i fractal and fractional

[

Article

Fuzzy Differential Subordination for Classes of Admissible
Functions Defined by a Class of Operators

Ekram E. Ali 1>*(, Miguel Vivas-Cortez 3**

check for
updates

Citation: Ali, E.E.; Vivas-Cortez, M.;
El-Ashwah, R.M. Fuzzy Differential
Subordination for Classes of
Admissible Functions Defined by a
Class of Operators. Fractal Fract. 2024,
8,405. https://doi.org/10.3390/
fractalfract8070405

Academic Editor: Ivanka Stamova

Received: 29 May 2024
Revised: 30 June 2024
Accepted: 2 July 2024
Published: 11 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Rabha M. El-Ashwah 1

Department of Mathematics, Faculty of Science, University of Ha’il, Ha'il 81451, Saudi Arabia;
e.ahmad@uoh.edu.sa or ekram_008eg@yahoo.com

Department of Mathematics and Computer Science, Faculty of Science, Port Said University,

Port Said 42521, Egypt

Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Fisicas y Matematicas, Pontificia Universidad
Catolica del Ecuador, Av. 12 de Octubre 1076, Quito 170143, Ecuador

Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
r_elashwah@yahoo.com or relashwah@du.edu.eg

*  Correspondence: mjvivas@puce.edu.ec

These authors contributed equally to this work.

Abstract: This paper’s findings are related to geometric function theory (GFT). We employ one of the
most recent methods in this area, the fuzzy admissible functions methodology, which is based on fuzzy
differential subordination, to produce them. To do this, the relevant fuzzy admissible function classes
must first be defined. This work deals with fuzzy differential subordinations, ideas borrowed from
fuzzy set theory and applied to complex analysis. This work examines the characteristics of analytic
functions and presents a class of operators in the open unit disk J;7 (a, e,x) for ¢ > —1,7 > 0, such
thata,e € R, (e —a) > 0,a > —x. The fuzzy differential subordination results are obtained using (GFT)
concepts outside the field of complex analysis because of the operator’s compositional structure, and
some relevant classes of admissible functions are studied by utilizing fuzzy differential subordination.

Keywords: fuzzy set; fuzzy differential subordination; analytic functions; admissible functions; fuzzy
best dominant

1. Introduction

In 2011, a connection was made between the study of fuzzy sets theory and the area
of complex analysis that examines analytic functions” geometric characteristics. [1]. The
notion of unequal subordination was first investigated by Miller and Mocanu in [2,3]. Fuzzy
subordination was investigated by Oros and Oros [1] in 2011, and they originally presented
fuzzy differential subordination in 2012 [4]. A publication from 2017 [5] provides a good
overview of the background of the concept of a fuzzy set and its connections to many scien-
tific and technological fields. It also includes references to the research conducted up to that
point on fuzzy differential subordination theory. Without the first findings, which adjusted
the conventional differential subordination hypothesis to the unique characteristics of fuzzy
differential subordination and offered strategies for analyzing fuzzy differential subordina-
tions” dominants and best dominants, it would not have been possible for the study in this
field to continue [6]. After that, Ref. [7] studied the specific form of Briot-Bouquet fuzzy
differential subordinations. After embracing the idea, Haydar in [8] started investigating
the recent discoveries of fuzzy differential subordinations. This subsequent research gave
the investigation a new direction by associating fuzzy differential subordinations with
various operators [9,10].

Fuzzy differential subordination, including fractional calculus, has advanced signif-
icantly in recent years, and it has been demonstrated to have applications in numerous
study areas [11,12].
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The following equation denotes the #H(U) class of analytic functions in the open
unit disk:
U={C:0eC and |{| <1}.

A notable subclass of H(U) is defined by # [ag, n] and contains f € H, given by
f(C) = a0+ ang" +ap 8" 4 1)

(a0 e C;, neN:={1,2,3,---}).
Another remarkable subclass of H is denoted by A and consists of f € H of the type

() =1+ Y ald" (). )
n=2

Suppose thatx € Z = {..,-2,-1,0,1,2,..} and ¢ > —1,57 > 0, a linear operator
Iy + A — A be defined by
Tief(@) = (@), x=0,
+1 ¢ +1
= SN RO k=12,
. 0

- ¢+
= 4t ";’g(ég” 13,;‘5%(5)), K=1,2,.

Consider

(810 = 5 [ =07 i@ AT (x>0 Rw) > 0) ®

as a Riemann-Liouville fractional integral operator of order « € C, (®(a) > 0) (see, for
instance, [13,14], and see also [15,16]). Using the widely recognized Gamma function I'(«)
(Euler’s), the Riemann-Liouville operator I, is interestingly replaced by the Erdelyi-Kober
fractional integral operator of order « € C, (%t(«) > 0) given by

g'xfg(”ﬁq])

(Ig+;(7,,1 f) (x) = W /Ox TU(U+1)*1 (xU — 1—(7)0(71 f(T) dr 4)

(x > 0; R(a) >0),
which basically matches with (3), wherec — 1 = = 0, for
(Io4,0 ) (x) =2 (Ioy f)(x)  (x>0; R(a) >0).

Letx =0c=1,1=a—1,and « = e — a. We consider for x > 0; a, e € RR; be such that
R (e —a) > 0 integral operator 73 : A — A be defined for R(e —a) > 0 and R(a) > —x:

I'(e+x)
a+x)I'(e—a)

1
RO = 5 R A (ST ®)

(x>0; a,e € R; e>a).
Applying the Eulerian Beta-function integral for evaluation:

Ji A -1)f T dr (min{R(x),R(B)} > 0)

B(w, B) =
L) (p) (0,p € C\Zg ={0,-1,-2,..}),
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we readily find that

IY5(8) =

Through iterations of the previously described, a class of operators Jy' (a, e, x): A — A
is given by

Tie(a,e Q) = T (T55(0)) = T (T5H(D),

forx € Zg > —1,1 > 0,x > 0,R(e —a) > 0,%(a) > —x moreover, the form (2) for f is
provided by

Tt ela,e N(0) = () e ©

It is noteworthy that a class of operators J;' (a, e, x) was presented in [17].
From (6), it is clear that

¢+1
n

) i aeni@ - (S -1) Feni@. o

t(Telaeni@) = (S :

(T e0i@) = (5+1) TratLexi@) - Tr(aexi@):.  ©

It is also noted that a large number of additional integral operators that were examined
in previous publications are generalized by a class of operators J;'(a, €, x).

(1) ”Ko(a a,X)f(0) = D;f(g) (x € Ng=10,1,2,...}, (Al-Oboudi [18]));

(i) Jfp(a a,x)f(f) = Di() (x € No, (Salagean [19]));
(iii) jﬂ"’o(a, e, 1)§f(¢) = Dj(a+1,e+1)f(0) (x € Ny, (Selvaraj-Karthikeyan [20]));
(V) 5,0, 1)}(Z) = I"(,a,%)}(Z) (x € No, (Catas [21]));

( )

I
(v) j,gg a,a+a,1)f(7) = Q5f(7)(a > 0,a > —1) (Jung et al. [22]; see also [23]);
(vi) jl;{K(a, a,x)f(0) = LZH(n,a,x)f(C) (x € Np,a > 0 (Komatu [24])).

2. Preliminaries

Let g be the collection of injective and analytic functions on U\ E(x), with x'(¢) # 0,
for ¢ € dU\E(x), and

E(x) ={¢:¢€0dU and %ur%f(g) = oo}.
-
Also, p(a) is the subclass of p with x(0) = a, and let

©(0) =po and p(1) = 1.

Definition 1 ([25]). Let 0 # ¢. A fuzzy subset of o is defined as F : 0 — [0, 1].

Definition 2 ([25]). A fuzzy subset of ¢ is a pair (L, Fr), where L = {x € 0: 0 < Fp(x) <1} =
sup(L, Fr) is referred to as a fuzzy subset and Fy : ¢ — [0,1] is the membership function of the
fuzzy set (L, Fr).

Definition 3 ([1]). Fuzzy subsets (&1, F;) and (€3, F,) of o are equal iff ¢; = &5, whereas
(e1,F;) C (€2, Fe,) iff Fey (17) < Fe, (), 1 € e.
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Definition 4 ([1]). Let ® C C and T is a fixed point in © and let §, b € H(U) and we will say
that § fuzzy is subordinate to y, denoted by § <p b or §({) < H(Q) if

f(Co) = b(Zo) and Fy5)(1(7)) < Fy(2)(h(0)), L €D,

where

1(@) = sup (D), Fim) )= {§(8) :0 < Fy) (§(§) £ 1,{ €D

and

H(D) = sup (H(D), Fyo) )= {6(§) :0 < Fy(o)(8(2)) < 1,L € D.

Definition 5 ([4]). Let ¢ : C® x U — C and let h be univalent in U. If w is analytic in U
and satisfies

Fyeneny (¥(@(2), 80 (2), 0" (2):8) ) < Fywy (4(2), ©)

ie.,
9 (w(@),80' (@), 82" (§):8)) < (b(2)), § €,

then, w is called a fuzzy solution of fuzzy differential subordination. The univalent function w
is called a fuzzy dominant if w({) <¢ x(C)), for all w satisfying (9). A fuzzy dominant X that
satisfies X (C) <r x({) for all fuzzy dominant x of (9) is said to be the fuzzy best dominant of (9).

Definition 6 ([4]). Let Q be a set in C,x € p and n € N. The class ¥, [Q), x] of admissible
functions contain ¥ : C3 x U — C that satisfies Fo(¢(r,s,t;7)) =0,

P (@, s=ren'@ and w(:+1) zan(14 D),

X'(8)
where { € U,¢ € dU\E(x) and k 2 n. We can write ¥1[Q, x] as Y[}, x].

Lemma 1 ([4]). Let ¢ € ¥,[Q), x] with x(0) = a. If w € H[ap, n] satisfies
Fycnetn (#(@(0), 80 (), P (€):7) ) < Fal@), L€,

then F, ) (w(0)) < Fyuy(x(0)) ie, w(f) <F x(0)-

In this study, we establish suitable criteria for a class of operators j,;(,g(a, e, x) that
corresponds to certain designated classes of admissible functions of analytic functions. The
fuzzy best dominants are determined by obtaining fuzzy differential subordinations.

3. Main Results

Throughout this paper, unless otherwise mentioned, we setg > —1,7 > 0,a,e € R,
(e—a)>0,anda > —x.

Definition 7. Let Q) be a set in C and x € oo N H. The class @ 4[Q, x| of admissible functions
contains the functions ¢ : C3 x U — C that satisfy

FQ(QD(”/Z)IZU;g)) =0

when
kex' (&) + (55 = 1)x(@)
+1

U
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and
(c+1)* w—(¢+1—y)* u g+l
%{ e +2(1-52) } (10)
X" (©)
> km( Ay 1) (k> 0),
where { € U, € dU\E(x) and k = 1.
Here, we present and validate our initial finding, which we call Theorem 1.
Theorem 1. Put ¢ € ©4[Q), x|. If f € A satisfies
Fyeom) (9(Tc(@ e 0f(0), Tt (a0, 0(0), Tt (@,e,05(8):8) ) < Fa(®), (D)
then
F(x (aex)D)(U) (jiyK,g(a/ eﬂ<)f(§)> < F ) (x(0))
ie.,
Tr (.0, 0f(2) <r x(0).
Proof. Let
w(f) = Tyc(a,ex)f(8)- (12)
Differentiating (12) and using (7), we obtain
L' (f) + (57 —1)w(@)
T e f(0) = <gjl J«® 13)
(%)
Further computations show that
Tjé (2 ex)f(§) =
2
P (@) + (25 1) g0 (@) + (55 - 1) w(@) (14)
= 5 .
¢+l
()
The following transformations are now defined for ¢ : C3 x U — C:
s+ (9+1 1)r
u(r,s,t) =r, o(r,st) = o
()
and )
2(g+1) ¢+1
t+ (==~ —-1)s+(==—-1) r
w(r,s,t) = ( ! 2( 1 ) . (15)
(@
U
Additionally, we set
¥(r,s,50)= (u,0,w;§)
7 7 (16)

s—f—(gJrl 1>r t—f—(z(gﬂ) —1)5—1—(@—1)27"
+

UTEY (5
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Then, by using Equations (12)-(16), we obtain
9 (w(@),20'(§), 8% (§):F)
= o( (e @ e i), Ty e (), T (e ))HE)iE) )-
Thus, clearly, Equation (11) becomes
Fycon) (#(«(8),80'(2), 20" (€):7) ) < Fal0).

Using (15)

(g—|—1)2w—(g+1—17)2u+2<1_Q+1)

t
Z41=
s (c+1)(o—u)+qu "

¢ € D 4O, x] is equivalent to the admissibility condition for i given in Definition 6.
So, i € Y[, x] and by Lemma 1,

Fouyw(8) < Fyw)(x(D)),

or equivalent
Fg e (T (@ e 01(0) < Fuy (x(®)),

ie.,
Tre(a,e, (@) <r x(2),

which proves Theorem 1. [J

A simply connected domain Q) = h(U) for every conformal mapping h({) of U onto
Q) exists when Q) # C. The class @ 4[h(U), x] is represented as ® 4[h, x] in this instance.
Theorem 1 immediately leads to the following outcome:

Theorem 2. Set ¢ € D 4[h, x]. Iff € A,

9 (T5e(a,e 010, 5 (a0, X)f(0), Ty (a,e 128 ) (17)

is analytic in U and

Fycneny (9(Tie (@ e 05(0), T (2,0, 01(8), T2 (2,0, 01(8):8) ) < Fyuy (9(2)), (18)

then
Fs, (aexn ) (Tie (2, )F(0)) < Fyu) (x(9)),

ie.,

T (e, 0)f(8) <r X(D).

By taking (¢(u,v,w;{)) = 1+ ¥ in Theorem 2, we obtain

Corollary 1. Let ¢ € P 4[h, x]. Iff € A,

; (C(j:}‘,g(a,e,X)f(C))’ ) 1)

2+

¢+1 T (a,e,x)§(Z)
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is analytic in U and

ye 1 (g(Jma,e,x)f(@)y

il 7 mend —1) <r h(D), (19)

then
T (a,e, 1) < X(0)-

Our finding extends Theorem 1 to the situation where x based on U’s boundary
is uncertain.

Corollary 2. Assume that Q C C and x(C) are univalent in U with x(0) = 0. Also suppose that
@ € D4[Q, xp)| for some p € (0,1), where

Xp(g) = x(p0)-
If f € A satisfies
Fyeom) (9(Tc(@ e 0f(0), Tt (@6, 0f(0), Tt (@,e,005(8):8) ) < Fa(d),  (20)

then
Fgaexnm (Fe(ae0i(©)) < Foy (x(@),

ie.,

jryK,g (a/ € X)f((,) <F X(g)
Proof. By Theorem 1, we obtain

F g @exnw) (Jif,g(af e X)f<€)) < F,w) (x%0(0))-

Since
Xo(8) < x(07),
we have
Ey, ) (Xp(0)) = Ex y (X(00)) and xp(0) = x(0).
Hence,

F(gs(@ex () (jr]K,g(af e, X)f(é)) < Fy ) (X (00))-

ie.,
¥ (a6, 5(D) < x(p0)-
By letting p — 1, we obtain
T (a,e, 1) < X(0)-
O

Theorem 3. Let b and x be univalent in U with x(0) = 0. Put

Xp(8) = x(p8) and by(Z) = h(pg).

Let ¢ : C® x U — C satisfy

(1) ¢ € Pylb,xp] for somep € (0,1).
(2)  Forpg € (0,1) such that ¢ € @ 4[bp, Xp]. p € (00, 1).
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If f € A satisfies (18), then

F(j,;‘,g(a,e,x)f)(U) (jiyK,g (a/ €, X)f(g)) < FX(U) (X(g))

ie.,

\7;7;(@ (a/ €, X)f(g) =F X(g)

Proof. Case (1): Since the proof is similar to Theorem 2, we will not include it.
Case (2): Let

w(l) = Tyc(a,e,x)§(Z) and wy(Z) = w(pl).

Then
Fyeoy (9(@p(@),50h (@), 82 (@)% )
= Fyesxu (9(w(pd), Tw' (08), 2w (07); 07))
< Fy, ) (hp(8))-

Applying Theorem 1 and the remark connected to
Fyenr (9(@(0), 80 (€), 0" (@)0(0)) ) < Fal©),

where @ : U — U, with @() = pf, we obtain w, (L) <r x,p(Z) for p € (0,1). Suppose that
p — 1, we obtain w(Z) <r x({). Then,

T (e, 0)f(8) <r x(D).
U

The fuzzy differential subordination’s best dominant (18) is obtained using the
following theorem:

Theorem 4. Let b be univalent in U and let ¢ : C3 x U — C. Let

W' () +( 5 1) w(@)
¢<w<c>, *g;a) Jot),
1
20" O+ (240 1) g/ )+ (52 1) wi@) (21)
(5 &
n

has a solution x(T), with x(0) = 0, satisfying one of the next conditions:

(1) x(C) € poand ¢ € D 4[b, x].

(2)  x(T) is univalent in U, and ¢ € @ 4[h, x,| for some p € (0,1).

(3)  x(T) is univalent in U and there exists pg € (0,1) such that ¢ € ®4[bp, x| for all
p € (po,1).
If f € A satisfies (18), then

F(j,,",g(a,e,x)f)(U) (‘-717 g(a € X)f(g)) < FX(U) (X(g))

ie.,
TIne(a,e,)F(8) <k x(0),
and x () is the fuzzy best dominant.
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Proof. By Theorems 2 and 3, we conclude that x () is a fuzzy dominant of (18). Since x()
satisfies (21), it is also a solution of (18) and x({) will be dominated by all fuzzy dominants
of (18). Thus, it is the fuzzy best dominant of (18). [

Definition 8. Let Q) be a set in C, and assume that x({) € ©o N H. The class @ 4+[Q), x] of
admissible functions contains the functions @ : C3 x U — C that satisfy

Fa(e(u,0,w;7)) =0

whenever
@ + nkéx'(¢)

u=x@©o=x (c+1)x(E)

and

(¢+1) (vw—u(3v—2u))
gcg( 1(o—u)

2 kR (1+ %78,

where { € U, € dU\E(x) and k = 1.
Theorem 5. Let ¢ € @ 4+[Q), x]. Forf € A,

F <<chU{ (jﬁkél(a’el IE) i@ ei®) T (@ erd)
' Tiare i) T3 me @) T2 e i)

;€>} < Fa(f), (22)

. T @, 0i(0)
F 1 ne (&)1 <F
(%)(U ( Trc(a,e,x)f(C) | ~ X(U)(X(g))
ie., )
Tyt (a,e,x)5(0)
T e <A@
Proof. Let 7 +1( D)
T @i ”
8(8) Tr e i) (23)
Using (7) and (23), we obtain
x+2 !

J““ (a,&,x)§(Z)

Further computations show that

K c+1 ’ 2 //( / / 2
Tig@ex)ie) _ oy 8@ Sreg @+ RS - (58
JK+2(a, e, x)f(0) ¢+1| g(0) G;l]-lg<g) L ((g)

We next transformations are now defined for ¢ : C3 x U — C

u=vr, ov=r-+ IS ,
(¢c+1)r
and )
VIRE gqis"’sit_(%)
w=rt—7|; i :
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Also let
#](7’/ s, t; g) = (P(”r o, w; g)
778
= cp(r,r 4+ —
(c+1)r (25)
et stt_ (s 2
_ n E + 7 s+ (r) g
g + 1 r g+l ia _|_ E ! '

Thus, by using Equations (23)—(25), we obtain

v(2(6),58'(0).8%" (2):¢)

(J,;igl (a,e,)f(§) Tri*(aex)i@) Tri(aex)i) c)
Tie(@,ex)(Q) " 7rt (a,e,x)f(0)" T (a,e,x)f(Q)" 7 )

Hence, (22) implies that

Fyoon) (9(2(6),68' (), 88" (§):€) < Fa(@).

The proof of Theorem 5 is finished if it can be demonstrated that ¢ € ® 4+[(), x] is
equivalent to the admissibility condition for i given in Definition 6. In light of this, we
observe that

)

= (v—u
- (%%)W 03[t 4

Nl X »

and

(¢+1)(wv—u(3v—2u))
10— u) '
Thus, p € ¥[Q), x]. Consequently, we derive by Lemma 1 that

t
,+]:
S

or equivalent

F K+1
Jq,g (a,ex)f(g)
(T e V)

Tyt (a,e,x)i(Z)
( T (e )i@) ) < Fr (1(0))

ie.,

T ae i)
Tr@e i@ *

@),
which proves Theorem 5. [

Next, we take into account the situation where () = h(U) for some conformal mapping
h(): U — Q and Q # C is a simply connected domain. ® 4-[h(U), x] is represented as
d 4+[h, x] in this instance.

Theorem 5 immediately leads to the next outcome.

Theorem 6. Suppose ¢ € P 4+[h, x]. If f € A,

Ti e f0) TaeiE) TieniE)
oo\ P ) Ao T e | < a0

then

F K+1
Jq,g (a,ex)f(g)
(T e V)

Ty (e, x)f(2)
( T (e x)iQ) ) < Fr (x(0))
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References

ie.,
Tt (ae,x)i(T)
Tie(a,e,x)f(0)

<r x(0)

By taking (¢(u, v, w;{)) = uv in Theorem 6 we obtain

Tx 2 ae)i(Q)

Corollary 3. Let Q< (DA*[U/X] Iff S ./4, W

is analytic in U and

Ty (e, x)f(g)
Tiie(a,e,x)§(C)

<r b(Z), (26)

then,
T (a,e,x)§(0)
TFc(a,e,x)f(0)

=<r x(0)

4. Conclusions

We have initially introduced the following linear integral operator by employing a
somewhat specialized version of the Riemann-Liouville fractional integral operator and its
varied form known as the Erdélyi-Kober fractional integral operator:

j,;‘rg(a,e,x) (¢>-1,7>0,a,ecR,(e—a)>0,a>—x).

Previous research on this class of operators was performed by Raina and Sharma [17].
Then, using the operator J;(a, e, x) and the admissible classes ® 4[Q), x| and @ 4+ [, x]
of analytic functions connected with the operator J;(a, e,x), several findings about the
admissible fuzzy differential subordination have been obtained. The fact that there are
differential subordinations and differential superordinations of the third and higher orders
in the theory of differential subordinations and differential superordinations will lead
to more research on this topic. We exclusively employed and examined second-order
differential subordinations in this presentation. Since fuzzy differential subordination is
still a relatively young theory, its potential uses in other scientific fields or in real life are
unknown. Future research projects with a longer time frame should look into those topics.
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