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Abstract: In this paper, we study a split-step Galerkin finite element (FE) method for the two-
dimensional Riesz space-fractional coupled nonlinear Schrödinger equations (CNLSs). The proposed
method adopts a second-order split-step technique to handle the nonlinearity and FE approximation
to discretize the fractional derivatives in space, which avoids iteration at each time layer. The analysis
of mass conservative and convergent properties for this split-step FE scheme is performed. To test
its capability, some numerical tests and the simulation of the double solitons intersection and plane
wave are carried out. The results and comparisons with the algorithm combined with Newton’s
iteration illustrate its effectiveness and advantages in computational efficiency.
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1. Introduction

The nonlinear Schrödinger equation (NLS) was raised by Feynman and Hibbs from
the path integral over the Brownian paths [1], which presents an effective model for
describing the quantum state of physical systems. The space-fractional NLS was generated
by Laskin via extending the Feynman path integral to a novel path integral over the Lévy
quantum mechanical paths, which opens a new perspective for quantum mechanics and
can characterize many new phenomena absent from the classical NLS [2,3]. The fractional
NLS plays an important role in mathematical physics and it is ubiquitous in various fields
as diverse as quantum optics, water wave dynamics [4], beam propagation inside crystals,
the study of Boson–Einstein condensation, and the continuum limit with long-range lattice
interaction [5]. The space-fractional NLS on 2D domains appears as follows:

i∂tu − γ(−∆x)
α/2u − γ

(
−∆y

)β/2u + λ|u|2u = 0, 0 < t ≤ T, (1)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2, (2)

u(x, y, t) = 0, (x, y; t) ∈ R2 \ Ω × (0, T], (3)

with i2 = −1 and real numbers γ > 0, λ, 1 < α, β ≤ 2, Ω = [a, b]× [c, d], and −(−∆x)
α/2u

is the Riesz fractional derivative with respect to x [6]:

−(−∆x)
α/2u(x, y, t) := − 1

2 cos(απ/2)

[
RLDα

a+u(x, y, t) +RL Dα
b−u(x, y, t)

]
with RLDα

a+u(x, y, t) and RLDα
b−u(x, y, t) being the α-th left- and right-hand Riemann–

Liouville derivatives of x, respectively, and −
(
−∆y

)β/2 is similarly defined. The fractional
NLS happens to be the classical cubic NLS when α = 2, which is necessary to characterize
the evolution of nonrelativistic systems and can provide a detailed description of the true
nature of the microscopic events in a probabilistic sense.
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The space-fractional NLS and CNLS have been of great interest over recent years.
However, due to their nonlocal fractional operators involved in space, solving them nu-
merically appears extremely challenging, so the existent algorithms still remain limited
for high-dimensional problems. There are many research works devoted to studying the
1D space-fractional NLS, but fewer works investigate the numerical approaches for the
high-dimensional space-fractional NLS/CNLS. Amore et al. derived a simple collocation
method based on little Sinc functions for the quantum mechanical equation involving the
fractional Laplacian [7]. Herzallaha and Gepreel developed an adomian decomposition
method to solve the time–space-fractional NLS [8]. In [9–11], several second-order finite dif-
ference (FD) methods have been established for the 1D single and coupled space-fractional
NLS, where the mass and energy conservation properties are rigorously discussed. The
Fourier spectral method was first proposed by Klein et al. to study the finite time blow-up,
the stability of nonlinear ground states and the long-time behavior of solutions in classical
or semiclassical settings [12]. Such a spectral method was further investigated by Duo
and Zhang for the 1D space-fractional NLS in a semiclassical regime with the split step,
Crank–Nicolson and relaxation schemes being used in time [13]. In [14–16], the linearized
Galerkin FE schemes for the space-fractional NLS and CNLS on 1D domains were devel-
oped. In [17], we proposed an implicit FE scheme to solve the 1D time–space-fractional
equations of NLS type and further extended this scheme to the 2D situation. Li et al. gave a
fast linearized conservative FE scheme for the 1D strongly space-fractional CNLS [18]. Fan
and Qi proposed an efficient FE method for the 2D time–space-fractional NLS [19]. In [20],
Aboelenen constructed a high-order nodal discontinuous Galerkin FE method for the 1D
space-fractional problem of NLS type.

Aside from the difficulty in designing the algorithm to approximate the fractional
derivatives in high dimensions, another main concern about the construction of numerical
schemes for the fractional NLS and CNLS is how to efficiently discretize the nonlinear
terms. A wealth of experience has shown that the split-step method is one of the important
approaches to solve high-dimensional nonlinear problems, which is linearized and can
reduce the computational cost and memory requirement. A few works have been devoted
to this area. Wang and Huang developed a split-step conservative ADI FD method for the
2D space-fractional NLS [21], which solves the problem without any iteration by splitting
the governing equation into linear and nonlinear subparts. Along the same line, a high-
order split-step FD method for the 1D space-fractional CNLS was proposed in [22]. Recently,
Wang et al. considered the semiclassical linear space-fractional Schrödinger equation by a
Lie–Trotter operator splitting spectral method [23]. In [24], Aboelenen proposed a split-step
Fourier pseudo-spectral scheme for the 1D space-fractional CNLS. Wang et al. developed a
split-step spectral Galerkin scheme for 2D space-fractional NLS [25].

In this work, we consider the 2D space-fractional CNLS

i∂tu − γ(−∆x)
α/2u − γ

(
−∆y

)β/2u + λ(|u|2 + ρ|v|2)u = 0, (4)

i∂tv − γ(−∆x)
α/2v − γ

(
−∆y

)β/2v + λ(ρ|u|2 + |v|2)v = 0, 0 < t ≤ T, (5)

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ R2, (6)

u(x, y, t) = 0, v(x, y, t) = 0, (x, y; t) ∈ R2 \ Ω × (0, T], (7)

with the real numbers γ > 0, λ, ρ and 1 < α, β ≤ 2. When ρ = 0, the above problem
degenerates to the single fractional NLS, which preserves

mass : Q(t) =
∫

R2 |u(x, y, t)|2dΩ = Q(0),
energy : E(t) = γ

∫
R2 u∗(−∆x)

α/2u + u∗(−∆y
)β/2udΩ − λ

2

∫
R2 |u|4dΩ = E(0),

along with the time evolution [21], where u∗ is the conjugate of u.
Although the spectral Galerkin method based on orthogonal polynomials is a kind

of high-accuracy technique, it has a strict limit on computational domains, which are
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usually multiplicative rectangular regions. Besides, it requires high regularity for the
model problem. The FE method is a high-performing and commonly used algorithm for
complex domain problems with unstructured meshes in scientific and engineering com-
puting, which can achieve high accuracy with lower regularity, but due to the nonlocality
of fractional derivative operators, seldom works have been reported on this method for
the high-dimensional space-fractional NLS and CNLS. Inspired by this, we try to establish
an efficient split-step Galerkin FE scheme for the 2D space-fractional CNLS (4)–(7). The
mass conservation property is proved and the convergence is also analyzed. The proposed
method is utilized to simulate these problems on unstructured meshes, and no internal iter-
ation is required at each time layer, thereby greatly reducing the computational complexity.

The outline is as follows. In Section 2, some preliminaries are introduced, and in
Section 3, the variational formulation is derived. In Section 4, we engage in a detailed
derivative course of the split-step FE scheme for Equations (4)–(7) and further analyze its
mass conservation property and error estimates. In Section 5, a numerical study on the
dynamics of NLS and CNLS involving fractional derivatives is conducted, and a short
conclusion is made lastly.

2. Preliminaries

We recall some auxiliary definitions and results about the fractional derivatives. If
f (x) is smooth enough, the µ-th left-hand Riemann–Liouville derivative is defined by

RLDµ
a+ f (x) =

1
Γ(n − µ)

dn

dxn

∫ x

a

f (ω)dω

(x − ω)µ−n+1 , x > a,

and µ-th right-hand Riemann–Liouville derivative is defined by

RLDµ
b− f (x) =

(−1)n

Γ(n − µ)

dn

dxn

∫ b

x

f (ω)dω

(ω − x)µ−n+1 , x < b,

where n − 1 < µ ≤ n, n ∈ Z+ and Γ(z) =
∫ +∞

0 exp(−t)tz−1dt.
Another commonly used fractional derivative is called the Riesz derivative:

∂µ f (x)
∂|x|µ = − 1

2 cos(µπ/2)

[
RLDµ

a+ f (x) +RL Dµ
b− f (x)

]
, a < x < b,

and similarly, we can define the fractional derivatives with regard to y.
Meanwhile, letting Ω = [a, b] × [c, d], ||u||L2(R2) = (u, u)1/2

L2(R2)
and (u, v)L2(R2) =∫

R2 uvdxdy, we denote ||·||L2(Ω) by ||·||0,Ω, ||·||Hs(Ω) by ||·||s,Ω and (·, ·)L2(Ω), (·, ·)L2(R2)

by (·, ·) with s > 0. For a real-valued u(x, y) on Ω, we define the following fractional
derivative spaces [26,27]:

Definition 1. Letting µ > 0, we define the left seminorm

|u|Jµ
L (Ω) =

(
||RLDµ

a+ u(x, y)||20,Ω + ||RLDµ
c+u(x, y)||20,Ω

)1/2
,

and left norm

||u||Jµ
L (Ω) =

(
||u||20,Ω + |u|2Jµ

L (Ω)

)1/2
,

and let Jµ
L (Ω) be the closure of C∞(Ω) with respect to ||·||Jµ

L (Ω).

Definition 2. Letting µ > 0, we define the right seminorm

|u|Jµ
R(Ω) =

(
||RLDµ

b− u(x, y)||20,Ω + ||RLDµ
d−u(x, y)||20,Ω

)1/2
,
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and right norm

||u||Jµ
R(Ω) =

(
||u||20,Ω + |u|2Jµ

R(Ω)

)1/2
,

and let Jµ
R(Ω) be the closure of C∞(Ω) with respect to ||·||Jµ

R(Ω).

Definition 3. Letting µ > 0 and F (u) be the Fourier transform of u defined in Ω, i.e.,

F (u) =
∫ +∞

−∞

∫ +∞

−∞
u(x, y) exp(−iω1x − iω2y)dxdy,

we define the seminorm
|u|µ,Ω = |||ω|µF (ũ)||0,Ω,

and norm
||u||µ,Ω =

(
||u||20,Ω + |u|2µ,Ω

)1/2
,

and denote the closure of C∞(Ω) with respect to ||·||µ,Ω by Hµ(Ω), where ω = (ω1, ω2) and ũ is
the extension of u by zero outside of Ω.

Similar to Jµ
L (Ω), Jµ

R(Ω) and Hµ(Ω), we define Jµ
L,0(Ω), Jµ

R,0(Ω) and Hµ
0 (Ω) by the

closures of C∞
0 (Ω) with respect to ||·||Jµ

L (Ω), ||·||Jµ
R(Ω) and ||·||µ,Ω, respectively. If µ ̸=

n− 1/2, n ∈ Z+, Jµ
L,0(Ω), Jµ

R,0(Ω) and Hµ
0 (Ω) are equivalent with the equivalent seminorms

and norms, i.e.,

C1||u||µ,Ω ≤ max
{
||u||Jµ

L (Ω) , ||u||Jµ
R(Ω)

}
≤ C2||u||µ,Ω,

where µ > 0 and C1 and C2 are two positive constants independent of u.

Lemma 1. Letting µ > 0, we have the below identities in the L2-nrom sense:(
RLDµ

a+u,RL Dµ
b−u
)
+
(

RLDµ
b−u,RL Dµ

a+u
)
= 2 cos(µπ)||RLDµ

a+ ũ||20,R2 , (8)(
RLDµ

c+u,RL Dµ
d−u

)
+
(

RLDµ
d−u,RL Dµ

c+u
)
= 2 cos(µπ)||RLDµ

c+ ũ||20,R2 . (9)

Proof. Firstly, according to [27], we have

F
(

RLDµ
a+u
)
= (iω1)

µû(ω), F
(

RLDµ
b−u
)
= (−iω1)

µû(ω),

with û(ω) = F (u). Then, from

(iω1)
µ =

{
exp(−iπµ)(−iω1)

µ, forω1 ≥ 0,
exp(iπµ)(−iω1)

µ, forω1 < 0,

and the property of Fourier transform, it follows that(
RLDµ

a+u,RL Dµ
b−u
)
=
(
(iω1)

µû, (−iω1)
µû
)

=
∫ ∞

−∞

(∫ 0

−∞
(iω1)

µû(−iω1)
µûdω1 +

∫ ∞

0
(iω1)

µû(−iω1)
µûdω1

)
dω2

=
∫ ∞

−∞

(∫ 0

−∞
(iω1)

µû exp(−iπµ)(iω1)
µûdω1

+
∫ ∞

0
(iω1)

µû exp(iπµ)(iω1)
µûdω1

)
dω2
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= cos(πµ)
∫ ∞

−∞

∫ ∞

−∞
(iω1)

µû(iω1)
µûdω1dω2

+i sin(πµ)

{∫ ∞

−∞

(∫ ∞

0
|(iω1)

µû|2dω1 −
∫ 0

−∞

∣∣(iω1)
µû
∣∣2dω1

)
dω2

}
,

and the similar result(
RLDµ

b−u,RL Dµ
a+u
)
= ((−iω1)û, (iω1)û)

=
∫ ∞

−∞

(∫ 0

−∞
(−iω1)û(iω1)ûdω1 +

∫ ∞

0
(−iω1)û(iω1)ûdω1

)
dω2

=
∫ ∞

−∞

(∫ 0

−∞
(−iω1)

µû exp(iπµ)(−iω1)
µûdω1

+
∫ ∞

0
(−iω1)

µû exp(−iπµ)(−iω1)
µûdω1

)
dω2

= cos(πµ)
∫ ∞

−∞

∫ ∞

−∞
(−iω1)

µû(−iω1)
µûdω1dω2

+i sin(πµ)

{∫ ∞

−∞

(∫ 0

−∞
|(−iω1)

µû|2dω1 −
∫ ∞

0

∣∣(−iω1)
µû
∣∣2dω1

)
dω2

}
.

Consequently, we come to Equation (8) by summing these equations together, and
Equation (9) can be easily deduced in the same way as above. □

Moreover, for any u ∈ Hµ
0 (Ω), we have ||u||0,Ω ≤ C|u|µ,Ω, and for 0 < s < µ,

µ ̸= n − 1/2, n ∈ Z+, there holds |u|s,Ω ≤ C|u|µ,Ω, which are the well-known fractional
Poincaré–Friedrichs inequalities, where C is a positive constant independent of u. For any
u ∈ Jµ

L,0(Ω) or Jµ
R,0(Ω) and 0 < s < µ, the similar inequalities can be validated, such as

||u||0,Ω ≤ C|u|Jµ
L (Ω), |u|Js

L(Ω) ≤ C|u|Jµ
L (Ω).

3. Variational Formulation

To derive the weak problem, we define the energy norm

|ψ|EN =
(
|
(

RLDα/2
a+ ψ,RL Dα/2

b− ψ
)
|+|
(

RLDβ/2
c+ ψ,RL Dβ/2

d− ψ
)
|
)1/2

,

|||ψ||| =
(
||ψ||20,Ω + |ψ|2EN

)1/2

and introduce a family of regular triangular subdivisions Th = {Ki}mh
i=1 of Ω with the

meshsize h. Also, for φ, ψ ∈ Jα
L,0(Ω) or Jα

R,0(Ω), we have(
RLDα

a+ φ, ψ
)
=
(

RLDα/2
a+ φ,RL Dα/2

b− ψ
)

,(
RLDα

b− φ, ψ
)
=
(

RLDα/2
b− φ,RL Dα/2

a+ ψ
)

,
(10)

and the analogous results hold for RLDβ
c+ φ, RLDβ

d− φ [26].
Rewrite u and v in Equations (4)–(7) by their real and imaginary parts, i.e., u = u1 + iu2,

v = v1 + iv2, and introduce the symmetric bilinear form:

Ah(φ, ψ)=
1

2 cos(απ/2)

{(
RLDα/2

a+ φ,RL Dα/2
b− ψ

)
+
(

RLDα/2
b− φ,RL Dα/2

a+ ψ
)}

+
1

2 cos(βπ/2)

{(
RLDβ/2

c+ φ,RL Dβ/2
d− ψ

)
+
(

RLDβ/2
d− φ,RL Dβ/2

c+ ψ
)}

,
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which satisfies the coercivity and continuity properties:

Ah(ψ, ψ) ≥ C|||ψ|||, Ah(φ, ψ) ≤ C|||φ|||·|||ψ|||.

Using the property (10) and splitting u and v, the weak problem can be defined as
follows: find u, v ∈ L2(0, T; V) ∩ C0(0, T; L2(Ω)

)
to fulfill(

∂tu1, χ1
u
)
− γAh

(
u2, χ1

u
)
+ λ((|u1|2 +|u2|2 +ρ|v1|2 +ρ|v2|2)u2, χ1

u
)
= 0, (11)(

∂tu2, χ2
u
)
+ γAh

(
u1, χ2

u
)
− λ((|u1|2 +|u2|2 +ρ|v1|2 +ρ|v2|2)u1, χ2

u
)
= 0, (12)(

∂tv1, χ1
v
)
− γAh

(
v2, χ1

v
)
+ λ((ρ|u1|2 +ρ|u2|2 +|v1|2 +|v2|2)v2, χ1

v
)
= 0, (13)(

∂tv2, χ2
v
)
+ γAh

(
v1, χ2

v
)
− λ((ρ|u1|2 +ρ|u2|2 +|v1|2 +|v2|2)v1, χ2

v
)
= 0, (14)

with χ1
u, χ2

u, χ1
v, χ2

v ∈ V and V = Hα/2
0 (Ω) ∩ Hβ/2

0 (Ω), subjected to

u1(x, y, 0) = Reu0(x, y), u2(x, y, 0) = Imu0(x, y), (x, y) ∈ Ω, (15)

v1(x, y, 0) = Rev0(x, y), v2(x, y, 0) = Imv0(x, y), (x, y) ∈ Ω, (16)

u1(x, y, t) = 0, u2(x, y, t) = 0, (x, y; t) ∈ R2 \ Ω × (0, T], (17)

v1(x, y, t) = 0, v2(x, y, t) = 0, (x, y; t) ∈ R2 \ Ω × (0, T]. (18)

Denoting the set of polynomials of degree not greater than m − 1 on element K by
Pm−1(K), we define the FE subspace Xh on Th as follows:

Xh := {ψ ∈ V : ψ|E ∈ Pm−1(K), ∀K ∈ Th}.

Then, the semidiscrete FE scheme is defined as follows: find u1,h, u2,h, v1,h, v2,h ∈ Xh,
such that(

∂tu1,h, χ1
u
)
− γAh

(
u2,h, χ1

u
)
+ λ((|u1,h|2 +|u2,h|2 +ρ|v1,h|2 +ρ|v2,h|2)u2,h, χ1

u
)
= 0, (19)(

∂tu2,h, χ2
u
)
+ γAh

(
u1,h, χ2

u
)
− λ((|u1,h|2 +|u2,h|2 +ρ|v1,h|2 +ρ|v2,h|2)u1,h, χ2

u
)
= 0, (20)(

∂tv1,h, χ1
v
)
− γAh

(
v2,h, χ1

v
)
+ λ((ρ|u1,h|2 +ρ|u2,h|2 +|v1,h|2 +|v2,h|2)v2,h, χ1

v
)
= 0, (21)(

∂tv2,h, χ2
v
)
+ γAh

(
v1,h, χ2

v
)
− λ((ρ|u1,h|2 +ρ|u2,h|2 +|v1,h|2 +|v2,h|2)v1,h, χ2

v
)
= 0, (22)

with χ1
u, χ2

u, χ1
v, χ2

v ∈ Xh subjected to

u1,h(x, y, 0) = u0
1,h(x, y), u2,h(x, y, 0) = u0

2,h(x, y), (x, y) ∈ Ω, (23)

v1,h(x, y, 0) = v0
1,h(x, y), v2,h(x, y, 0) = v0

2,h(x, y), (x, y) ∈ Ω, (24)

where u0
1,h(x, y), u0

2,h(x, y), v0
1,h(x, y) and v0

2,h(x, y) are the appropriate approximations of
Reu0(x, y), Imu0(x, y), Rev0(x, y) and Imv0(x, y), respectively.

The semidiscrete FE scheme (19)–(24) preserves the mass, i.e., ||u1,h(t)||20,Ω+

||u2,h (t)||20,Ω = ||u0
1,h||

2
0,Ω + ||u0

2,h||
2
0,Ω and ||v1,h (t)||20,Ω + ||v2,h (t)||20,Ω = ||v0

1,h||
2
0,Ω + ||v0

2,h||
2
0,Ω.

By taking χ1
u = u1,h(t) and χ2

u = u2,h(t), the sum of Equations (19)–(20) and the symmetry of
bilinear form give the conservation property of u, and the result with respect to v followed by a
similar procedure.

4. Fully Discrete Split-Step FE Method

Letting N ∈ Z+, we define tn = nτ on [0, T] with τ = T/N, n = 0, 1, 2, . . . , N. In what
follows, we propose a fully discrete split-step Galerkin FE scheme for Equations (4)–(7) and
analyze its discrete conversation property and error estimate.
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4.1. Discretization in Time

The idea of the split-step method is to solve the nonlinear problem by splitting the
considered equation into linear and nonlinear parts [28–30], which is a popular technique
in nonlinear dynamics. If the classical NLS is given by i∂tu = Lu +N u with L, N being
the linear and nonlinear operators, then by separation of variables, we obtain

u(t) = e−iLτ−iN τu(t − τ) = e−iN τ/2e−iLτe−iN τ/2u(t − τ).

Then, the second-order Strang split-step scheme is reported as follows:

u1,∗ = e−iN τ/2u(tn−1), u2,∗ = e−iLτu1,∗, u(tn) = e−iN uτ/2u2,∗,

from t = tn−1 to tn, where u1,∗ and u(tn) are integrated exactly from iut = N u.
Inspired by this, we consider the coupled system of space-fractional CNLS:

∂tu1 + γLu2 + λN (t)u2= 0, (25)

∂tu2 − γLu1 − λN (t)u1= 0, (26)

∂tv1 + γLv2 + λÑ (t)v2= 0, (27)

∂tv2 − γLv1 − λÑ (t)v1= 0, t ∈ (tn−1, tn], (28)

with N (t) and Ñ (t) being the nonlinear terms, i.e.,

N (t)=|u1 (t)|2 +|u2 (t)|2 +ρ|v1 (t)|2 + ρ|v2(t)|2,

Ñ (t)= ρ|u1 (t)|2 +ρ|u2 (t)|2 +|v1 (t)|2 + |v2(t)|2.

Take the inner product sequentially with u1(t), u2(t), v1(t) and v2(t) in the above equations;
then, the sums of Equations (25)–(28) give

|u1 (t)|2 + |u2(t)|2 =|u1(tn−1)|2 + |u2(tn−1)|2,

|v1 (t)|2 + |v2(t)|2 =|v1(tn−1)|2 + |v2(tn−1)|2, t ∈ (tn−1, tn],

which implies that N (t), Ñ (t) are invariant in time, i.e., N (t) = N (tn−1), Ñ (t) = Ñ (tn−1).
Meanwhile, we split the coupled system (25)–(28) into the subproblems:

• Nonlinear subproblem:
∂tu1 + λN (t)u2= 0, (29)

∂tu2 − λN (t)u1= 0, (30)

∂tv1 + λÑ (t)v2= 0, (31)

∂tv2 − λÑ (t)v1= 0, t ∈ (tn−1, tn], (32)

• Linear subproblem:
∂tu1 + γLu2= 0, (33)

∂tu2 − γLu1= 0, (34)

∂tv1 + γLv2= 0, (35)

∂tv2 − γLv1= 0, t ∈ (tn−1, tn], (36)

then, to solve Equations (25)–(28), one can solve the linear subproblem firstly, followed by
solving the nonlinear subproblem. Next, we are devoted to finding the analytic solutions to
the nonlinear Equations (29)–(32). To this end, consider Equations (29) and (30) and separate
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u1(t) from Equation (30), i.e., u1(t) = 1
λN (t)

∂u2(t)
∂t . Using the property N (t) = N (tn−1) and

substituting it into Equation (29) yields

∂2u2(t)
∂t2 + λ2N 2

(tn−1)u2(t) = 0, (37)

with the characteristic equation r2 + λ2N 2
(tn−1) = 0. Due to ∆ = −4λ2N 2

(tn−1) < 0, we
have

u2(t) = C3 cos
[
λN (tn−1)(t − tn−1)

]
+ C4 sin

[
λN (tn−1)(t − tn−1)

]
, (38)

where C3, C4 ∈ R. Since u2 (t)|t=tn−1
= u2(tn−1), it is easy to obtain C3 = u2(tn−1). Taking

the derivative of both sides on Equation (38) with respect to t at t = tn−1, there exists

∂u2(t)
∂t

∣∣∣∣
t=tn−1

= C4λN (tn−1) cos
[
λN (tn−1)(t − tn−1)

]∣∣
t=tn−1

= C4λN (tn−1).
(39)

Then, we obtain C4 = u1(tn−1) by comparing Equation (30) with Equation (39), which
yields

u2(t)= cos
[
λN (tn−1)(t − tn−1)

]
u2(tn−1)

+ sin
[
λN (tn−1)(t − tn−1)

]
u1(tn−1),

(40)

and substituting it into Equation (30), we obtain

u1(t)= cos
[
λN (tn−1)(t − tn−1)

]
u1(tn−1)

− sin
[
λN (tn−1)(t − tn−1)

]
u2(tn−1).

(41)

Doing a similar process as above for Equations (31) and (32), it is not difficult to prove

v1(t)= cos
[
λÑ (tn−1)(t − tn−1)

]
v1(tn−1)

− sin
[
λÑ (tn−1)(t − tn−1)

]
v2(tn−1),

(42)

v2(t)= cos
[
λÑ (tn−1)(t − tn−1)

]
v2(tn−1)

+ sin
[
λÑ (tn−1)(t − tn−1)

]
v1(tn−1).

(43)

Thus, based on u1(t), u2(t), v1(t) and v2(t), the above coupled nonlinear system can
be solved in splitting steps, i.e., we firstly solve Equations (33)–(36) and then take the
solutions as initial values for Equations (29)–(32), where the solutions are integrated exactly
in physical space.

4.2. Crank–Nicolson FE Scheme

As the solutions to Equations (29)–(32) have been found, we now focus on the linear
subproblem and propose a fully discrete Crank–Nicolson FE scheme for it. Let

∇tun = un−un−1

τ , un− 1
2 = un+un−1

2 ,

with un = u(tn). Applying the Crank–Nicolson scheme in time, the fully discrete FE
scheme reads as follows: find Un

1,h, Un
2,h, Vn

1,h, Vn
2,h ∈ Xh, such that

(
∇tUn

1,h, χ1
U

)
− γAh

(
Un− 1

2
2,h , χ1

U

)
= 0, (44)

(
∇tUn

2,h, χ2
U

)
+ γAh

(
Un− 1

2
1,h , χ2

U

)
= 0, (45)



Fractal Fract. 2024, 8, 402 9 of 25

(
∇tVn

1,h, χ1
V

)
− γAh

(
Vn− 1

2
2,h , χ1

V

)
= 0, (46)

(
∇tVn

2,h, χ2
V

)
+ γAh

(
Vn− 1

2
1,h , χ2

V

)
= 0, (47)

with χ1
U , χ2

U , χ1
V , χ2

V ∈ Xh subjected to

U0
1,h= u0

1,h(x, y), U0
2,h = u0

2,h(x, y), (x, y) ∈ Ω, (48)

V0
1,h= v0

1,h(x, y), V0
2,h = v0

2,h(x, y), (x, y) ∈ Ω, (49)

where u0
1,h(x, y), u0

2,h(x, y), v0
1,h(x, y) and v0

2,h(x, y) are the appropriate approximations of
Reu0(x, y), Imu0(x, y), Rev0(x, y) and Imv0(x, y), respectively.

To obtain the error bound, we introduce a general constant C that can be different on
different occasions and the fractional orthogonal projection operator Πh : V 7→ Xh [31]:

Λ(ψ − Πhψ, χh) = 0, ∀χh ∈ Xh,

which has the approximate property ||ψ − Πh ψ||0,Ω ≤ Chm||ψ||m,Ω.

Theorem 1. The solutions obtained by the Crank–Nicolson FE scheme (44)–(49) satisfy

Qn
U,h = Q0

U,h, Qn
V,h = Q0

V,h, n ≥ 1,

where Qn
U,h = ||Un

1,h||
2
0,Ω + ||Un

2,h||
2
0,Ω and Qn

V,h = ||Vn
1,h||

2
0,Ω + ||Vn

2,h||
2
0,Ω.

Proof. We mainly focus on Qn
U,h = Q0

U,h, and the result related to v can be analogously

derived. Choosing χ1
U = Un− 1

2
1,h in Equation (44), there exists(

∇tUn
1,h, Un− 1

2
1,h

)
−γAh

(
Un− 1

2
2,h , Un− 1

2
1,h

)
=

||Un
1,h||

2
0,Ω − ||Un−1

1,h ||20,Ω

2τ
− γAh

(
Un− 1

2
2,h , Un− 1

2
1,h

) (50)

and choosing χ2
U = Un− 1

2
2,h in Equation (45) reaches to(

∇tUn
2,h, Un− 1

2
2,h

)
+γAh

(
Un− 1

2
1,h , Un− 1

2
2,h

)
=

||Un
2,h||

2
0,Ω − ||Un−1

2,h ||20,Ω

2τ
+ γAh

(
Un− 1

2
1,h , Un− 1

2
2,h

)
.

(51)

By virtue of the symmetry of Ah(·, ·), adding Equation (50) to Equation (51) leads to

(
∇tUn

1,h, Un− 1
2

1,h

)
+

(
∇tUn

2,h, Un− 1
2

2,h

)
=

||Un
1,h||

2
0,Ω−||Un−1

1,h ||20,Ω

2τ
+
||Un

2,h||
2
0,Ω−||Un−1

2,h ||20,Ω

2τ

=
Qn

U,h − Qn−1
U,h

2τ
= 0,

and therefore, Qn
U,h = Qn−1

U,h = · · · = Q0
U,h. Similarly, choosing χ1

V = Vn− 1
2

1,h , χ2
V = Vn− 1

2
2,h in

Equations (46) and (47), Qn
V,h = Q0

V,h is obtained. This completes the proof. □
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Lemma 2 (Discrete Gronwall inequality [32]). If the non-negative numbers al , bl , cl , γl ( l ≥ 0),
τ and H satisfy

an + τ
n

∑
l=0

bl ≤ τ
n

∑
l=0

γlal + τ
n

∑
l=0

cl + H, n ≥ 0,

and supposing that τγl < 1 and σl = (1 − τγl)
−1, one obtains

an + τ
n

∑
l=0

bl ≤ exp

(
τ

n

∑
l=0

σlγl

)[
τ

n

∑
l=0

cl + H

]
.

In the sequel, we analyze the error estimate of the Crank–Nicolson FE scheme (44)–(49).
For this purpose, we define the complex-valued fractional derivative spaces: Hµ,C

0 (Ω) =

Hµ
0 (Ω) + iHµ

0 (Ω), equipped with the complex norm

|u|µ,Ω =
(
|||ω|µF (Re(ũ))||20,R2 + |||ω|µF (Im(ũ))||20,R2

)1/2

with µ > 0. Let u and v be the exact solutions of Equations (4)–(7) with their real and
imaginary parts being u1, u2 and v1, v2, respectively. Also, letting Un

1,h, Un
2,h and Vn

1,h,
Vn

2,h be the solutions at tn obtained by the above scheme and denoting u0
h = u0

1,h + iu0
2,h,

v0
h = v0

1,h + iv0
2,h and Un

h = Un
1,h + iUn

2,h, we define

||en
u||0,Ω = ||Un

h − un||0,Ω =
√
||Un

1,h − un
1 ||

2
0,Ω + ||Un

2,h − un
2 ||

2
0,Ω,

and the similar norm ||en
v ||0,Ω by vn

1 , vn
2 and Vn

1,h, Vn
2,h, n = 1, 2, . . . , N.

Theorem 2. Assume ∂tu, ∂tv ∈ L2(0, T; Hm(Ω)), ∂2
t u, ∂2

t v ∈ L2(0, T; V), ∂3
t u, ∂3

t v ∈
L2(0, T; L2 (Ω)) and δ = max{α, β}; then, for the Crank–Nicolson FE scheme (44)–(49),
we have

||en
u||20,Ω≤ C{||u0 − u0

h||20,Ω + h2m||u0||20,Ω

+τ4
∫ T

0
||∂3

t u||20,Ωdt + h2m
∫ T

0
||∂t u||2m,Ωdt + τ4

∫ T

0
||∂2

t u||2δ,Ωdt
}

,

||en
v ||20,Ω≤ C{||v0 − v0

h||20,Ω + h2m||v0||20,Ω

+τ4
∫ T

0
||∂3

t v||20,Ωdt + h2m
∫ T

0
||∂t v||2m,Ωdt + τ4

∫ T

0
||∂2

t v||2δ,Ωdt
}

,

where C is a constant independent of τ and h and n = 1, 2, . . . , N.

Proof. Since the scheme is decoupled, we only prove the error bound of ||en
u||20,Ω, and

the result for ||en
v ||20,Ω follows similarly. Letting θn

u1
= Un

1,h − Πhun
1 , ξn

u1
= Πhun

1 − un
1 ,

θn
u2

= Un
2,h − Πhun

2 and ξn
u2

= Πhun
2 − un

2 , write

en
u1

= Un
1,h − un

1 = θn
u1
+ ξn

u1
, en

u2
= Un

2,h − un
2 = θn

u2
+ ξn

u2
.
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By virtue of the approximate property of Πh, we know that

||ξn
u ||20,Ω := ||ξn

u1
||20,Ω + ||ξn

u2
||20,Ω

= ||Πhun
1 − un

1 ||20,Ω + ||Πhun
2 − un

2 ||20,Ω

≤ Ch2m||u1(tn)||2m,Ω + Ch2m||u2(tn)||2m,Ω

≤ Ch2m||u (tn)||2m,Ω

≤ Ch2m
{
||u0||20,Ω +

∫ T

0
||∂tu||2m,Ωdt

}
,

(52)

then we only have to evaluate ||θn
u1
||20,Ω, ||θn

u2
||20,Ω. Let t = tn− 1

2
, and for ||θn

u1
||20,Ω, we have

(
∇tθ

n
u1

, χ1
U

)
− γAh

(
θ

n− 1
2

u2
, χ1

U

)
=
(
∇tUn

1,h, χ1
U

)
−
(
∇tΠhun

1 , χ1
U

)
−γAh

(
Un− 1

2
2,h , χ1

U

)
+ γAh

(
Πhun− 1

2
2 , χ1

U

)
.

Using the definition of Πh and Equations (33) and (44), there exists

(
∇tθ

n
u1

, χ1
U

)
− γAh

(
θ

n− 1
2

u2
, χ1

U

)
= −

(
∇tΠhun

1 , χ1
U

)
+ γAh

(
Πhun− 1

2
2 , χ1

U

)
=

(
∂tu

n− 1
2

1 , χ1
U

)
−
(
∇tΠhun

1 , χ1
U

)
−γAh

(
un− 1

2
2 , χ1

U

)
+ γAh

(
Πhun− 1

2
2 , χ1

U

)
=
(
(Ih − Πh)∇tun

1 , χ1
U

)
+

(
∂tu

n− 1
2

1 −∇tun
1 , χ1

U

)
−γAh

(
un− 1

2
2 −un− 1

2
2 , χ1

U

)
+γAh

(
Πhun− 1

2
2 −un− 1

2
2 , χ1

U

)
,

=
(
(Ih − Πh)∇tun

1 , χ1
U

)
+

(
∂tu

n− 1
2

1 −∇tun
1 , χ1

U

)
−γAh

(
un− 1

2
2 − un− 1

2
2 , χ1

U

)
,

(53)

where Ih is the identity operator.
Similarly, for the term ||θn

u2
||20,Ω, using Equations (34) and (45), we derive

(
∇tθ

n
u2

, χ2
U

)
+ γAh

(
θ

n− 1
2

u1
, χ2

U

)
= −

(
∇tΠhun

2 , χ2
U

)
− γAh

(
Πhun− 1

2
1 , χ2

U

)
=

(
∂tu

n− 1
2

2 , χ2
U

)
−
(
∇tΠhun

2 , χ2
U

)
+γAh

(
un− 1

2
1 , χ2

U

)
− γAh

(
Πhun− 1

2
1 , χ2

U

)
=
(
(Ih − Πh)∇tun

2 , χ2
U

)
+

(
∂tu

n− 1
2

2 −∇tun
2 , χ2

U

)
+γAh

(
un− 1

2
1 − un− 1

2
1 , χ2

U

)
.

(54)
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Choosing χ1
U = θ

n− 1
2

u1
, χ2

U = θ
n− 1

2
u2

in Equations (53) and (54), using the symmetry of Ah(·, ·)
and adding them together, we obtain(
∇tθ

n
u1

, θ
n− 1

2
u1

)
+

(
∇tθ

n
u2

, θ
n− 1

2
u2

)
=

(
(Ih − Πh)∇tun

1 , θ
n− 1

2
u1

)
+

(
∂tu

n− 1
2

1 −∇tun
1 , θ

n− 1
2

u1

)
−γAh

(
un− 1

2
2 − un− 1

2
2 , θ

n− 1
2

u1

)
+

(
(Ih − Πh)∇tun

2 , θ
n− 1

2
u2

)
+

(
∂tu

n− 1
2

2 −∇tun
2 , θ

n− 1
2

u2

)
+ γAh

(
un− 1

2
1 − un− 1

2
1 , θ

n− 1
2

u2

)
.

Substituting (
∇tθ

n
uk

, θ
n− 1

2
uk

)
=

||θn
uk
||20,Ω − ||θn−1

uk
||20,Ω

2τ
, k = 1, 2,

into the above equation, we further obtain

||Θn
u||20,Ω − ||Θn−1

u ||20,Ω

2τ
=

(
ω1,n

u1
, θ

n− 1
2

u1

)
+

(
ω2,n

u1
, θ

n− 1
2

u1

)
− γAh

(
ω3,n

u2
, θ

n− 1
2

u1

)
+

(
ω1,n

u2
, θ

n− 1
2

u2

)
+

(
ω2,n

u2
, θ

n− 1
2

u2

)
+ γAh

(
ω3,n

u1
, θ

n− 1
2

u2

)
,

(55)

where
||Θn

u||20,Ω= ||θn
u1
||20,Ω + ||θn

u2
||20,Ω, ω1,n

uk
= (Ih − Πh)∇tun

k ,

ω2,n
uk

= ∂tu
n− 1

2
k −∇tun

k , ω3,n
uk

= un− 1
2

k − un− 1
2

k .

Then, by Young’s inequality, we have(
ω1,n

uk
, θ

n− 1
2

uk

)
+

(
ω2,n

uk
, θ

n− 1
2

uk

)
≤ ||ω1,n

uk
||0,Ω||θn− 1

2
uk

||0,Ω + ||ω2,n
uk

||0,Ω||θn− 1
2

uk
||0,Ω

≤ ||ω1,n
uk

||20,Ω + ||ω2,n
uk

||20,Ω + ||θn− 1
2

uk
||20,Ω

≤ ||ω1,n
uk

||20,Ω + ||ω2,n
uk

||20,Ω + ||θn
uk
||20,Ω + ||θn−1

uk
||20,Ω,

(56)

and by the variational principle (10), there holds

Ah

(
ω3,n

uk
, θ

n− 1
2

uj

)
=

(
−
(
−∆α/2

x

)
ω3,n

uk
, θ

n− 1
2

uj

)
+

(
−
(
−∆β/2

y

)
ω3,n

uk
, θ

n− 1
2

uj

)
≤ || −

(
−∆α/2

x

)
ω3,n

uk
||20,Ω + || −

(
−∆β/2

y

)
ω3,n

uk
||20,Ω

+||θn
uj
||20,Ω + ||θn−1

uj
||20,Ω,

(57)

where k, j = 1, 2, but k ̸= j. Substituting (56) and (57) into Equation (55) and summing it
from l = 1 to n, we obtain

||Θn
u||20,Ω − ||Θ0

u||20,Ω≤ 4(γ + 1)τ
n

∑
l=0

||Θl
u||20,Ω + 2τ

n

∑
l=1

||ω1,l
u1
||20,Ω + 2τ

n

∑
l=1

||ω1,l
u2
||20,Ω

+2τ
n

∑
l=1

||ω2,l
u1
||20,Ω + 2τ

n

∑
l=1

||ω2,l
u2
||20,Ω

+2γτ
n

∑
l=1

(
|| −

(
−∆α/2

x

)
ω3,l

u1
||20,Ω + || −

(
−∆α/2

x

)
ω3,l

u2
||20,Ω

)
+2γτ

n

∑
l=1

(
|| −

(
−∆β/2

y

)
ω3,l

u1
||20,Ω + || −

(
−∆β/2

y

)
ω3,l

u2
||20,Ω

)
.

(58)
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Next, we estimate each term on the right side of the above inequality item by item.
Firstly, from the approximate property of Πh, it follows that

||Θ0
u||20,Ω= ||u0

h − Πhu0||20,Ω ≤ 2||u0 − Πhu0||20,Ω + 2||u0 − u0
h||20,Ω

≤ 2||u0 − u0
h||20,Ω + Ch2m||u0||20,Ω.

(59)

Secondly, using Taylor expansions, we have the upper bounds for the terms

τ
n

∑
l=1

||ω1,l
u1
||20,Ω + τ

n

∑
l=1

||ω1,l
u2
||20,Ω= τ

n

∑
l=1

||(Ih − Πh)∇tul
1||20,Ω

+τ
n

∑
l=1

||(Ih − Πh)∇tul
2||20,Ω

≤ Ch2m
n

∑
l=1

∫ tl

tl−1

||∂tu1||2m,Ωdt

+Ch2m
n

∑
l=1

∫ tl

tl−1

||∂tu2||2m,Ωdt

≤ Ch2m
∫ T

0
||∂tu||2m,Ωdt,

(60)

τ
n

∑
l=1

||ω2,l
u1
||20,Ω + τ

n

∑
l=1

||ω2,l
u2
||20,Ω= τ

n

∑
l=1

||∂tu
l− 1

2
1 −∇tul

1||20,Ω

+τ
n

∑
l=1

||∂tu
l− 1

2
2 −∇tul

2||20,Ω

≤ Cτ4
n

∑
l=1

∫ tl

tl−1

||∂3
t u1||20,Ωdt

+Cτ4
n

∑
l=1

∫ tl

tl−1

||∂3
t u2||20,Ωdt

≤ Cτ4
∫ T

0
||∂3

t u||20,Ωdt.

(61)

Meanwhile, by the equivalency of fractional norms, there is no doubt that

τ
n

∑
l=1

(|| −
(
−∆α/2

x

)
ω3,l

uk
||20,Ω= τ

n

∑
l=1

(|| −
(
−∆α/2

x

)(
ul− 1

2
k − ul− 1

2
k

)
||20,Ω

≤ Cτ4
n

∑
l=1

∫ tl

tl−1

|| −
(
−∆α/2

x

)
∂2

t uk||20,Ωdt

≤ Cτ4
n

∑
l=1

∫ tl

tl−1

||∂2
t uk||2α,Ωdt,

(62)

which yields

τ
n
∑

l=1

(
|| −

(
−∆α/2

x

)
ω3,l

u1 ||
2
0,Ω + || −

(
−∆α/2

x

)
ω3,l

u2 ||
2
0,Ω

)
≤ Cτ4

∫ T
0 ||∂2

t u||2α,Ωdt, (63)

and in the same fashion, we can prove

τ
n
∑

l=1

(
|| −

(
−∆β/2

y

)
ω3,l

u1 ||
2
0,Ω + || −

(
−∆β/2

y

)
ω3,l

u2 ||
2
0,Ω

)
≤ Cτ4

∫ T
0 ||∂2

t u||2β,Ωdt. (64)
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Combining (60)–(64) with (58), we obtain

||Θn
u||20,Ω≤ 4(γ + 1)τ

n

∑
l=0

||Θl
u||20,Ω + ||Θ0

u||20,Ω

+C
{

h2m
∫ T

0
||∂t u||2m,Ωdt + τ4

∫ T

0
||∂3

t u||20,Ωdt + τ4
∫ T

0
||∂2

t u||2δ,Ωdt
}

.

(65)

From the discrete Gronwall inequality and (59), it follows that

||Θn
u||20,Ω≤ C{||u0 − u0

h||20,Ω + h2m||u0||20,Ω + h2m
∫ T

0
||∂tu||2m,Ωdt

+τ4
∫ T

0
||∂3

t u||20,Ωdt + τ4
∫ T

0
||∂2

t u||2δ,Ωdt
}

,

with a sufficiently small τ. By using (52), we finally obtain

||en
u||20,Ω≤ 2

{
||ξn

u ||20,Ω + ||Θn
u||20,Ω

}
≤ Ch2m

{
||u0||20,Ω +

∫ T

0
||∂tu||2m,Ωdt

}
+ 2||Θn

u||20,Ω

≤ C{||u0 − u0
h||20,Ω + h2m||u0||20,Ω

+τ4
∫ T

0
||∂3

t u||20,Ωdt + h2m
∫ T

0
||∂t u||2m,Ωdt + τ4

∫ T

0
||∂2

t u||2δ,Ωdt
}

.

The upper bound of ||en
v ||20,Ω can be similarly established. This completes the proof. □

4.3. Split-Step FE Scheme

According to the idea of the split-step method, the space-fractional CNLS can be split
by solving the subproblems (29)–(32) and (33)–(36). Then, combining with the split step via
the second-order Strang splitting technique and using the analytical solutions (40)–(43), the
split-step FE scheme can be established by the following three steps:

• Step 1:

U∗,1
1,h= cos

[
λN n−1

τ/2
]
Un−1

1,h − sin
[
λN n−1

τ/2
]
Un−1

2,h , (66)

U∗,1
2,h= cos

[
λN n−1

τ/2
]
Un−1

2,h + sin
[
λN n−1

τ/2
]
Un−1

1,h , (67)

V∗,1
1,h = cos

[
λÑ n−1τ/2

]
Vn−1

1,h − sin
[
λÑ n−1τ/2

]
Vn−1

2,h , (68)

V∗,1
2,h = cos

[
λÑ n−1τ/2

]
Vn−1

2,h + sin
[
λÑ n−1τ/2

]
Vn−1

1,h , (69)

• Step 2: (
U∗,2

1,h − U∗,1
1,h

τ
, χ1

U

)
− γAh

(
U∗,1

2,h + U∗,2
2,h

2
, χ1

U

)
= 0, (70)

(
U∗,2

2,h − U∗,1
2,h

τ
, χ2

U

)
+ γAh

(
U∗,1

1,h + U∗,2
1,h

2
, χ2

U

)
= 0, (71)

(
V∗,2

1,h − V∗,1
1,h

τ
, χ1

V

)
− γAh

(
V∗,1

2,h + V∗,2
2,h

2
, χ1

V

)
= 0, (72)

(
V∗,2

2,h − V∗,1
2,h

τ
, χ2

V

)
+ γAh

(
V∗,1

1,h + V∗,2
1,h

2
, χ2

V

)
= 0, (73)
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• Step 3:

Un
1,h= cos

[
λN ∗,2

τ/2
]
U∗,2

1,h − sin
[
λN ∗,2

τ/2
]
U∗,2

2,h , (74)

Un
2,h= cos

[
λN ∗,2

τ/2
]
U∗,2

2,h + sin
[
λN ∗,2

τ/2
]
U∗,2

1,h , (75)

Vn
1,h= cos

[
λÑ ∗,2τ/2

]
V∗,2

1,h − sin
[
λÑ ∗,2τ/2

]
V∗,2

2,h , (76)

Vn
2,h= cos

[
λÑ ∗,2τ/2

]
V∗,2

2,h + sin
[
λÑ ∗,2τ/2

]
V∗,2

1,h , (77)

with χ1
U , χ2

U , χ1
V , χ2

V ∈ Xh subjected to

U0
1,h = u0

1,h(x, y), U0
2,h = u0

2,h(x, y), (x, y) ∈ Ω, (78)

V0
1,h = v0

1,h(x, y), V0
2,h = v0

2,h(x, y), (x, y) ∈ Ω, (79)

where
N n

=|Un
1,h|2 +|Un

2,h|2 +ρ|Vn
1,h|2 + ρ

∣∣∣Vn
2,h

∣∣∣2,

Ñ n = ρ|Un
1,h|2 +ρ|Un

2,h|2 +|Vn
1,h|2 +

∣∣∣Vn
2,h

∣∣∣2,

N ∗,2
=|U∗,2

1,h |2 +|U∗,2
2,h |2 +ρ|V∗,2

1,h |2 + ρ
∣∣∣V∗,2

2,h

∣∣∣2,

Ñ ∗,2 = ρ|U∗,2
1,h |2 +ρ|U∗,2

2,h |2 +|V∗,2
1,h |2 +

∣∣∣V∗,2
2,h

∣∣∣2,

and u0
1,h(x, y), u0

2,h(x, y), v0
1,h(x, y) and v0

2,h(x, y) are also the appropriate approximations of
Reu0(x, y), Imu0(x, y), Rev0(x, y) and Imv0(x, y), respectively.

Theorem 3. The solutions obtained by the split-step FE scheme (66)–(79) satisfy

Qn
U,h = Q0

U,h, Qn
V,h = Q0

V,h, n ≥ 1,

where Qn
U,h = ||Un

1,h||
2
0,Ω + ||Un

2,h||
2
0,Ω and Qn

V,h = ||Vn
1,h||

2
0,Ω + ||Vn

2,h||
2
0,Ω.

Proof. We only prove that Qn
U,h = Q0

U,h and Qn
V,h = Q0

V,h can be analogously obtained.
Using the properties of the triangular function, we have

|U∗,1
1,h |2 +

∣∣∣U∗,1
2,h

∣∣∣2= (cos
[
λN n−1

τ/2
]
Un−1

1,h − sin
[
λN n−1

τ/2
]
Un−1

2,h

)2

+
(

cos
[
λN n−1

τ/2
]
Un−1

2,h + sin
[
λN n−1

τ/2
]
Un−1

1,h

)2

=
(

cos2
[
λN n−1

τ/2
]
+ sin2

[
λN n−1

τ/2
])∣∣∣Un−1

1,h

∣∣∣2
+
(

cos2
[
λN n−1

τ/2
]
+ sin2

[
λN n−1

τ/2
])∣∣∣Un−1

2,h

∣∣∣2
=|Un−1

1,h |2 +
∣∣∣Un−1

2,h

∣∣∣2
and ||Un

1,h||
2
0,Ω + ||Un

2,h||
2
0,Ω = ||U∗,2

1,h ||
2
0,Ω + ||U∗,2

2,h ||
2
0,Ω. Noting the argument in Theorem 1,

we obtain |U∗,2
1,h |2 +|U∗,2

2,h |2 =|U∗,1
1,h |2 +

∣∣∣U∗,1
2,h

∣∣∣2 and thus Qn
U,h = Qn−1

U,h = · · · = Q0
U,h. This

completes the proof. □

Theorem 4. If we let u0
1,h = ΠhReu0(x, y), u0

2,h = ΠhImu0(x, y), v0
1,h = ΠhRev0(x, y) and

v0
2,h = ΠhImv0(x, y), then for the split-step FE scheme (66)–(79), there holds

||en
u||20,Ω + ||en

v ||20,Ω ≤ C
(
τ4 + h2m),
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where C is a constant independent of τ and h and n = 1, 2, . . . , N.

Proof. One can easily find this result by combining the property of the standard second-
order Strang split-step technique and Theorem 2, and hence the details are omitted. □

Remark 1. The present split-step FE scheme together with its theoretical results are applicable to
α, β > 2 because Lemma 1 and Equation (10) also hold in this case. The only issue required to be
addressed is the generation of the stiffness matrix, but the algorithm is similar to the case of 0 < α
and β ≤ 2.

5. Numerical Experiments

In this section, three numerical examples are provided to illustrate the computational
accuracy and conservation property of the proposed split-step FE method. The uniform
unstructured triangular meshes are utilized in all the tests and the algorithm to assemble
the stiffness matrices, which is a difficult issue that we addressed in [31]. The codes are
tested on the numerical simulation of the double solitons intersection and plane wave. All
the tests are carried out by using linear interpolation, i.e., m = 2, and run by MATLAB
R2015b on a PC with Windows 7 Ultimate SP1, AMD Athlon(tm) II ×2 250 3.00 GHz
Processor and 8 GB DDR3 1600MHz RAM. According to the foregoing theoretical analysis,
we anticipate the second-order convergent rates both in time and space.

5.1. One-Dimensional Problem

Example 1. We simulate the intersection of double solitons governed by the following 1D coupled
space-fractional CNLS:

i∂tu − (−∆x)
α/2u + λ(|u|2 + ρ|v|2)u= 0,

i∂tv − (−∆x)
α/2v + λ(ρ|u|2 + |v|2)v= 0, 0 < t ≤ T,

with the initial wave functions [33]:

u(x, 0) =
√

2σ1sech
(√

2ϑ1x + x0

)
exp(iυ1x),

v(x, 0) =
√

2σ2sech
(√

2ϑ2x − x0

)
exp(iυ2x), x ∈ R,

where
√

2σk is the amplitude and υk is the propagation velocity with k = 1, 2.
When |x| tends to infinity, the solitons can be negligible; then, we truncate the problem on

Ω = [−ℓ, ℓ] by taking a large enough ℓ and imposing the homogeneous boundary conditions
as follows:

u(x, t) = 0, v(x, t) = 0, (x; t) ∈ R \ Ω × (0, T].

In particular, the above problem is an integrable Manakov model if we take α = 2 and ρ = 1, which
describes an elastic collision without any reflection, transmission, trapping and the new solitary
wave created by the intersection of two solitons.

Letting ℓ = 20, λ = ρ = 1 and σk = ϑk = 1/2, we simulate the dynamics of the double
solitons intersection with x0 = 6 and study the potential impact brought by fractional derivatives to
double solitons collision. For this purpose, letting the velocity of both moving solitons be opposite
but with equivalent size, i.e., υ1 = −υ2, we take τ = 2.0 × 10−2 and h = 0.05 and present the
evolution of solitons over time for α = 1.3, 1.5, 1.7 and 1.99 with υ1 = 3 and υ2 = −3 in
Figure 1. As we observed, as α becomes smaller, the propagation velocity of solitons will be slower,
which means that the time of the solitons collision will be delayed if α is assigned a small number.
Meanwhile, the shape of the solitons changes with α, including both the width and amplitude.
More specifically, the smaller the α is, the higher the amplitude of solitons would be, and the
variation trend of width seems to be the opposite. In addition, this phenomenon is more evident
when they collide with each other. The reason for this phenomenon may be that α and β can
affect the diffusion rate of microscopic particles in Lévy processes. Resetting τ = 5.0 × 10−2 and
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h = 0.1, we compute the conservation quantities Qn
U,h and Qn

V,h and present their variation versus
time for α = 1.2 in Figure 2. Besides, we report the values of Qn

U,h and Qn
V,h at different times

for α = 1.2, 1.6 and 1.8 in Table 1. From these figures and table, it is observed that our split-step
FE scheme preserves Qn

U,h and Qn
V,h and can be applied to long-time simulation in practice.
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In order to obtain more insight about computational efficiency, we use the pure Crank–Nicolson
FE scheme to discretize the above space-fractional CNLS and run the algorithm with a Newton’s
iteration loop to obtain the solutions at each time layer. We compare the computational time of the
pure Crank–Nicolson FE and split-step FE methods with a different τ and h, where the Newton’s
iteration algorithm is terminated by reaching a solution with the tolerant error 1.0 × 10−12. Letting
α = 1.8 and ℓ = 10, we compute the solutions at t = 1 by using both methods and report the used
CPU times in Table 2. From this table, we easily observe that the CPU times of our method are
markedly less than those of the Crank–Nicolson FE scheme with Newton’s iteration, which implies
that the proposed split-step FE method is more efficient than iteration algorithms.

Table 1. The values of Qn
U,h and Qn

V,h at different time.

α = 1.2 α = 1.6 α = 1.8

t = 0 1.999999999998474 1.999999999998474 1.999999999998474
t = 2 2.000000000386479 1.999999999998581 1.999999999998507

Qn
U,h t = 4 2.000000002291670 2.000000000000949 2.000000000225318

t = 6 2.000000000786256 2.000000009781684 2.000789620154900
t = 8 2.000000005975913 2.000181449524869 2.000000085658504
t = 10 2.000000012622097 2.000002000716171 2.000000061847427

t = 0 1.999999999998475 1.999999999998475 1.999999999998475
t = 2 2.000000000386490 1.999999999998548 1.999999999998647

Qn
V,h t = 4 2.000000002291678 2.000000000000807 2.000000000225574

t = 6 2.000000000786264 2.000000009781226 2.000789620155215
t = 8 2.000000005975903 2.000181449524379 2.000000085658829
t = 10 2.000000012622083 2.000002000715644 2.000000061847727
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proposed split-step FE method is more efficient than iteration algorithms.

Table 2. The CPU times of split-step FE method and Crank–Nicolson FE method with Newton’s
iteration.

τ, h Algorithm CPU Time (s)
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Table 2. The CPU times of split-step FE method and Crank–Nicolson FE method with
Newton’s iteration.

τ, h Algorithm CPU Time (s)

0.01, 0.1 Split-step FE method 7.14
Newton method 38.18

0.002, 0.05 Split-step FE method 191.90
Newton method 1508.97

0.00125, 0.04 Split-step FE method 522.12
Newton method 3635.59

5.2. Two-Dimensional Problems

Example 2. We consider the 2D space-fractional problem of CNLS type:

i∂tu − γ(−∆x)
α/2u − γ

(
−∆y

)β/2u + λ(|u|2 + ρ|v|2)u =R1(x, y, t),

i∂tv − γ(−∆x)
α/2v − γ

(
−∆y

)β/2v + λ(ρ|u|2 + |v|2)v =R2(x, y, t), 0 < t ≤ T,

on the domain Ω = [0, 1]2, where the right-side terms are as follows:

R1(x, y, t)= 30t2χ2
1χ2

2 + 1000λt9χ6
1χ6

2 + 10λρt7χ8
1χ8

2

+
10γt3χ2

2(G(α, x) + G(α, 1 − x))
cos(απ/2)

+
10γt3χ2

1(G(β, y) + G(β, 1 − y))
cos(βπ/2)

,

R2(x, y, t)=
(

i exp(it)t2 + 2 exp(it)t
)

χ3
1χ3

2+λt6χ9
1χ9

2 exp(it)+100λρt8χ7
1χ7

2 exp(it)

+
γt2 exp(it)χ3

2(H(α, x)+H(α, 1 − x))
cos(απ/2)

+
γt2 exp(it)χ3

1(H(β, y)+H(β, 1 − y))
cos(βπ/2)

,

with χ1 = x(1 − x), χ2 = y(1 − y) and the functions

G(s, δ)=
δ2−s

Γ(3 − s)
− 6δ3−s

Γ(4 − s)
+

12δ4−s

Γ(5 − s)
,

H(s, δ)=
48δ3−s

Γ(4 − s)
− 288δ4−s

Γ(5 − s)
+

720δ5−s

Γ(6 − s)
− 720δ6−s

Γ(7 − s)
.

It can be validated that the analytical solutions are

u(x, y, t) = 10t3x2(1 − x)2y2(1 − y)2,

v(x, y, t) = t2x3(1 − x)3y3(1 − y)3 exp(it), (x, y; t) ∈ R2 \ Ω × (0, T].



Fractal Fract. 2024, 8, 402 19 of 25

In this test, we evaluate the convergent accuracy of the Crank–Nicolson FE and split-step FE
methods. On the one hand, we take γ = 1 and λ = 0, and then the problem degenerates into a
coupled linear problem and the Crank–Nicolson FE scheme is applied. We compute the mean square
errors ||en

u||0,Ω and ||en
v ||0,Ω at t = 1 with different τ by using h = τ, and the numerical results

for α = 1.7 and β = 1.8 are documented in Table 3. Next, taking τ = 1.0 × 10 −3, we compute
the errors at t = 1 with a different h and document the numerical results in Table 4, where in order
to verify the accuracy, we calculate the temporal convergent order by

Ordertime = log2

(
||e (τ1, h)||0,Ω

||e (τ2, h)||0,Ω

)
/ log2

(
τ1

τ2

)
,

and the spatial convergent order by

Orderspace = log2

(
||e (τ, h1)||0,Ω

||e (τ, h2)||0,Ω

)
/ log2

(
h1

h2

)
,

with ||e
(
τi, hj

)
||0,Ω being the error computed by using the time and space meshsizes τi and hj.

Table 3. The errors and order Ordertime of Crank–Nicolson FE scheme for α = 1.7 and β = 1.8.

τ ||en
u||0,Ω Ordertime ||en

v||0,Ω Ordertime

1/8 1.26746 × 10−3 - 6.93411 × 10−6 -
1/16 3.16521 × 10−4 2.00 1.75065 × 10−6 1.99
1/24 1.42515 × 10−4 1.97 7.87270 × 10−7 1.97

Table 4. The errors and order Orderspace of Crank–Nicolson FE scheme for α = 1.7 and β = 1.8.

h ||en
u||0,Ω Orderspace ||en

v||0,Ω Orderspace

0.127599 2.10951 × 10−3 - 1.42094 × 10−5 -
0.059989 5.21634 × 10−4 1.85 3.48642 × 10−6 1.86
0.030385 1.42805 × 10−4 1.90 8.96400 × 10−7 2.00

On the other hand, we take γ = λ = 1 and ρ = 2 and apply the split-step FE scheme to treat
this nonlinear coupled system. We test the codes as above and document the corresponding results
at t = 1 for α = 1.8 and α = 1.9, which are in Tables 5 and 6, respectively. We easily observe
from the tables that the convergent order of two FE schemes are almost two both in time and space,
which demonstrates that the proposed FE schemes are convergent with theoretical accuracy.

Table 5. The errors and order Ordertime of split-step FE scheme for α = 1.8 and β = 1.9.

τ ||en
u||0,Ω Ordertime ||en

v||0,Ω Ordertime

1/8 1.31299 × 10−3 - 7.20499 × 10−6 -
1/16 3.28346 × 10−4 2.00 1.82686 × 10−6 1.98
1/24 1.45658 × 10−4 2.00 8.08489 × 10−7 2.01

Table 6. The errors and order Orderspace of split-step FE scheme for α = 1.8 and β = 1.9.

h ||en
u||0,Ω Orderspace ||en

v||0,Ω Orderspace

0.127599 2.09283 × 10−3 - 1.42088 × 10−5 -
0.059989 5.07955 × 10−4 1.88 3.43539 × 10−6 1.88
0.030385 1.34423 × 10−4 1.95 8.56923 × 10−7 2.04
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Example 3. Letting ρ = 0, we simulate the dynamic of plane wave governed by

i∂tu − γ(−∆x)
α/2u − γ

(
−∆y

)β/2u + λ|u|2u = 0,

with the initial wave function

u(x, y, 0) =
2√
π

exp
(
−x2 − y2

)
, (x, y) ∈ R2.

When |x| and |y| tend to infinity, the initial wave exponentially decays to zero, and if Ω is large
enough, then the height of the wave is nearly zero outside of Ω; thus, we suggest the homogeneous
boundary condition imposed as

u(x, y, t) = 0, (x, y; t) ∈ R2 \ Ω × (0, T].

The main purpose of this test is to evaluate the actual performance of the proposed split-step
FE scheme in practice, and we conduct the numerical simulation divided into three steps. Firstly,
the evolution of the wave over time will be simulated. On a finer unstructured triangular mesh, the
initial wave is plotted, which is given in Figure 3 (right). We easily see that its amplitude is nearly
one. Letting γ = 1, τ = 0.01, h ≈ 0.12287 and Ω = [−5, 5]2, we use the split-step FE scheme
to handle this problem. The used unstructured triangular mesh is given in Figure 3 (left), and the
profiles of the approximate wave at the time t =0.1, 0.4, 0.7 and 1 for α = β = 1.2 are plotted in
Figure 4. The comparison of the approximate waves at t = 0.3 for different α and β are presented
in Figure 5. From these figures, we observe that the wave travels with its size and height being
continuously variable. More precisely, the plane wave is centered at origin coordinates with the
height being one at t = 0, and as time goes on, the modulus of the wave solution becomes smaller
and the wave gets fatter and fatter. The physical shape of the waves can obviously be affected by
the fractional derivatives, and a bigger α and β would lead to a faster rate of decay of plane waves.
As compared to the classical ones, the wave governed by the fractional model possesses a narrower
width and larger amplitude, and such an impact would grow as α and β become small. Letting
α = 1.3 and β = 1.9, Figure 6 (left) shows the contour of an approximate wave. We observe that the
decay speed of the wave solution along the x-axis is smaller than that of the y-axis. On the contrary,
reletting α = 1.9 and β = 1.3, the exact opposite result is observed in Figure 6 (right), which further
confirms that α and β can affect the decay speed of the wave solution and a large fractional power
would lead to a fast decay velocity. What caused this phenomenon? The most intuitive explanation
is that the value of fractional exponents α and β have an impact on the diffusion behavior of particles.
More precisely, as α and β increase toward two, the diffusion occurs faster, and conversely, the
diffusion occurs slowly if α and β are small. As to why this occurred, it may be related to how the
value of α and β determines how a particular “non-Gaussian” probability distribution of particle
displacements becomes in Lévy flights.

Secondly, we show that the mass conservation property is maintained by both
Crank–Nicolson FE and split-step FE schemes. Taking λ = 0, α = β = 1.1 and
Ω = [−10, 10]2, we use the Crank–Nicolson FE scheme to solve this problem based on the meshsizes
τ = 0.05 and h = 0.5 and exhibit how the conservation quantity Qn

U,h changes over time in Figure 7
(left). Furthermore, retaking λ = 1, we use the split-step FE scheme to solve this problem and present
the variation tendency of the value of Qn

U,h versus time in Figure 7 (right). The computational
results in the above figures illustrate that both two FE schemes preserve Qn

U,h.
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obviously be affected by the fractional derivatives, and a bigger α and β would lead to a
faster rate of decay of plane waves. As compared to the classical ones, the wave governed
by the fractional model possesses a narrower width and larger amplitude, and such an
impact would grow as α and β become small. Letting α = 1.3 and β = 1.9, Figure 6
(left) shows the contour of an approximate wave. We observe that the decay speed of the
wave solution along the x-axis is smaller than that of the y-axis. On the contrary, reletting
α = 1.9 and β = 1.3, the exact opposite result is observed in Figure 6 (right), which further
confirms that α and β can affect the decay speed of the wave solution and a large fractional
power would lead to a fast decay velocity. What caused this phenomenon? The most
intuitive explanation is that the value of fractional exponents α and β have an impact on
the diffusion behavior of particles. More precisely, as α and β increase toward two, the
diffusion occurs faster, and conversely, the diffusion occurs slowly if α and β are small.
As to why this occurred, it may be related to how the value of α and β determines how a
particular "non-Gaussian" probability distribution of particle displacements becomes in
Lévy flights.

Secondly, we show that the mass conservation property is maintained by both Crank–
Nicolson FE and split-step FE schemes. Taking λ = 0, α = β = 1.1 and Ω = [−10, 10]2,
we use the Crank–Nicolson FE scheme to solve this problem based on the meshsizes
τ = 0.05 and h = 0.5 and exhibit how the conservation quantity Qn

U,h changes over time in
Figure 7 (left). Furthermore, retaking λ = 1, we use the split-step FE scheme to solve this
problem and present the variation tendency of the value of Qn

U,h versus time in Figure 7
(right). The computational results in the above figures illustrate that both two FE schemes
preserve Qn

U,h.
Finally, as we did before, we use the pure Crank–Nicolson FE scheme with Newton’s

iteration to discretize the above problem with λ = 1 and compare the time cost of the
Crank–Nicolson FE and split-step FE schemes, where the tolerant error is also chosen to
be 1.0e-12. Letting α = β = 1.8 and Ω = [−5, 5]2, we compute the solutions at t = 0.5
by both methods and report the used CPU times in Table 7. It is easy to observe that the
CPU times of our method are much less than those of the pure Crank–Nicolson FE scheme,
which demonstrates that the proposed split-step FE method is very competitive in an actual
numerical simulation.
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Figure 4. Profiles of wave solution at different time for α = β = 1.2.

Finally, as we did before, we use the pure Crank–Nicolson FE scheme with Newton’s iteration
to discretize the above problem with λ = 1 and compare the time cost of the Crank–Nicolson FE
and split-step FE schemes, where the tolerant error is also chosen to be 1.0 × 10 −12. Letting
α = β = 1.8 and Ω = [−5, 5]2, we compute the solutions at t = 0.5 by both methods and report
the used CPU times in Table 7. It is easy to observe that the CPU times of our method are much less
than those of the pure Crank–Nicolson FE scheme, which demonstrates that the proposed split-step
FE method is very competitive in an actual numerical simulation.
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Table 7. The CPU times of split-step FE method and Crank–Nicolson FE method with Newton’s
iteration.

τ, h Algorithm CPU Time (s)

0.001, 0.24165 Split-step FE method 504.14
Newton method 1179.60

0.0005, 0.16144 Split-step FE method 4005.10
Newton method 15,233.46

6. Conclusions

The high-dimensional space-fractional CNLS is a coupled nonlinear system, and its
main difficulty comes from the nonlocality of fractional derivatives. This paper considered
a split-step Galerkin FE scheme for the 2D space-fractional CNLS, and the proposed method
is particularly adequate for solving this type of equation. The designed split-step FE scheme
avoids solving nonlinear algebraic equations and can effectively reduce computational
burden in practice. We also studied its mass conservation property in a discrete sense and
unconditional convergence. The algorithm was evaluated by a constructive numerical test
and the simulation of a double solitons collision and plane wave on unstructured meshes.
The numerical outcomes and comparison with the pure Crank–Nicolson FE method with
Newton’s iteration have illustrated its superiority and capacity.

The fractional NLS extends the application scope of classical NLS, and it tremendously
enriches the connotation of quantum mechanics. The nonlocal convolution structure in
fractional derivatives brings forward a great challenge in numerical simulation. Hence,
an efficient numerical technique like our method can not only help to study the inner
mechanisms of a microscopic quantum system but also play a certain role in increasing
the popularity of fractional NLS/CNLS, and this would indirectly promote the upgrading
of technological products. For example, we can study how a light beam travels in a
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Table 7. The CPU times of split-step FE method and Crank–Nicolson FE method with Newton’s
iteration.

τ, h Algorithm CPU Time (s)

0.001, 0.24165 Split-step FE method 504.14
Newton method 1179.60

0.0005, 0.16144 Split-step FE method 4005.10
Newton method 15,233.46

6. Conclusions

The high-dimensional space-fractional CNLS is a coupled nonlinear system, and its
main difficulty comes from the nonlocality of fractional derivatives. This paper considered
a split-step Galerkin FE scheme for the 2D space-fractional CNLS, and the proposed method
is particularly adequate for solving this type of equation. The designed split-step FE scheme
avoids solving nonlinear algebraic equations and can effectively reduce computational
burden in practice. We also studied its mass conservation property in a discrete sense and
unconditional convergence. The algorithm was evaluated by a constructive numerical test
and the simulation of a double solitons collision and plane wave on unstructured meshes.
The numerical outcomes and comparison with the pure Crank–Nicolson FE method with
Newton’s iteration have illustrated its superiority and capacity.

The fractional NLS extends the application scope of classical NLS, and it tremendously
enriches the connotation of quantum mechanics. The nonlocal convolution structure in
fractional derivatives brings forward a great challenge in numerical simulation. Hence,
an efficient numerical technique like our method can not only help to study the inner
mechanisms of a microscopic quantum system but also play a certain role in increasing
the popularity of fractional NLS/CNLS, and this would indirectly promote the upgrading
of technological products. For example, we can study how a light beam travels in a
fractional diffraction system in a numerical sense to provide a reference for the production
of highly sensitive optical switches, optical devices, beam splitters, etc. Moreover, it is
worth mentioning that artificial neural networks have also recently emerged as a promising
alternative to simulate the systems involving fractional calculus [34–37]. As a kind of
artificial intelligence algorithm, they have many advantages, such as strong fault tolerance
and robustness for all quantitative applications and sensibility to spatial dimensions. We
believe that they can be extended to simulate the high-dimensional space-fractional CNLS
as well and would possess strong competitiveness as compared to the existing methods for
our algorithm. We will consider this interesting topic in the future.
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