a wide range of applications and real-life phenomena.
Furthermore, FC has become a crucial tool in several fields, including engineering, solid-
state physics, signal and image processing, chemistry, biology, ecology, stochastic-based
finance, economics, control theory, fiber optics, and viscoelasticity [1-5]. Although many of
these problems have been studied using fractional ordering in the literature, many models
using fractional differential operators remain to be solved. Therefore, fractional differential
equations (FDEs) have drawn the attention of several researchers in developing several ana-
lytical and numerical methods for linear and nonlinear problems and discussing dynamical
systems. [6-8]. Sene and Fall [9] proposed the homotopy perturbation Laplace transform
method of obtaining the approximate solution of the fractional diffusion equations. Tamsir
and Srivastava [10] suggested the fractional reduced differential transform method to study
analytically linear and nonlinear time-fractional order Klein-Gordon equations. Sahu and
Jena [11] employed the Laplace Adomian decomposition technique to analyze a numerical
study with the SDIQR mathematical model of COVID-19 for infected migrants in Odisha.
Owolabi et al. [12] proposed the Laplace transform—homotopy perturbation method to
simulate the time-dependent predator—prey model of Lotka—Volterra. Jawarneh et al. [13]
introduced the new transform iteration method and the residual power series transform
method to solve fractional nonlinear system Korteweg-de Vries (KdV) equations.
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The Laplace residual power series (LRPS) approach is a highly efficient and accu-
rate method for approximating solutions of nonlinear fractional-order partial differential
equations (NFPDEs). This approach combines residual power series analysis with the
Laplace transformation to provide a practical and fast convergence solution for linear and
nonlinear problems. In this approach, the given equations are transferred into Laplace
space, constructing fractional power series solutions to the new form of the equations
and then using the inverse Laplace transform to obtain the solutions of the original equa-
tions. This method has been successfully applied to various equations, yielding accurate
and convergent solutions, such as neutral fractional pantograph equations [14], temporal-
fractional Drinfeld—-Sokolov-Wilson systems [15], coupled fractional neutron diffusion
equations [16], time-fractional reaction-diffusion models [17], nonlinear time-fractional
Kolmogorov and Rosenau-Hyman models [18], three-dimensional fractional Helmholtz
equations [19], fractional Riccati differential equations [20], and nonlinear time-fractional
coupled Boussinesq—Burger equations [21].

In this work, we aim to accomplish three primary objectives. Firstly, we aim to develop
the LRPS method to derive the analytical solution for a general form of (1+1)-dimensional
NFPDEs and use it to solve various time-fractional coupled differential equations. Secondly,
we aim to expand the application of the proposed approach to address (2+1)-dimensional
time-fractional nonlinear coupled Navier-Stokes equations. Lastly, we aim to provide
numerical and graphical solutions for different A values to demonstrate the effectiveness
of LRPS solutions compared to other methodologies, such as Laplace Adomian decompo-
sition (LADM), the Laplace variational iteration method (LVIM), the residual differential
transformation method (RDTM), and the Chebyshev method. Our findings highlight the
simplicity, accuracy, and practical applicability of the proposed method.

The paper is organized as follows: in Section 2, we define key concepts and terminol-
ogy. In Section 3, we present the proposed method and demonstrate its applicability to find
analytical solutions of some nonlinear time-fractional coupled differential equations. Then,
we explain the generalized LRPS method for the (2+1)-dimensional time-fractional coupled
Navier-Stokes equations Section 4. Finally, we summarize our findings in Section 5.

2. Basic Concepts

In this section, we will present some basic concepts of the fractional derivative of
order A, where A > 0. Although there are various definitions of fractional derivatives
available, Riemann-Liouville and Caputo fractional derivatives are the most commonly
used ones in the literature. So, the fractional derivative used in this study is in the
Caputo meaning.

Definition 1 ([1]). The Riemann—Liouville fractional integral operator of order A > 0 is defined by

a4
s /O (t— Mg )dr, A >0,

P(x, 1), A=0.

JRp(x,t) = , o)

Definition 2 ([1]). For n to be the smallest integer that exceeds A, the Caputo time-fractional
derivative operator of order A > 0,n —1 < A < 1,n € Nis defined as

1 ¢ n-r-19"9P(x, 1)
m\/o(tfl') TCIT, n71<)\<7’l,

Dp(x,t) = "D "p(x,1) = 2)

9"P(x, 1)
i A=neN.
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Definition 3 ([16]). Let (%, t) be a continuous function on I x [0, 00) and of exponential order .
Then, the Laplace transform of the function ¥ (x,1) is denoted and defined as follows:

¥(x,s) = L[z, 1)] = /0 T ek, )ty s > 6, 3)

whereas the inverse Laplace transform of the function ‘¥ (x, s) is defined as follows:

P t) = 2 ¥(x,5)] = / I st (s, 5)ds, ¢ = Re(s) > co, @)

—ico
where ¢ lies in the right half plane of the absolute convergence of the Laplace integral.
Assuming ¥(x,s) = L[P(x,1)], @(x,5) = L[P(x,1)], 1, (2 € R, we summarize the
Laplace transform and its inverse below, highlighting their most prominent features.
Lo 2[Ep(x 1) + 806 1)] = 61 (x,5) + LP(x,5)-
2. 270 (x ) + 0®P(x,5)] = Gy, 1) + Lo, 1).
3. 2L[e"'(x,t)] = ¥(x,5—a),
I'(mA+1)
A
4 2] = =S A L

In the following lemma, we introduce several essential characteristics of the Laplace
transform and the fractional derivative in the Caputo sense.

Lemma 1 ([16]). Let 1(x,t) be a continuous function on I x [0,00) and of exponential orders ¢,
and ¥ (x,s) = L[P(x,t)]. Then,

(- lim s¥(x,s) = ¥(x,0),x €I,
(ii)- []{yb(x t)] A

(ii)- 2[Dy(x,1)] = ZSA K19k (00,1 —1 < A < n;

1Y(xs)A>0

(iv)- SB[D’t”)‘tp(x,t)} = 5" ¥(x,s5) — 2 sM=A=1DkA Y (%,0),0 < A < 1.
k=0
where D" = D} - D} ... D} (m-times).

Theorem 1. Let ¢(x, t) be continuous on I x [0,00) and of exponential order 6. Suppose that the
function ¥ (x,s) = L[ (x,t)] has the following fractional expansion:

an,o<)\<1xels>(s (5)

then fu(x) = D (x,0).

3. Derivation LRPS Method

In this section, we discuss how to construct the solutions to some nonlinear coupled
fractional partial differential equations using the LRPS method. The main algorithm of
this method for solving nonlinear NFPDEs can be summarized by applying the Laplace
transform to the mentioned equation and using the expansion as given in Theorem 1
to represent the solution of Laplace NFPDEs. Then, the coefficients of this expansion
are determined similarly to the RPS method but with a new vision and a new analysis.
Finally, we apply the inverse Laplace transform and obtain a solution to this problem in the
original space.
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3.1. The (1+1)-Dimensional Time-Fractional Coupled Differential Equation

Consider the following coupled fractional equation in the general form

D}u(x,t) = Ry (u, v, Dyit, Do, D2, D?v, .. ) + Ny (u, v, D1, Do, D?u, Do, ... ) ©)

D?v(z, 1) =Ry (u, v,D.u,D,v, Dgu, ng, . ) + N, (u, v, Dyu, Dy, Dgu, ng, .. ) 7)
Subject to the initial conditions

u(x,0) = fo(x), ®)

0(%,0) = go(x), ©)

ot n
where D{‘ = 3% is the Caputo derivative, D} = 337, n=1,2,...,and Ry, Ry and Ny, N,

are linear and nonlinear operators, respectively,and 0 < A < 1.
By utilizing the Laplace transform on Equations (6)-(9), we obtain

) [D?u(x,t)] ) [Rl (u, v, Dy, Dyv, D2, D2v, ... )} s [Nl (u, v, Dyt, Do, D?u, Do, ... )} (10)
@ [D{\v(x,t)] — {Rz (u, v, Dy, D0, D2, D2v, ... )} 2 [Nz (u, v, Dyut, Dyo, D?u, D2o, ... )} (11)
Using the fact that 2[Djtu(x, t)] = s*®[u(x, )] — ' 1u(x,0) = s*Llu(x, )] — s} fo (%)

(

= (
and 2[D}o(x,1)] = s'®[v(x,1)] — s 1o(x,0) = s'L[v(x,1)] — " 1go(x), we can write
Equations (10) and (11) as

1
U(z,s):fogx) . (U,V,DXU,DXV,Dﬁu,Dﬁv,...)

+ lASB {Nl (33*1[11],55*1 V], 2 YD, U], 2 1D, V], 2! [Dgu} L1 [ng],. .. )} (12)
V(xt) = 30( )+ 1R, (u.v,D.U, DV, D2U, D2V, ..
+ S—ASB [Nz ()2 V), 2 DUl 2 D v], 2t [D2u), e [D2v],.. ). (13)

where U(x,8) = L[u(x,1)], V(x,s) = L[v(x,1)]. Now, we assume that both U(x,s) and
V(x,s) have fractional power series representations as follows:

Z Sn/\—i-l 4 (14)

Z SnA+1 (15)

The k-th truncated series of Equations (14) and (15) take the forms

k

Ui(x,8) = ;}fz/&z, (16)
k

Vi) = 3 ) a7)
n=0

where fy(x) nd go(x) are the initial conditions given in Equations (8) and (9). To find the
unknown coefficients of the series in Equations (12) and (13), we define the Laplace residual
functions for the coupled equations in Equations (16) and (17) as follows:
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$ResU(x,5) =U(x,s) — 20 % (u V,D.U, DXV,DﬁLI,DEV,...)
51 sg[Nl( U, 271 v], 2 1 [D.U], 2 [DeV], £} [DﬁU},SB”[DﬁV},...)}, (18)

FResV (x,5) =V (x,1) — S0 _ lA (u V,D,U, DV, D2U, D2V, .. )
- isg[Nz( Yu), 2 Yv], 21D U], 27Dy V], 27! [Dﬁu],sg—l[ng},...)}. (19)

For the k-th Laplace residual function, we have

PResUy(x,5) = Uy(x,s) — foix) -~ SlAR1 (uk, Vi, DUy, Dy Vi, D2UL, ngk,...)
¢ [Nl (53*1 (U, 2 1 [Vi], 2V [DuUi], 2 (D V], 27 [Diuk} , 21 [ngk} . )] (20)

PResVi(x,5) = Vi(x,1) — golx) _ SlAR2(uk, Vi, DUy, Dy Vi, D2Uy, D2V, .. )
— [NZ (93*1 (U], 271 [Vi], 2 Y [Delly], 21 [Dy V], 271 [Dﬁuk} L1 [Din} .. )] : 1)

Substituting Equations (16) and (17) into Equations (20) and (21), we obtain

fu(x) 1 (%) (%) (%)
ZResUr(x,s) = ) SZA-H ok Z:: A1’ Z Sm+1' Z 4 AT Z sn/\+1’ Z SIATT” Z Sm+1'“'

k
Ny (53—1
n=>0

L] e [z ] [Z{){:ﬁii]

n=

£ i (%) p-1 (%)
Y it | Z s R (22)
0

n=

Kogu(x) 1 k
£ResVi(z,5) = ;fn/\(ﬂ _ST\R (2 SnA+1' 2 SnA+1’ 2 SnA+1’ 2 S”/\+1, 2 Sm\ﬂf 2 SMH"")
1 " B ’
afufor 294,qzw4,[zgﬂ,
n=0 n=0
k ?/1/ % B
an/\+1‘|’ l;ﬁm&f] 1[2 SMJ], )] (23)

Using 2!

k nA
ZO ey H] Z ¢ /{:_ ) in Equations (22) and (23), we obtain

k k
fulx) 1
EResUi(x,5) = ) SZA+1 -k 2 Sn/\+1f Z SnA+1’ Z sn/\+1’ Z Sn/\+1’ Z Sn/\+1’ Z Sn)\—i—l’ o

n=1
Emf(x) S tga(x) 3 (%)
Nl(gr(mﬂ)’gr(m+1)’¥r(m+1)’

1
- =%
S/\

M

k tn)\ X Zk: tm\fﬂ( Zk: tn/\g ( ) (24)
= n/\—l—l'n:Ol"n/\—i—l' n)t—i—l) ’
k /

n=0
PResV( £ £ g fn (%) (x)
esVi(x,s Z /\+1 Sn/\+1’ )y nA+1’ Z A1’ Z Sn)\+1’ Z AT Z SnA+1' o

n:0 n= OS n=0
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k nA k nA k nA gl
_l/\g N, " (%) Z " en(x) L fn(x),
s = T(nA+1)" = T(nA+1)" = T(nA+1)
£ g e £ g ] -
= T(mA+1) = T(nA+1) = T(nA+1)°
The next step is to solve the following system to calculate fi(x) and g (x), k=1,2,...
lim sk’\+1$ResUk(z,s) =0, (26)
kA+1
sh_r>noos PResVi(x,s) = 0. (27)
Finally, by substituting the series solution fi(x) and gi(x) obtained from
Equations (26) and (27) into Equations (16) and (17) and taking the inverse Laplace trans-
form, we obtain the solutions of system (6)—(9) as follows:
3 t’an( )
00 A
gn(%)
t) = 29
o(x,1) ; F(nA+1) @9)
3.2. lllustrative Examples
This section presents three important examples of the LRPS method to demonstrate its
performance and efficiency. Throughout this paper, we used the Wolfram Mathematica 14
software package to compute numerical results.
Example 1. Consider the following coupled time-fractional Burger equations [22-24]:
Diu(x,t) = a D2u(x,t) + b u(x,t)Deu(x, 1) — c u(x,1)Dev(x,1) — c v(x, 1) Dyui(x, 1), (30)
D}o(x,1) = p D2v(x,t) + 7 v(x, 1) Dyv(x,1) — € u(x,t)Dyo(x, 1) — € v(x, 1) Dyui(x, 1). (31)

Subject to the initial conditions
u(x,0) = fo(x) = v(x,0) = go(x). (32)
In this system, we have
Ry (u, v,D,u, D0, Dgu, ng, ... ) =a Dgu(x, 1),
R, (u, v,D,u, D0, Dgu, Dﬁv, ... ) =p Div(z, 1),
Ny (u, v, D,u, D,v, Dgu, ng, ... ) =bu(x,1)Dyu(x,t) — cu(x,t)Dyv(x,1) — c v(x,1)Dyu(x, 1),
N, (u, v,D,u,D,v, Dgu, ng, ... ) =7 0(x,1)Dyv(x,1t) — € u(x,t)Dyv(x,1) — € v(%, 1) Deu(x, ).

Applying system (24) and (25), we obtain

LResUy( Z Z ——Sﬂ b i U () i " £ ()
s”/“rl s”)”rl AT = T(nA+1) = T(nA +1)
k nA k nA k n/\ k nA
" fu (% g (x) "7 gn (%) " fi (%)
an IF(nA+1) nZ::OF (nA+1) CnZ:O (n)t—i—l X:: I'(nA+1) 33)
k ko k nA k nA
_y &) pygilx) 1 t8n(x) v~ 18 (%)
LResVi(x,s) = (g FT T gh Z%)ssw At Zol"(n/\—i—l) Z%)r(mn+ 1
n= n= n= n=
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Ifwe take k = 1, we obtain
PResl (x,5) = flA(H) - :A( (I’/S(x) + Sﬁ(fl)) - e b(fo(x) + m> (fé(x) + M)
—c (fo(%) + A (g’ <x>+1f?§3f‘)>> —c (go(%)Jr ratd) (f’(%)+m> e
e~ 58) 2 s 58 259
e (Ao + 1) (gé(x) - m) e (go(%) ey (fé(x) - m) o ®

lim s*'%Resl;(x,5) = 0,
Next, by solving the system Sﬁl"" GRSV (3,5) = 0, for f1(x), g1(x), one can obtain:

fi(x) = afg'(x) + bfo(x) fo(x) — ¢ fo(x)g0(x) — ¢ 0(x) fo (%), (37)
81(%) = p 80 (%) + 7 80(x)80(x) — € g0(x) fo (%) — € fo(%)8(x). (38)
In the same way, continuing to solve (26) and (27) for every fi(x), gk(x), k = .andasa

special case when a =1,b =2,c =1,p=1,7v =2, € = Land fy(x) =go(x) = sm(x) we obtain

fi(x) = —sin(x), g1(x) = —sin(x),
fa(x) =sin(x),  ga(x) = sin(x),

fa(x) = —sin(x), g3(x)= —sin(x),
fa(x) = sin(x), Q4(x) = sin(x), ..

Substituting in Equations (28) and (29), we obtain

. thsin(x)  t?'sin(x) 13} sin(x) #Msin(x) 9 sin(x)

u(x ) =sin(x) = ;g 1 TA+1) T(GALD) + TAr+1) TGALD) 39)
L thsin(x)  t*'sin(x) 3 sin(x) #Msin(x)  t9sin(x)

o(%t) = sinx) = 7577y (2/\+1) TTGATL) 1 T(aA11) TGBALD) 49

Table 1 compares the results of the proposed method with the results of other existing methods
at A =1,-5 < x < 5. In comparison with the other methods, this method is more accurate.

Table 1. The Ly-norm errors for the suggested methods when —5 < x < 5 of u(x,t) = v(x,1t) for
Example 1 in comparison with the results of [24].

t LADM [24] LVIM [24] RDTM [24] Present Method
0.01 1.9098963 x 10712 1.9098963 x 10712  1.9098875 x 10~12  1.22125 x 10~15
0.05 5.9294056 x 1077 5.9294056 x 107  5.9294056 x 102  1.81315 x 10~ 11
0.10 1.8818028 x 107 1.8818029 x 10~7  1.8818029 x 107  1.15222 x 10~?
0.50 55141181 x 10~*  5.5139119 x 10~% 55141181 x 10~*  1.70339 x 105

1.00 1.6348008 x 1072 1.6094187 x 1072  1.6348008 x 1072 1.02052 x 103




Fractal Fract. 2024, 8, 401 8 of 18
Example 2. Consider the time-fractional coupled KAV equation [25-28]
D}u(x,t) = a1 D3u(x, t) + 6ayu(x, ) Deu(x, t) + 2byo(%, 1) Dev(x, 1), (1)
Dio(x,t) = —D3v(x,t) — 3u(x,t)Dyo(%, 1),
with the initial conditions
—0%(14a 402eP*
u(,0) = o) = LMLy W
def* ! (1+e) a<xz<b, (42)
o(x) = ————
v(0) = ) = T
—a10? 5 [—24m . ) )
wherec = ,d=—p , a1by < 0, and p is a constant. The exact solutions of this sys-
1+ 244 by
—0%(1 402eP(x+cl) dep(x+ct)
tem at A = 1 are given sa u(x,t) = 1+ ) e 5, 0(x, 1) = e—z.
3+ 6a; (1 + ep(erct)) (1 + ep(erct))

In this system, we have

Ry (u, v, Dytt, Dyv, D2u, D20, )

R, (u,v, D.u,D.v, Dgu, ng,...) = —ng(z,t),
Ny (u,v, D,u, D,v, D>u, D2v, . ) 6a1u(x, t)Dyu(x,t) + 2b1v(x, 1) D, v(%, 1),
N (u, v,D,u,D.,v, Dﬁu, Dﬁv, ) = —3u(x,1)Dyv(%,1).

So, the system (24) and (25) for Equations (41) and (42) can be written as follows:

SifResu Z Sn?\il Z Sn)\-i-l)
k tn)\fn k tn)\fn( ) k tn/\ z k tm\ %)
_5733 6‘112 n)\+1)z T(nA+1) Zblnz T(iA +1) ; faty | @
— _ k ) k ) Eg k n)\fn k tn)\ (x) m
esVi(x,5) ngl AT T E T -l- ; nA—f—l ; T(nA+1) . (44)
Fork =1, we get
N () (3) A (x
PResUs (%,5) = ];1/\&1) - ( 0 S( ) + 1SAJE1)> - ;\3[6111 (fo(x)+ ;(/{1_'(_ 1))> X
M fi(x) t'g1(x) / g (»)
(fo( )+ (/\1+ 1)> + 20 (go(x) +I*(A1+1)) (go(x) +1“(A1+1)> , (45)
G, 3 M (x A
PResVi(x,s) = gl)‘(JA) + <go s( ) + g;)\ii)) + S%SB (fo(x) + 1f()j:1‘*('1))> <g6(z) + m> : (46)

lim s*1%Resl; (x,5) =0

: s—00
Solving the system lim SMEResV) (x,5) — Ofor fi(x), g

S—>

fi(x) :ﬂlfSS)(%H&llfo( ) fol) +2b1go () 80(x),
g1(x) = =88 (x) — 3fo(x) gh(x)-

1(x), we obtain
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Similarly, we can obtain both fi(x) and g (x) for each k = 2,3.... As a particular case,
if we substitute by the initial conditions fo(x),gx) and ay = —1.5,by = 0.1, p = 0.1, in obtained
solutions, we obtain

_ —0.00003 (EO.lx + eO.2x _ eO.Sx _ 60.4x)

filx) = RN , (47)
~ —0.000142302 (0% - 02« — 03 — p04x) 18
gl(x) - (1 n 60.12)5 7 ( )
%((eo.lx 4 ez) 4 3(60.2x 4 eOBz) _ 6(60.3x 4 eO.Sx) —42 (eO.4x 4 60.7x) —84 (eO.Sx 4 60.6x)> X 1078
fa(x) = , (49)
(1 + 01!
_ (1.07(801% 4 ex) 1432 (EO.ZX + 60.9x) — 64 (60.3x + 60.82) — 448 (60.4x + 60.7x) _ 89.7(605% + 60.6x)) % 1077 %0
§2(x) = (1+ eo'lz)ll - (50)

To obtain the solutions, we substitute the values of fi(x) and g (x),k = 1,2,...

Equations (28) and (29):

u(x,t) = —0.000833333 +

0.04¢0-1(x+0.) 0.00003t4 (0% 4 022 _ o0.3% _ 60.4x)

(
(01040 4 1)2 T(A+1)(1+ e01x)°
N % % 1078{2)\((80'1% + ex) +3(60.2x _|_60.9x) _ 6(60.3x _|_eO.8x) _ 42(60.4x +eO.7x)

_ 84(605% 4 eO.6x))

T(A+1)(14 01!

- 0.18973760'1(x+0') 0.000142302112‘ (80.1:{ + eO.Zz _ eO.Bx _ eO.4z)

o(x 1) 0.1 2 0.1x)9
(0100 1) F(A+1)(1+ e01x)

N 1077424 (1.07 (%1% + %) + 3.2(e02% + €09%) — 6.4(e03% + £08%) — 44.8(e04% 4 0.7%) — 89.7(£05% - 06¢))

T(A+1)(1 4 0!

Table 2 displays the error norms computed at different space and time levels, indicating

acceptable accuracy with the current method at A = 1.

Table 2. Maximum error norms for different values of x and { of the suggested methods for u(x, t)

and v(x,t) corresponds to Example 2 at A = 1.

% T

E,

E,

0.1

0.4

0.7
1

2.966377 x 1016
1.885471 x 10~ 14
1.010737 x 10~ 13
2946948 x 10713

1.408595 x 10~15
8.94354 x 10~ 14
479429 x 10~13
1.397861 x 10~12

0.1

0.4

0.7
1

-25

1.700029 x 1016
1.076743 x 10~ 14
5.771252 x 1014
1.68289 x 1013

8.049117 x 1016
5.106332 x 1014
2.737463 x 1013
7.982642 x 10713

0.1

0.4

0.7
1

1.734723 x 1018
5.20417 x 1018
3.122502 x 10~17
1.301043 x 1016

6.938894 x 1018
2.081668 x 10717
1.457168 x 1016
6.175616 x 10716

0.1

0.4

0.7
1

25

1.682682 x 10~16

1.075875 x 10~ 14

5.765353 x 1014
1.6806 x 10~13

7.979728 x 10~16
5.102863 x 1014
2.734757 x 1013
7.971679 x 10713

+ ...
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Table 2. Cont.

b4 t Eu Ev
0.1 2.94903 x 1016 1.401657 x 10~15

5 04 1.885644 x 10~ 14 8.944234 x 10~ 14
0.7 1.01039 x 1013 4792694 x 10~ 13
1 2.945543 x 10713 1.397195 x 10~12

Since the exact solutions do not exist for varied values of A, we need to confirm the validity
of our method by measuring absolute two-step errors |U, — U,_1| and |V, — V,,_1|. For the
sake of comparison, the constants have been assumed to be 1y = —1,bp = %, t = 0.1 and
A = 0.5,0.3, and the results are listed in Table 3 in comparison to the results of the Chebyshev
method [25]. Figure 1 shows the surface graphs of the approximate LRPS and the exact solutions
for Equations (41) and (42) when x € [—5,5],t € [0,1] and A = 1. These subfigures clearly show
that the approximate solutions U(x,t) and V (x,1) are close to the exact solutions.

Table 3. Comparison of error norms |U, — Uy,_1| = |V — V;,_1| with the result obtained by Cheby-
shev method [25] for Example 2 with { = 0.1.

Present Method Chebyshev Method [25]

z A=05 A=03 A=05 A=03

|U, — Uy | |Us — Uy| Uy — U |Vs — Va
0.1 4.9995 x 10~10 1.406 x 10~ 1.73826 x 10~° 1.90199 x 10~°
0.2 4998 x 10710 1.405 x 10~ 6.64154 x 107> 7.24797 x 10~°
0.3 4.9955 x 10~10 1.404 x 10~° 1.140569 x 10~* 1.234857 x 10~*
0.4 4992 x 10710 1.403 x 10~° 1.090816 x 10~* 1.150670 x 10~
0.5 4.9875 x 10710 1.402 x 1077 6.6253 x 10~ 24281 x 10~
0.6 4982 x 10710 1.4 x107° 2.072694 x 104 2439404 x 10~*
0.7 4.9755 x 10~10 1.399 x 10~° 4911051 x 104 5.623051 x 104
0.8 4.968 x 10710 1.397 x 10~° 7.233840 x 104 8.208567 x 104
0.9 4.9596 x 10~10 1.394 x 1077 6.78061 x 10~* 7.66036 x 10~4

()
Figure 1. Comparison between the exact solutions (a,c) and the approximate solutions (b,d) of u(x, 1)
and v(x, 1) for Example2atA =1, x € [-5,5] and { € [0,1].

(d)
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Example 3. Consider the nonlinear time-fractional coupled Whitham—Broer—Kaup equations [29-31]:

Du(x,t) = —u(x,t)Dyu(x,t) — Dyo(x,t) — ED2u(x, 1),

D}o(x,t) = —u(%,t)Dyo(%,t) — 0(x, 1) Dyett(x,t) + ED20(x,t) — yDu(x, ), °~* =T (1)

Subject to the initial conditions

u(x,0) = fo(x) = 1(1 — 16 tanh(—2x)),

0(x,0) = go(x) = 16(1 — tanh?(~2x)), % € [a,b]. (52)

The linear and nonlinear parts of this system are
Ry (u, v, Dett, Dyv, D21, Div,...) = —D,v(x,t) — ED%u(x, 1),
R, (u, v, D,u, D,v, Dgu, Div, ... ) = @ng(z, 1) — quu(x, 1),
N; (u, v, Dyu, Do, Dﬁu, Dﬁv, .. ) = —u(x,1t)Dyu(x,1),
Ny (u, v, Dyu, Dy, Diu, Div, ... ) = —u(x,1)D,v(x%,t) — v(x,1)Dyu(x,1).

So, applying the system (24) and (25) for Equations (51) and (52), we obtain

£ ful) Ly ")y ™ filx)
LResU(x,5) = ; nA+l s)‘ (Z g1t ¢ Z ghA+1 ) At Lg) r(nA+1) n;) F(mA+1) |’ ©3)
k ko on
sresi(ee) = 32829+ L (e 8-y £ 20 )
n=1 n=0 n=0
1 k tn/\fn (x) k {n)\g/ % k n/\ x k tn)\f/ (x)
+A$lzr(n/\+l)zor(n/\+l ; nA—f—l ; F(nA+1) | (54)
To determine fy(x) and g1(x), we consider k = 1, which yields to
x 1 (gt V(%
£ResUy(x,5) = J;{\(H) t <g0£%) /\(+1) ‘:f . ) SAErl))
1 G fAf (%)
+ - =% (fo A1+1 )( )\1—1- 1)) 55)
y " (s 3)
£ResVy(x,5) = gA(Jrl) + L <§g0£x) +‘§gslA(+1) - ’7f0 S(X) flswgl)>
A Aol (% A 5 A gl
+ 2| (ot + et (g’ () + 1l 1))> + (st + 122 (fé(z) +1f({1f1>)> o

Now, to determine f1(x) and g1(x), we multiply the Equations (55) and (56) by s* 1 and
lim sA+1S£ResU1(x s) =0,

hm sMIPResV (x,5) = O,f g

§—>00

M, respectively, and then solve recursively the the system °_ 7
f1(x) and g(x), we obtain

Fi(x) = —folx) f(x) — gh(x) — EF (%),
g1(x) = =0 (%) f(x) — fo(x)gh(x) + &gl (x) — 1) (x).

X

Similarly, we determine fi.(x) and gi(x),k = 2,3, . ... The following are the first few elements
of the sequence fi(x),gx(x) when & = 1,11 = 3.
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f1(x) = —8sech*(2x),
f2(x) = —16sech?(2x) tanh(2x),

¢1(x) = 32sech?(2x) tanh(2x),
92(%) = 32(cosh(4x) — 2)sech*(2x),
4"2T(A + 3) tanh(2x)
Val(A+1) )
32(3 —2cosh(4x))I'(2A +1)
I(A+41)2 ) ’

¢3(x) = 16sech®(2x) 128 cosh(4x) — 10sinh(4x) + sinh(8x) — 192 +

f3(x) = 16sech*(2x) <2 — cosh(4x) — 32 tanh(2x) +

Consequently, by substituting in Equations (28) and (29), one can write the approximate
solutions for the system (51) and (52) as the following expansion:

1 —8thsech?(2x)  —16t*sech?(2x) tanh(2x)
u(x,t) = 5(1—16tanh( 2x)) + T+ 1) ToA 1)
_ - 4MIT (A 4 1) tanh(2
+ 16sech(2x) 2 — cosh(4x) — 32 tanh(2x) (A + 3) tanh(2x) ’
T(3A+1) VAT(A+ 1)T(3A +1)
B B 2, 32t1sech?(2x) tanh(2x)  32t%}(cosh(4x) — 2)sech*(2x)
v(x,t)f16<1 tanh?(—2 )) O T) + AT
128 cosh(4x) — 10sinh(4x) + sinh(8x) — 192 32(3 — 2cosh(4x))T'(2A + 1)
6
 L6sech (2“)( T(3A 1 1) T(A+ 12031 + 1)

Table 4 summarizes the maximum absolute errors for the obtained solutions of system (51) and (52)
computed at different values of x and t. Additionally, Figure 2 shows the behavior of the approx-
imate solutions and compares them with the exact solution. The numerical and graphical results
demonstrate the harmony and convergence between the approximate and exact solutions.

Table 4. Maximum error norms for different values of x and t for u(x,t) and v(x, ) corresponds to
Example3at{ =1,y =3and A =1.

x T Eu E‘U
0.1 1.776357 x 10~15 1.052059 x 10~ 14
5 0.2 1.758593 x 10713 7.095397 x 10713
0.3 1.965539 x 10~12 7.866877 x 10712
0.4 1.075939 x 10~ 11 4304191 x 10~ 1
0.1 4541549 x 10710 1.778161 x 1072
) 0.2 2.828785 x 1078 1.108183 x 107
0.3 3.137571 x 1077 1.229783 x 10~
0.4 1.717497 x 10° 6.734969 x 1076
0.1 7.134204 x 1010 7.901643 x 108
1 0.2 4941075 x 10~? 5.45743 x 10~°
0.3 4.701765 x 10~7 6.711423 x 107>
0.4 5989914 x 10~ 4071898 x 10~°
0.1 1.634248 x 10~13 6.577691 x 1013
4 0.2 1.085887 x 10~ 11 434379 x 10~ 11
0.3 1.274785 x 10~10 5.099124 x 1010
0.4 7.386944 x 1071 2.954758 x 10~°
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() (d)
Figure 2. Comparison between the exact solutions (a,c) and the approximate solutions (b,d) of u(x, 1)
and v(%,t) for Example3atA =1, x € [-5,5] and t € [0,1].

4. The (2+1)-Dimensional Time-Fractional Coupled Differential Equation

In this section, we applied the LRPS method to solve the two dimensional coupled
fractional Navier—-Stokes equations of the form

D u(x, w, t) + u(ce, w, )y (3, w, 1) + 0(x, w, )y (2, w, 1) = po (U (2, w, 1) + Uy (3, w, 1)),

< 1.
D}o(x, w, 1) + u(x,w, Doe (%, w, £) +0(%, w, )0 (%, 0, 1) = po(Os(x, W, 1) + vwe (6w, 1)), © =1 67

Subject to the initial conditions

(58)
Applying the Laplace transform to Equations (57) and (58), we obtain

< [D?u(x, w,t)} = 0L Uz (%, w, 1) + Uy (%, w, T)] — L[u(x, w, )y (%, w, ) + (%, w, )iy (%, w,1)], (59)

< {D%‘v(x, w,t)} = po2[v(x, w, 1) + Vi (2, w,1)] — Llu(x, w, 1)v, (%, w, 1) + v(x, w, 1)vy (2, w,1)]. (60)
Using 2[Dfu(x, w,t)] = s'Lu(x, w, )] — s} u(, w,0) = s*Ru(x, w, t)] — s o (0, w)

and 2[D}o(x, w,1)] = s*Lo(x, w,1)] — s} (%, w,0) = s*L[o(x, w,t)] — s} 1go(x,w),
we can write Equations (59) and (60) as

U(x, w,s) :@ + g—f\) (Dill(x, w,s) + Dill(x,w,s))

- SiAsg [sg—l[U(x, w, )] DU (x,w,s)] + L[V (%, w,5)] 2 [DyU(x, w,s)]}, (61)
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V(x,w,1) :80(%57"») + f—ﬁ (Dgwx, w,s)+ D3V (x, w,s))
_ SlAgg [ U e, w,9))2 DV (e, 0,8)] + 2V (e, 00,9)] 21 DV (3, w,5)] ], 62)

where U(x, w,s) = L[u(x, w,t)], V(x,w,s) = L[v(x, w,t)]. By writing transformed func-
tions U(x, w,s) and V(x, w,s) as fractional power series representations, we obtain

UG w,s) = Y- F20ew), (63)
n=0
V(x,w,s) =Y g’;(ji’;f). (64)

The k-th truncated series of Equations (63) and (64) take the forms

fu(x
(%, w,8) Z SMH, (65)

gn
(%, w,s) Z SMH , (66)

n=0

where fo(x, w) nd go(x, w) are the initial conditions. To find the unknown coefficients
of the series in Equations (61) and (62), we define the Laplace residual functions for the
coupled equations in Equations (65) and (66) as follows:

PResU(x, w,s) =U(x, w,s) — M - S—g (Dﬁll(x, w,s) + D2 U(x, w,s))

n SiAse[Srl[U(x, w,$)]2 7 DeU(x,w,s)] + 271V (x, w,s)]sefl[DwU(x,w,s)ﬂ, (67)
PResV (x, w,s) =V (x, w, 1) — g(’(zi’w) - %) (ng(x, w,s) + D3V (x, w,s))
- S%Sﬁ[&i_l[u(x, w,$)]2 D,V (x,w,s)] + 2L [V(x,w,s)]L Dy V(x, w,s)]] (68)

For the k-th Laplace residual function, we have

PResUy (%, w,s) =Ui(x, w,s) — M - 5—2 (Dgllk(x, w,s) + D2 Uy (x, w,s))
+ SLASB[Sf_l[Uk(x, w,$)]L [ Deli(x, w,5)] + L [Vi(x, w, 5)] 2 Do Ui (x, w,s)]], (69)

PResVi(x, w,8) =Vi(x, w,1) — M — S—f\) (Dng(x, w,s) + D%DVk(x,w,s))

+ Slﬁ’f [3_1[Uk(x,w,s)}$_l[Dka(x, w, )] + L [Vi(x, w,5)] 2! [Du Vie(x, w,s)]] (70)

By substituting Equations (65) and (66) into Equations (69) and (70), we obtain

falo,w)  po (& (f) e w) (i) usus (2 w)
PResU(x, w,s) Z SMH - Y. gl T Z AT

n=1 n=0 n=

1
—<£
+S/\

k
-1 ful(x,w) 1
£ Z Sn/\-‘rl z-

Z (fin) (%,

Sn)\-i-l

8
Z nnA+1

k
gn( 81 (%, W) (81) i (2 W)
PResVi(x, w, ) Z SMH - (ZO e ZT) ST
n= n=

n=0 n=0 n

k . )
ZO f SnA+1 ]‘|’ (71)




Fractal Fract. 2024, 8, 401 15 0of 18

+2!

E n/\+1

i gn(x,
nA+l
n=0

The last system can be written as

gRESUk(X,w,S) if (x' ) pO(ZW+ - f” ww % w >

ghA+1 s ghA+1 Sn)\-i-l

n=1 n=0 n=0
L[ 0 e w) & (), £ g () o U (), (5 0)
= 73
T L TaA ) n;) F(nA+1 ; T(nA + 1) ;) m\—i—l) / 73)
k k k
_ g”(x/w) Po (gn) X U} g” wuw X w
$ResVi(x, w,s) = Z AT A (ZO Siﬁﬂ Z gnA+1
= n= n=0
1 £ (6, w) (& "M (8n),e kot (x,w) & 1 (gn), (2, w)
- = ’ . 74
s)‘EBLEJ I'(nA+1) rg (nx\—i—l ; I(nA+1) -’; n/\+1) @4
To determine f;(x, w) and g;(x, w), we consider k = 1 in Equations (73) and (74)
and obtain

fl(x’w) po foxx(x’w) flxx(xfw) foww(x’w) flww(x’w)
PResU; (%, w,s) = s . + e + . + s,

(10 w)fo, (x,w) + folx, w) fr, (2, w)) il w)fr, (x, w)
fo(x,w)fox(x,w) + F()\—l—l) + (r(/\+1)>2

thg1(x, w)fo, (xw) | thgo(xw)fi, (x, w) tHAgl(X'w)ﬁw(x’w)]’ (75)

1
—<£
—f—sA

+80(x, w) fo, (=, w) + T(A+1) T(A+1) (T(A+1))

EBRQSV](X w, S) gl(X U}) p0<goxz(x’w) + glxz(x’w) + gowwix'w) + glww(x’w)>

A1 oA s GA+T GA+1

thfi(x w)go, (kw) | tHfolew)g (x,w)  MAf(xw)gr, (2, w)
fO(x/w)ng(xlw) + F(A-‘rl) + I’()\—l—l) (1_,()\4_1))2

tH(g1(x,w) fo, (2, w) + go(x, w)g1, (x,w)) | tPg1(x, w)g1, (x,w)
—l—go(x,w)fow (%/w)_’_ r(/\+1) + (F()L—i-l))z ] (76)

1
=g
A

for f1(x,w)and gi(x, w), we obtain

lim s*1%Resl; (x, w,s) = 0,
Solving the system * 0

—00
lim s*1%ResV; (x, w,s) =

w- 2 w w 2 w
filbesw) = —golew) )y TIE) iy Soler) y TI0) 7)

9go(x, w) n 9%g0(x, w) _fo<x,w)3go(%/w) n azgo(zrw). 78)

81, w) = =go(x, w) ow ow?2 0% %2

Continuing in that manner to calculate fi(x, w) and gx(x, w), k =2,3,..., we solve
the following system for each k = 2,3, ...

kA+1

Shn})os ZResUy(x, w,s) =0, (79)
kA+1 _

Shrr})os PResVi(x, w,s) =0. (80)

Finally, by substituting the series solution fi(x, w) and gx(x, w), k = 1,2, ... obtained
from Equations (77)—(80) into Equations (65) and (66) and taking the inverse Laplace
transform, we obtain the solutions of system (57) and (58) as follows:
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ad t”}‘fn(x,w)

u(x,w,t) = Z TrALT (81)
= I(nA+1)
t”)‘gn (2, w)
1) 2
e, Z T(mA+1) ®2)
Example 4. Let us assume two-dimensional incompressible time-fractional Navier—Stokes equations
as [32,33]
i sofe =352+ 2)
N ., P 2§ s 0<ASL (83)
Div+ug; +v (az2 W)’

Subject to the initial conditions

v(x, w,0) = sin(x + w),
: (84)
u(x,w,0) = —sin(x + w).
According to the discussion and obtained results in Section 4, Equations (77)—(80), the series
coefficients are as follows:

fi(z,w) =sin(x+w), g1(x, w) = —sin(x+ w),
fo(z,w) = —sin(x+w), g2(x,w)=sin(x+w),
fa(x,w) =sin(x+w), g3(x, w) = —sin(x+ w),
fa(z,w) = —sin(x +w), ga(x, w)=sin(x+ w),
f5(x,w) =sin(x+w), g5(x,w)=—sin(x+w)....

Using Equations (81) and (82), we obtain

thsin(x+w)  tPsin(x+w)  tPsin(x+w)  t*sin(x+w) PV sin(x 4+ w) B

t) = —si - -
Ul w,t) = =sin(x+ w) + =57y T2A+1) | TGA+D) T4\ + 1) T(5A + 1)
Agi 20 g B0 o 40 G 5A o
V(s w, ) = sin(x + w) — 4 sin(x + w) n tsin(x +w) M sin(x +w) i t*sin(x +w)  sin(x+w)
T(A+1) T(2A +1) T(3A +1) T(4A +1) T(5A +1)

The efficiency of the proposed algorithm for Example 4 is shown in Figure 3. These subfigures
depict surfaces of approximate and exact solutions for systems (83) and (84) at t = 0.1, A = 1 and
%, W € [—5, 5].

(b)

Figure 3. Cont.
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(c) (d)
Figure 3. Comparison between the exact solutions (a,c) and the approximate solutions (b,d) of u(x, 1)
and v(x,t) for Example 4 att = 0.1, A = 1,and %, w € [-5,5].

5. Conclusions

In the present study, the LRPS method is successfully applied to find the analytical
solution of the (1+1)- and (2+1)-dimensional time-fractional coupled differential equations.
The obtained results demonstrate the reliability and simplicity of the method. The proposed
technique has the advantage of reducing the size of computation needed to figure out the
coefficients in a power series form. The proposed expansion in our study allowed us to
obtain a series solution for the equations in Laplace transform space. In comparison with
other techniques, LRPS method is a competent tool to obtain the analytical solution of
coupled nonlinear time-fractional partial differential equations.
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