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Abstract: This paper’s findings are related to geometric function theory (GFT). We employ one of the
most recent methods in this area, the fuzzy admissible functions methodology, which is based on fuzzy
differential subordination, to produce them. To do this, the relevant fuzzy admissible function classes
must first be defined. This work deals with fuzzy differential subordinations, ideas borrowed from
fuzzy set theory and applied to complex analysis. This work examines the characteristics of analytic
functions and presents a class of operators in the open unit disk J κ

η,ς(a, e, x) for ς > −1, η > 0, such
that a, e ∈ R, (e− a) ≥ 0, a > −x. The fuzzy differential subordination results are obtained using (GFT)
concepts outside the field of complex analysis because of the operator’s compositional structure, and
some relevant classes of admissible functions are studied by utilizing fuzzy differential subordination.

Keywords: fuzzy set; fuzzy differential subordination; analytic functions; admissible functions; fuzzy
best dominant

1. Introduction

In 2011, a connection was made between the study of fuzzy sets theory and the area
of complex analysis that examines analytic functions’ geometric characteristics. [1]. The
notion of unequal subordination was first investigated by Miller and Mocanu in [2,3]. Fuzzy
subordination was investigated by Oros and Oros [1] in 2011, and they originally presented
fuzzy differential subordination in 2012 [4]. A publication from 2017 [5] provides a good
overview of the background of the concept of a fuzzy set and its connections to many scien-
tific and technological fields. It also includes references to the research conducted up to that
point on fuzzy differential subordination theory. Without the first findings, which adjusted
the conventional differential subordination hypothesis to the unique characteristics of fuzzy
differential subordination and offered strategies for analyzing fuzzy differential subordina-
tions’ dominants and best dominants, it would not have been possible for the study in this
field to continue [6]. After that, Ref. [7] studied the specific form of Briot–Bouquet fuzzy
differential subordinations. After embracing the idea, Haydar in [8] started investigating
the recent discoveries of fuzzy differential subordinations. This subsequent research gave
the investigation a new direction by associating fuzzy differential subordinations with
various operators [9,10].

Fuzzy differential subordination, including fractional calculus, has advanced signif-
icantly in recent years, and it has been demonstrated to have applications in numerous
study areas [11,12].
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The following equation denotes the H(U) class of analytic functions in the open
unit disk:

U = {ζ : ζ ∈ C and |ζ| < 1}.

A notable subclass of H(U) is defined by H[a0, n] and contains f ∈ H, given by

f(ζ) = a0 + anζn + an+1ζn+1 + · · · (1)

(a0 ∈ C; n ∈ N := {1, 2, 3, · · · }).

Another remarkable subclass of H is denoted by A and consists of f ∈ H of the type

f(ζ) = ζ +
∞

∑
n=2

anζn (ζ ∈ U). (2)

Suppose that κ ∈ Z = {...,−2,−1, 0, 1, 2, ...} and ς > −1, η > 0, a linear operator
J κ

η,ς : A → A be defined by

J κ
η,ςf(ζ) = f(ζ), κ = 0,

= ς+1
η ζ

1− ς+1
η

ζ∫
0

t
ς+1

η −2J κ+1
η,ς f(ζ)dt, κ = −1,−2, ...

= η
ς+1 ζ

2− ς+1
η d

dζ

(
ζ

ς+1
η −1J κ−1

η,ς f(ζ)

)
, κ = 1, 2, ...

Consider(
Iα
0+ f

)
(x) =

1
Γ(α)

∫ x

0
(x − τ)α−1 f(τ) dτ (x > 0; ℜ(α) > 0) (3)

as a Riemann–Liouville fractional integral operator of order α ∈ C, (ℜ(α) > 0) (see, for
instance, [13,14], and see also [15,16]). Using the widely recognized Gamma function Γ(α)
(Euler’s), the Riemann–Liouville operator Iα

0+ is interestingly replaced by the Erdelyi–Kober
fractional integral operator of order α ∈ C, (ℜ(α) > 0) given by

(
Iα
0+;σ,η f

)
(x) =

σx−σ(α+η)

Γ(α)

∫ x

0
τσ(η+1)−1 (xσ − τσ)α−1 f(τ) dτ (4)

(x > 0; ℜ(α) > 0),

which basically matches with (3), where σ − 1 = η = 0, for(
Iα
0+;1,0 f

)
(x) = x−α

(
Iα
0+ f

)
(x) (x > 0; ℜ(α) > 0).

Let x = σ = 1, η = a − 1, and α = e − a. We consider for x > 0; a, e ∈ R; be such that
ℜ(e − a) ≥ 0 integral operator Ia,e

x : A → A be defined for ℜ(e − a) > 0 and ℜ(a) > −x:

Ia,e
x f(ζ) =

Γ(e + x)
Γ(a + x)Γ(e − a)

∫ 1

0
τa−1 (1 − τ)e−a−1 f(ζτx)dτ (5)

(x > 0; a, e ∈ R; e > a).

Applying the Eulerian Beta-function integral for evaluation:

B(α, β) :=


∫ 1

0 τα−1 (1 − τ)β−1 dτ (min{ℜ(α),ℜ(β)} > 0)

Γ(α)Γ(β)
Γ(α+β)

(
α, β ∈ C\Z−

0 = {0,−1,−2, ...}
)
,
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we readily find that

Ia,e
x f(ζ) =


ζ +

Γ(e + x)
Γ(a + x)

∞
∑

n=2

Γ(a + xn)
Γ(e + xn)

anζn (e > a)

f(ζ) (e = a),

Through iterations of the previously described, a class of operators J κ
η,ς(a, e, x):A → A

is given by
J κ

η,ς(a, e, x)f(ζ) = J κ
η,ς(Ia,e

x f(ζ)) = Ia,e
x

(
J κ

η,ςf(ζ)
)

,

for κ ∈ Z,ς > −1, η > 0, x > 0,ℜ(e − a) ≥ 0,ℜ(a) > −x moreover, the form (2) for f is
provided by

J κ
η,ς(a, e, x)f(ζ) = ζ +

Γ(e + x)
Γ(a + x)

∞

∑
n=2

(
1 +

η(n − 1)
ς + 1

)κ Γ(a + xn)
Γ(e + xn)

anζn. (6)

It is noteworthy that a class of operators J κ
η,ς(a, e, x) was presented in [17].

From (6), it is clear that

ζ
(
J κ

η,ς(a, e, x)f(ζ)
)′

=

(
ς + 1

η

)
J κ+1

η,ς (a, e, x)f(ζ)−
(

ς + 1
η

− 1
)
J κ

η,ς(a, e, x)f(ζ). (7)

ζ
(
J κ

η,ς(a, e, x)f(ζ)
)′

=
( a

x
+ 1
)
J κ

η,ς(a + 1, e, x)f(ζ)− a
x
J κ

η,ς(a, e, x)f(ζ). (8)

It is also noted that a large number of additional integral operators that were examined
in previous publications are generalized by a class of operators J κ

η,ς(a, e, x).

(i) J κ
η,0(a, a, x)f(ζ) = Dκ

ηf(ζ) ( κ ∈ N0 = {0, 1, 2, ...}, (Al-Oboudi [18]));
(ii) J κ

1,0(a, a, x)f(ζ) = Dκf(ζ) ( κ ∈ N0, (Salagean [19]));
(iii) J κ

η,0(a, e, 1)f(ζ) = Dκ
η(a + 1, e + 1)f(ζ) ( κ ∈ N0, (Selvaraj-Karthikeyan [20]));

(iv) J κ
η,ς(a, 0, 1)f(ζ) = Iκ(η, a, x)f(ζ) ( κ ∈ N0, (Catas [21]));

(v) J 0
η,ς(a, a + α, 1)f(ζ) = Qα

a f(ζ)(α > 0, a > −1) (Jung et al. [22]; see also [23]);
(vi) J −κ

1,a (a, a, x)f(ζ) = Lκ
a+1(η, a, x)f(ζ) ( κ ∈ N0,a ≥ 0 (Komatu [24])).

2. Preliminaries

Let ℘ be the collection of injective and analytic functions on U\E(χ), with χ′(ξ) ̸= 0,
for ξ ∈ ∂U\E(χ), and

E(χ) = {ξ : ξ ∈ ∂U and lim
ζ→ξ

f (ζ) = ∞}.

Also, ℘(a) is the subclass of ℘ with χ(0) = a, and let

℘(0) = ℘0 and ℘(1) = ℘1.

Definition 1 ([25]). Let ϱ ̸= ϕ. A fuzzy subset of ϱ is defined as F : ϱ → [0, 1] .

Definition 2 ([25]). A fuzzy subset of ϱ is a pair (L, FL), where L = {x ∈ ϱ : 0 < FL(x) ≤ 1} =
sup(L, FL) is referred to as a fuzzy subset and FL : ϱ → [0, 1] is the membership function of the
fuzzy set (L, FL).

Definition 3 ([1]). Fuzzy subsets (ε1, Fε1) and (ε2, Fε2) of ϱ are equal iff ε1 = ε2, whereas
(ε1, Fε1) ⊆ (ε2, Fε2) iff Fε1(η) ≤ Fε2(η), η ∈ ϱ.
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Definition 4 ([1]). Let D ⊂ C and ζ0 is a fixed point in D and let f, h ∈ H(U) and we will say
that f fuzzy is subordinate to h, denoted by f ≺F h or f(ζ) ≺F h(ζ) if

f(ζ0) = h(ζ0) and Ff(D)(f(ζ)) ≤ Fh(D)(h(ζ)), ζ ∈ D,

where
f(D) = sup

(
f(D), Ff(D)

)
= {f (ζ) : 0 < Ff(D)(f(ζ)) ≤ 1, ζ ∈ D

and
h(D) = sup

(
h(D), Fh(D)

)
= {h (ζ) : 0 < Fh(D)(h(ζ)) ≤ 1, ζ ∈ D.

Definition 5 ([4]). Let ψ : C3 ×U → C and let h̄ be univalent in U. If ω is analytic in U
and satisfies

Fψ(C3×U)

(
ψ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ζ
))

≤ Fℏ(U)(h(ζ)), (9)

i.e.,
ψ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ζ
)
) ≤F (h(ζ)), ζ ∈ U,

then, ω is called a fuzzy solution of fuzzy differential subordination. The univalent function ω
is called a fuzzy dominant if ω(ζ) ≺F χ(ζ)), for all ω satisfying (9). A fuzzy dominant χ̃ that
satisfies χ̃(ζ) ≺F χ(ζ) for all fuzzy dominant χ of (9) is said to be the fuzzy best dominant of (9).

Definition 6 ([4]). Let Ω be a set in C,χ ∈ ℘ and n ∈ N. The class Ψn[Ω, χ] of admissible
functions contain ψ : C3 ×U → C that satisfies FΩ(ψ(r, s, t; ζ)) = 0,

r = χ(ξ), s = kξχ′(ξ) and ℜ
(

t
s
+ 1
)
≧ kℜ

(
1 +

ξχ′′(ξ)

χ′(ξ)

)
,

where ζ ∈ U,ξ ∈ ∂U\E(χ) and k ≧ n. We can write Ψ1[Ω, χ] as Ψ[Ω, χ].

Lemma 1 ([4]). Let ψ ∈ Ψn[Ω, χ] with χ(0) = a. If ω ∈ H[a0, n] satisfies

Fψ(C3×U)

(
ψ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ζ
))

≤ FΩ(ζ), ζ ∈ U,

then Fω(U)(ω(ζ)) ≤ Fχ(U)(χ(ζ)) i.e., ω(ζ) ≺F χ(ζ).

In this study, we establish suitable criteria for a class of operators J κ
η,ς(a, e, x) that

corresponds to certain designated classes of admissible functions of analytic functions. The
fuzzy best dominants are determined by obtaining fuzzy differential subordinations.

3. Main Results

Throughout this paper, unless otherwise mentioned, we set ς > −1, η > 0, a, e ∈ R,
(e − a) ≥ 0, and a > −x.

Definition 7. Let Ω be a set in C and χ ∈ ℘0 ∩H. The class ΦA[Ω, χ] of admissible functions
contains the functions φ : C3 ×U → C that satisfy

FΩ(φ(u, v, w; ζ)) = 0

when

u = χ(ξ), v =
kξχ′(ξ) +

(
ς+1

η − 1
)

χ(ξ)

ς+1
η
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and

ℜ
{

(ς+1)2 w−(ς+1−η)2 u
(ς+1)(v−u)+ηv + 2

(
1 − ς+1

η

)}
≧ kℜ

(
ξχ′′ (ξ)
χ′(ξ) + 1

)
(k > 0),

(10)

where ζ ∈ U,ξ ∈ ∂U\E(χ) and k ≧ 1.

Here, we present and validate our initial finding, which we call Theorem 1.

Theorem 1. Put φ ∈ ΦA[Ω, χ]. If f ∈ A satisfies

Fφ(C3×U)

(
φ
(
J κ

η,ς(a, e, x)f(ζ),J κ+1
η,ς (a, e, x)f(ζ),J κ+2

η,ς (a, e, x)f(ζ); ζ
))

≤ FΩ(ζ), (11)

then
F(J κ

η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ))

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ).

Proof. Let
ω(ζ) = J κ

η,ς(a, e, x)f(ζ). (12)

Differentiating (12) and using (7), we obtain

J κ+1
η,ς (a, e, x)f(ζ) =

ζω′(ζ) +
(

ς+1
η − 1

)
ω(ζ)(

ς+1
η

) . (13)

Further computations show that

J κ+2
η,ς (a, e, x)f(ζ) =

=
ζ2ω′′ (ζ) +

(
2(ς+1)

η − 1
)

ζω′(ζ) +
(

ς+1
η − 1

)2
ω(ζ)(

ς+1
η

)2 .
(14)

The following transformations are now defined for φ : C3 ×U → C :

u(r, s, t) = r, v(r, s, t) =
s +

(
ς+1

η − 1
)

r(
ς+1

η

)
and

w(r, s, t) =
t +
(

2(ς+1)
η − 1

)
s +

(
ς+1

η − 1
)2

r(
ς+1

η

)2 . (15)

Additionally, we set

ψ(r, s, t; ζ)= φ(u, v, w; ζ)

= φ

r,
s +

(
ς+1

η − 1
)

r(
ς+1

η

) ,
t +
(

2(ς+1)
η − 1

)
s +

(
ς+1

η − 1
)2

r(
ς+1

η

)2 ; ζ

.
(16)
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Then, by using Equations (12)–(16), we obtain

ψ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ζ
)

= φ
((

J κ
η,ς(a, e, x)f(ζ),J κ+1

η,ς (a, e, x)f(ζ),J κ+2
η,ς (a, e, x)f(ζ); ζ

))
.

Thus, clearly, Equation (11) becomes

Fφ(C3×U)

(
ψ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ζ
))

≤ FΩ(ζ).

Using (15)

t
s
+ 1 =

(ς + 1)2w − (ς + 1 − η)2u
(ς + 1)(v − u) + ηu

+ 2
(

1 − ς + 1
η

)
,

φ ∈ ΦA[Ω, χ] is equivalent to the admissibility condition for ψ given in Definition 6.
So, ψ ∈ Ψ[Ω, χ] and by Lemma 1,

Fω(U)ω(ζ) ≤ Fχ(U)(χ(ζ)),

or equivalent
F(J κ

η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ)),

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ),

which proves Theorem 1. □

A simply connected domain Ω = h(U) for every conformal mapping h(ζ) of U onto
Ω exists when Ω ̸= C. The class ΦA[h(U), χ] is represented as ΦA[h, χ] in this instance.

Theorem 1 immediately leads to the following outcome:

Theorem 2. Set φ ∈ ΦA[h, χ]. If f ∈ A,

φ
(
J κ

η,ς(a, e, x)f(ζ),J κ+1
η,ς (a, e, x)f(ζ),J κ+2

η,ς (a, e, x)f(ζ); ζ
)

(17)

is analytic in U and

Fφ(C3×U)

(
φ
(
J κ

η,ς(a, e, x)f(ζ),J κ+1
η,ς (a, e, x)f(ζ),J κ+2

η,ς (a, e, x)f(ζ); ζ
))

≤ Fh(U)(h(ζ)), (18)

then
F(J κ

η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ)),

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ).

By taking (φ(u, v, w; ζ)) = 1 + v
u in Theorem 2, we obtain

Corollary 1. Let φ ∈ ΦA[h, χ]. If f ∈ A,

2 +
η

ς + 1

 ζ
(
J κ

η,ς(a, e, x)f(ζ
)
)′

J κ
η,ς(a, e, x)f(ζ)

− 1
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is analytic in U and

2 +
η

ς + 1

 ζ
(
J κ

η,ς(a, e, x)f(ζ
)
)′

J κ
η,ς(a, e, x)f(ζ)

− 1

 ≺F h(ζ), (19)

then
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ).

Our finding extends Theorem 1 to the situation where χ based on U’s boundary
is uncertain.

Corollary 2. Assume that Ω ⊂ C and χ(ζ) are univalent in U with χ(0) = 0. Also suppose that
φ ∈ ΦA

[
Ω, χρ

]
for some ρ ∈ (0, 1), where

χρ(ζ) = χ(ρζ).

If f ∈ A satisfies

Fφ(C3×U)

(
φ
(
J κ

η,ς(a, e, x)f(ζ),J κ+1
η,ς (a, e, x)f(ζ),J κ+2

η,ς (a, e, x)f(ζ); ζ
))

≤ FΩ(ζ), (20)

then
F(J κ

η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ)),

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ).

Proof. By Theorem 1, we obtain

F(J κ
η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχρ(U)

(
χρ(ζ)

)
.

Since
χρ(ζ) ≺ χ(ρζ),

we have
Fχρ(U)

(
χρ(ζ)

)
= Fχ(ρU)(χ(ρζ)) and χρ(0) = χ(0).

Hence,
F(J κ

η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(ρU)(χ(ρζ)).

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ρζ).

By letting ρ → 1, we obtain

J κ
η,ς(a, e, x)f(ζ) ≺F χ(ζ).

□

Theorem 3. Let h and χ be univalent in U with χ(0) = 0. Put

χρ(ζ) = χ(ρζ) and hρ(ζ) = h(ρζ).

Let φ : C3 ×U → C satisfy

(1) φ ∈ ΦA
[
h, χρ

]
for some ρ ∈ (0, 1).

(2) For ρ0 ∈ (0, 1) such that φ ∈ ΦA
[
hρ, χρ

]
, ρ ∈ (ρ0, 1).
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If f ∈ A satisfies (18), then

F(J κ
η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ)).

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ).

Proof. Case (1): Since the proof is similar to Theorem 2, we will not include it.
Case (2): Let

ω(ζ) = J κ
η,ς(a, e, x)f(ζ) and ωρ(ζ) = ω(ρζ).

Then
Fφ(C3×U)

(
φ
(

ωρ(ζ), ζω′
ρ(ζ), ζ2ω

′′
ρ (ζ); ρζ

))
= Fφ(C3×U)

(
φ
(
ω(ρζ), ζω′(ρζ), ζ2ω′′ (ρζ); ρζ

))
≤ Fhρ(U)

(
hρ( ζ)).

Applying Theorem 1 and the remark connected to

Fφ(C3×U)

(
φ
(

ω(ζ), ζω′(ζ), ζ2ω′′ (ζ); ϖ(ζ)
))

≤ FΩ(ζ),

where ϖ : U → U , with ϖ(ζ) = ρζ, we obtain ωρ(ζ) ≺F χρ(ζ) for ρ ∈ (0, 1). Suppose that
ρ → 1, we obtain ω(ζ) ≺F χ(ζ). Then,

J κ
η,ς(a, e, x)f(ζ) ≺F χ(ζ).

□

The fuzzy differential subordination’s best dominant (18) is obtained using the
following theorem:

Theorem 4. Let h be univalent in U and let φ : C3 ×U → C . Let

φ

(
ω(ζ),

ζω′(ζ)+
(

ς+1
η −1

)
ω(ζ)(

ς+1
η

) ,

ζ2ω′′ (ζ)+
(

2(ς+1)
η −1

)
ζω′(ζ)+

(
ς+1

η −1
)2

ω(ζ)(
ς+1

η

)2 ; ζ

)
= h(ζ)

(21)

has a solution χ(ζ), with χ(0) = 0, satisfying one of the next conditions:

(1) χ(ζ) ∈ ℘0 and φ ∈ ΦA[h, χ].
(2) χ(ζ) is univalent in U, and φ ∈ ΦA

[
h, χρ

]
for some ρ ∈ (0, 1).

(3) χ(ζ) is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦA
[
hρ, χρ

]
for all

ρ ∈ (ρ0, 1).

If f ∈ A satisfies (18), then

F(J κ
η,ς(a,e,x)f)(U)

(
J κ

η,ς(a, e, x)f(ζ)
)
≤ Fχ(U)(χ(ζ)).

i.e.,
J κ

η,ς(a, e, x)f(ζ) ≺F χ(ζ),

and χ(ζ) is the fuzzy best dominant.
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Proof. By Theorems 2 and 3, we conclude that χ(ζ) is a fuzzy dominant of (18). Since χ(ζ)
satisfies (21), it is also a solution of (18) and χ(ζ) will be dominated by all fuzzy dominants
of (18). Thus, it is the fuzzy best dominant of (18). □

Definition 8. Let Ω be a set in C, and assume that χ(ζ) ∈ ℘0 ∩ H. The class ΦA∗ [Ω, χ] of
admissible functions contains the functions φ : C3 ×U → C that satisfy

FΩ(φ(u, v, w; ζ)) = 0

whenever

u = χ(ξ), v = χ(ξ) +
ηkξχ′(ξ)

(ς + 1)χ(ξ)

and
ℜ
(
(ς+1)(vw−u(3v−2u))

η(v−u)

)
≧ kℜ

(
1 + ξχ′′ (ξ)

χ′(ξ)

)
,

where ζ ∈ U,ξ ∈ ∂U\E(χ) and k ≧ 1.

Theorem 5. Let φ ∈ ΦA∗ [Ω, χ]. For f ∈ A,

Fφ(C3×U)

{
φ

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
,
J κ+2

η,ς (a, e, x)f(ζ)

J κ+1
η,ς (a, e, x)f(ζ)

,
J κ+3

η,ς (a, e, x)f(ζ)

J κ+2
η,ς (a, e, x)f(ζ)

; ζ

)}
≤ FΩ(ζ), (22)

then

F
(
J κ+1

η,ς (a,e,x)f(ζ)

J κ
η,ς(a,e,x)f(ζ) )(U)

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)

)
≤ Fχ(U)(χ(ζ))

i.e.,
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
≺F χ(ζ).

Proof. Let

g(ζ) =
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
. (23)

Using (7) and (23), we obtain

J κ+2
η,ς (a, e, x)f(ζ)

J κ+1
η,ς (a, e, x)f(ζ)

= g(ζ) +
η

ς + 1
ζg′(ζ)
g(ζ)

. (24)

Further computations show that

J κ+3
η,ς (a, e, x)f(ζ)

J κ+2
η,ς (a, e, x)f(ζ)

= g(ζ) +
η

ς + 1

 ζg′(ζ)
g(ζ)

+

ς+1
η ζg′(ζ) + ζ2g′′(ζ)

g(ζ) + ζg′(ζ)
g(ζ) −

(
ζg′(ζ)
g(ζ)

)2

ς+1
η g(ζ) + ζg′(ζ)

g(ζ)

.

We next transformations are now defined for φ : C3 ×U → C

u = r, v = r +
ηs

(ς + 1)r
,

and

w = r +
η

ς + 1

 s
r
+

ς+1
η s + s+t

r −
( s

r
)2

ς+1
η r + s

r

.
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Also let
ψ(r, s, t; ζ) = φ(u, v, w; ζ)

= φ

(
r, r +

ηs
(ς + 1)r

,

r +
η

ς + 1

 s
r
+

ς+1
η s + s+t

r −
( s

r
)2

ς+1
η r + s

r

; ζ

.

(25)

Thus, by using Equations (23)–(25), we obtain

ψ
(

g(ζ), ζg′(ζ), ζ2g′′ (ζ); ζ
)

= φ

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
,
J κ+2

η,ς (a, e, x)f(ζ)

J κ+1
η,ς (a, e, x)f(ζ)

,
J κ+3

η,ς (a, e, x)f(ζ)

J κ+2
η,ς (a, e, x)f(ζ)

; ζ

)
.

Hence, (22) implies that

Fφ(C3×U)

(
ψ
(

g(ζ), ζg′(ζ), ζ2g′′ (ζ); ζ
)
≤ FΩ(ζ).

The proof of Theorem 5 is finished if it can be demonstrated that φ ∈ ΦA∗ [Ω, χ] is
equivalent to the admissibility condition for ψ given in Definition 6. In light of this, we
observe that

s
r = ς+1

η (v − u)
t
r =

(
ς+1

η

)2
v(w − v)− s

r

[
ς+1

η v − 2s
r + 1

]
and

t
s
+ 1 =

(ς + 1)(wv − u(3v − 2u))
η(v − u)

.

Thus, ψ ∈ Ψ[Ω, χ]. Consequently, we derive by Lemma 1 that

Fg(U)(g(ζ)) ≤ Fχ(U)(χ(ζ))

or equivalent

F
(
J κ+1

η,ς (a,e,x)f(ζ)

J κ
η,ς(a,e,x)f(ζ) )(U)

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)

)
≤ Fχ(U)(χ(ζ))

i.e.,
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
≺F χ(ζ),

which proves Theorem 5. □

Next, we take into account the situation where Ω = h(U) for some conformal mapping
h(ζ) : U → Ω and Ω ̸= C is a simply connected domain. ΦA∗ [h(U), χ] is represented as
ΦA∗ [h, χ] in this instance.

Theorem 5 immediately leads to the next outcome.

Theorem 6. Suppose φ ∈ ΦA∗ [h, χ]. If f ∈ A,

Fφ(C3×U)

{
φ

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
,
J κ+2

η,ς (a, e, x)f(ζ)

J κ+1
η,ς (a, e, x)f(ζ)

,
J κ+3

η,ς (a, e, x)f(ζ)

J κ+2
η,ς (a, e, x)f(ζ)

; ζ

)}
≤ Fh(U)(h(ζ)),

then

F
(
J κ+1

η,ς (a,e,x)f(ζ)

J κ
η,ς(a,e,x)f(ζ) )(U)

(
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)

)
≤ Fχ(U)(χ(ζ))
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i.e.,
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
≺F χ(ζ).

By taking (φ(u, v, w; ζ)) = uv in Theorem 6 we obtain

Corollary 3. Let φ ∈ ΦA∗ [h, χ]. If f ∈ A,
J κ+2

η,ς (a,e,x)f(ζ)
J κ

η,ς(a,e,x)f(ζ) is analytic in U and

J κ+2
η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
≺F h(ζ), (26)

then,
J κ+1

η,ς (a, e, x)f(ζ)
J κ

η,ς(a, e, x)f(ζ)
≺F χ(ζ).

4. Conclusions

We have initially introduced the following linear integral operator by employing a
somewhat specialized version of the Riemann–Liouville fractional integral operator and its
varied form known as the Erdélyi–Kober fractional integral operator:

J κ
η,ς(a, e, x) (ς > −1, η > 0, a, e ∈ R, (e − a) ≥ 0, a > −x).

Previous research on this class of operators was performed by Raina and Sharma [17].
Then, using the operator J κ

η,ς(a, e, x) and the admissible classes ΦA[Ω, χ] and ΦA∗ [Ω, χ]
of analytic functions connected with the operator J κ

η,ς(a, e, x), several findings about the
admissible fuzzy differential subordination have been obtained. The fact that there are
differential subordinations and differential superordinations of the third and higher orders
in the theory of differential subordinations and differential superordinations will lead
to more research on this topic. We exclusively employed and examined second-order
differential subordinations in this presentation. Since fuzzy differential subordination is
still a relatively young theory, its potential uses in other scientific fields or in real life are
unknown. Future research projects with a longer time frame should look into those topics.
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