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Abstract: This paper explores the Apéry-like series and demonstrates the derivation of closed-form
expressions using fractional calculus. We consider a variety of Apéry-like functions, which were
categorized by their functional forms and coefficients by applying the Riemann–Liouville fractional
integral and derivative to examine their properties across various domains. The study focuses on
establishing rigorous mathematical frameworks that unveil new insights into the behaviors of these
series, contributing to a deeper understanding of number theory and mathematical analysis. Key
results include proofs of convergence and divergence within specified intervals and the derivation of
closed-form solutions through fractional integration and differentiation. This paper also introduces a
method aimed at conjecturing mathematical constants through continued fractions as an application
of our results. Finally, we provide the proof of validation for three unproven conjectures of continued
fractions obtained from the Ramanujan Machine.
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1. Introduction

In the fields of mathematics, Apéry-like series hold significant value in number theory
and combinatorics, which is noted especially for the challenges they posed in deriving
closed-form expressions. Historically, these series have been crucial and involved in various
mathematical proofs, particularly in establishing the transcendence and irrationality of
numbers. In addition, Apéry-like series have also been utilized with many applications
such as stochastic process [1], continued fraction [2–4] and other applications; see [5–7].
The application of fractional calculus, which extends ordinary differentiation and inte-
gration to non-integer orders, introduces a novel approach to these complex series. The
knowledge of fractional calculus offers a sophisticated toolkit for managing differential
and integral equations, often surpassing the capabilities of traditional techniques. Its ability
to precisely adjust differentiation and integration parameters makes it exceptionally adept
at exploring the intricate behaviors of the Apéry-like series.

This paper explores the intersection of Apéry-like series and fractional calculus by
using the fractional calculus idea to derive closed-form expressions for these series. Using
the flexibility of fractional operators, we examine their convergence properties in different
mathematical domains. This research not only connects two significant areas of mathemati-
cal study but also expands the theoretical framework, introducing innovative methods and
results that enrich our understanding of advanced mathematical concepts.
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We start by revisiting the fundamental definitions and properties of the Apéry-like
series, highlighting key equations that underpin our study. The following series is typically
expressed by

∞

∑
n=0

(n!)2

(2n)!
fn(x) or

∞

∑
n=0

fn(x)
(2n

n )
. (1)

This formula and its variations have been extensively studied and documented in the
mathematical literature [8–11]. In 2000, Sherman [11] identified numerous Apéry-like
series, which are beautiful and interesting. Unfortunately, closed-form expressions for his
Apéry-like series are only available in certain cases. Moreover, even advanced mathematical
software such as MATLAB and Mathematica, which define the state of the art in technical
computing and provide essential computations, cannot offer these closed-form expressions.
This poses a significant inconvenience for researchers who need explicit solutions.

This paper aims to address this gap by analyzing the closed-form expressions of the
Apéry-like series, focusing on three specific types of functions fn(x), which are described
as follows:

Type I:II fn(x) =
(4x)n

2n + a
for a positive odd number a, (2)

Type II:I fn(x) =
(4x)n

n + b
for a non-negative integer b, (3)

Type III: fn(x) =
(4x)nQ(n)

PA,B(n)
:=

(4x)nQ(n)
∏

a∈A
(2n + a) ∏

b∈B
(n + b)

, (4)

where x is a real number, n is a non-negative integer, and Q(n) and PA,B(n) are polynomials
in variable n with deg Q(n) < deg PA,B(n). Here, A is a finite subset of positive odd
numbers (denoted by A ⊂ 2N− 1) and B is a finite subset of natural numbers (denoted
by B ⊂ N). We note here that the Type III function results from the interaction between
Types I and II.

One application of (2)–(4) is to provide rigorous proofs for conjectures generated
by the Ramanujan Machine [12–14], which signifies a shift toward automated discovery
processes using exhaustive search techniques. Despite notable successes, this approach is
inherently limited by its computational expense and the finite scope of search parameters.
Our results address and mitigate these limitations, as demonstrated in Section 4.

The rest of this paper is organized into five sections. In Section 2, the foundational con-
cepts of fractional calculus, particularly the Riemann–Liouville definitions, are introduced
for both the fractional integral and fractional derivative. In Section 3, we apply fractional
calculus techniques to derive new closed-form expressions for these Apéry-like series (2)–(4)
and also consider the convergence and divergence domains. Section 4 demonstrates appli-
cations of our results by proving and validating three unproven conjectures of continued
fractions from the Ramanujan Machine based on the MITM-RF algorithm [13] to illustrate
the versatility of our work. Finally, the conclusion is discussed in Section 5. Additionally,
several closed-form results of Apéry-like series are proposed in Appendices A and B.

2. Fractional Calculus

In this section, we explore the fundamental concepts and properties of fractional
calculus, as referenced in [15–19], which are crucial to formulating the summations of
Apéry-like series as discussed in Section 3. Our discussion begins with definitions of the
Gamma function and a pivotal element in the development of fractional calculus, together
with its properties; see [20] for more details.

Definition 1. The Gamma function is defined by the following improper integral:

Γ(z) =
∫ ∞

0
e−xxz−1dx for Re z > 0.
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Integration by parts confirms that the Gamma function satisfies the recursive rela-
tion Γ(z + 1) = zΓ(z). This recursion with Γ(1) = 1 allows us to deduce by induction
that Γ(n + 1) = n! for all non-negative integers n. Moreover, an interesting property of
the Gamma function when z = 1

2 is Γ( 1
2 ) =

√
π. By utilizing the recursive relation

Γ(z + 1) = zΓ(z) combined with the base case Γ( 1
2 ) =

√
π, the evaluation of Γ(n + 1

2 ) for a
non-negative integer n is demonstrated in Property 1. This property is essential for later
discussions on half-integrals and half-derivatives, which rely on the Gamma characteristics.

Definition 2. The double factorial of integer n ≥ −1 is defined in the usual factorial n! by

n!! =


1 for n = −1, 0,
n(n − 2)(n − 4) . . . 5 · 3 · 1 for odd n > 0,
n(n − 2)(n − 4) . . . 6 · 4 · 2 for even n > 0.

Property 1 ([20]). For any non-negative integer n, the Gamma function satisfies the following:

Γ
(

n +
1
2

)
=

(2n − 1)!!
√

π

2n . (5)

In addition to the specific properties of the Gamma function, we consider the Riemann–
Liouville operator, which is the most common tool for fractional integration and differ-
entiation. The concept of the Riemann–Liouville fractional integral operator arises from
generalizing Cauchy’s formula for an n-fold integral [15]:∫ x

a

∫ x1

a

∫ x2

a
· · ·

∫ xn−1

a
u(xn) dxn . . . dx3 dx2 dx1 =

1
(n − 1)!

∫ x

a

u(τ) dτ

(x − τ)1−n . (6)

Since (n − 1)! = Γ(n), Riemann extrapolated that the formula (6) could be adapted for
non-integer orders n, denoted by α, motivating the definitions of fractional integration.
Now, we consider the two definitions established by Krug [21] as presented below.

Definition 3. Let α > 0. The left-sided Riemann–Liouville fractional integral in [a, b] is defined by

Iα
a+u(x) =

1
Γ(α)

∫ x

a

u(τ)
(x − τ)1−α

dτ (7)

and the right-sided Riemann–Liouville fractional integral in [a, b] is defined by

Iα
b−u(x) =

1
Γ(α)

∫ b

x

u(τ)
(τ − x)1−α

dτ. (8)

By employing the idea of the fundamental theorem of calculus for ordinary integration
and differentiation, we can define the derivative of non-integer order from Definition 3,
also known as the fractional derivative, as follows.

Definition 4. The left-sided Riemann–Liouville fractional derivative in [a, b] is defined by

Dα
a+u(x) = (Dx)

n
(
In−α

a+ u(x)
)
=

1
Γ(n − α)

(
d

dx

)n ∫ x

a

u(τ)
(x − τ)1−n+α

dτ (9)

and the right-sided Riemann–Liouville fractional derivative in [a, b] is defined by

Dα
b−u(x) = (−Dx)

n
(
In−α

b− u(x)
)
=

1
Γ(n − α)

(
− d

dx

)n ∫ b

x

u(τ)
(τ − x)1−n+α

dτ, (10)

where α > 0 and n = [α] + 1 when [α] is the integer part of order α.
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Note that the operators In
c and Dn

c for c ∈ {a+, b−} agree with the ordinary integral
and differential operations of order n ∈ N. The fractional integral and differential oper-
ators in the Riemann–Liouville sense, being linear operations, exhibit several significant
properties [15–17], such as if u(x) is the power function, then its fractional integral and
derivative are evaluated as follows.

Property 2 ([17]). Let β ≥ 0. Then, we have

Iα
a+

(x − a)β−1

Γ(β)
=

(x − a)β+α−1

Γ(β + α)
, Dα

a+
(x − a)β−1

Γ(β)
=

(x − a)β−α−1

Γ(β − α)
,

Iα
b−

(b − x)β−1

Γ(β)
=

(b − x)β+α−1

Γ(β + α)
, Dα

b−
(b − x)β−1

Γ(β)
=

(b − x)β−α−1

Γ(β − α)
.

Example 1. Consider Property 2 in cases of β = n + 1 for n ∈ N∪ {0} := N0 and zero limit of
integrations; then, we obtain

Iα
0+(xn) =

Γ(n + 1)
Γ(n + α + 1)

xn+α for x > 0, (11)

Dα
0+(xn) =

Γ(n + 1)
Γ(n − α + 1)

xn−α for x > 0,

Iα
0−(−x)n =

Γ(n + 1)
Γ(n + α + 1)

(−x)n+α for x < 0, (12)

Dα
0−(−x)n =

Γ(n + 1)
Γ(n − α + 1)

(−x)n−α for x < 0.

Next, we consider the special case where α = 1
2 for both the fractional integral and

derivative (also known as the half integral and half derivative) of the function u(x) = xn

for all n ∈ N0, according to Definitions 3 and 4. These properties play an important role in
establishing closed-form expressions of the Apéry-like series.

Corollary 1. Let n be a non-negative integer. Then, we have the following relations.

1. The left-sided half integral is

I
1
2

0+(xn) =
(n!)2(4x)n+ 1

2

(2n + 1)!
√

π
for x > 0. (13)

2. The left-sided half derivative is

D
1
2
0+(xn) =

2(n!)2(4x)n− 1
2

(2n)!
√

π
for x > 0. (14)

3. The right-sided half integral is

I
1
2

0−(xn) =
(n!)2(−4x)n+ 1

2 (−1)n

(2n + 1)!
√

π
for x < 0. (15)

4. The right-sided half derivative is

D
1
2
0−(xn) =

2(n!)2(−4x)n− 1
2 (−1)n

(2n)!
√

π
for x < 0. (16)
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Proof of Corollary 1. Since (2n)!! = 2nn!, we transform the formula of Gamma function
Γ(n + 1

2 ) in Property 1 into another form as

Γ
(

n +
1
2

)
=

(2n − 1)!!
√

π

2n =
(2n − 1)!!

√
π

2n · (2n)!!
2nn!

=
(2n)!

√
π

4nn!
. (17)

Let n ∈ N0. We can prove the Formulas (13)–(16) by using the relation (17) together with
the consequences as expressed in Example 1 as follows.

1. Proof (13): Apply (17) and the left-sided half integral (11) with α = 1
2 :

I
1
2

0+(xn) =
Γ(n + 1)
Γ(n + 3

2 )
xn+ 1

2 =
n! xn+ 1

2

(n + 1
2 )Γ(n + 1

2 )
=

n! xn+ 1
2

( 2n+1
2 ) (2n)!

√
π

4nn!

=
(n!)2(4x)n+ 1

2

(2n + 1)!
√

π
.

2. Proof (14): Utilize Definition 4 to transform operators of fractional derivative into a
fractional integral and employ the obtained result of left-sided half integral (13) to
yield the following result:

D
1
2
0+(xn) =

d
dx

(
I

1
2

0+(xn)

)
= 4

(
n +

1
2

)
(n!)2(4x)n− 1

2

(2n + 1)(2n)!
√

π
=

2(n!)2(4x)n− 1
2

(2n)!
√

π
.

3. Proof (15): Similar to the proof of (13), apply the Formula (17) and the right-sided half
integral (12) with α = 1

2 :

I
1
2

0−(xn) = (−1)n
(
I

1
2

0−(−x)n
)
= (−1)n Γ(n + 1)

Γ(n + 3
2 )

(−x)n+ 1
2 =

(n!)2(−4x)n+ 1
2 (−1)n

(2n + 1)!
√

π
.

4. Proof (16): Similar to the proof of (14), utilize Definition 4 to transform the operators
and use the obtained result of the right-sided half integral (15) to obtain the following:

D
1
2
0−(xn) = − d

dx

(
I

1
2

0−(xn)

)
= −

(n!)2(−1)n d
dx (−4x)n− 1

2

(2n + 1)!
√

π
=

2(n!)2(−4x)n− 1
2 (−1)n

(2n)!
√

π
.

This completes the proof.

3. Summation of Apéry-like Series

In this section, our goal is to transform the summations of Apéry-like series into closed-
form expressions. We divide our analysis into three subsections; each is dedicated to a
different type of function fn(x), as defined in (2)–(4). Initially, we substitute these functions
into the general form of the Apéry-like series (1). This leads to new series representations,
denoted by Fm(x), Gm(x) and HA,B(x), which are defined as follows:

Fm(x) :=
∞

∑
n=0

(n!)2

(2n)!
(4x)n

(2n + 2m − 1)
, (18)

Gm(x) :=
∞

∑
n=0

(n!)2

(2n)!
(4x)n

(n + m)
and (19)

HA,B(x) :=
∞

∑
n=0

(n!)2

(2n)!
(4x)nQ(n)

PA,B(n)
, (20)

where x is a real number, m is a natural number and n is a non-negative integer. Polynomials
Q(n) and PA,B(n) are functions of n with deg Q(n) < deg PA,B(n).
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3.1. Analysis of Type I: Apéry-like Series Fm(x)

This section derives the closed form of the Apéry-like series Fm(x) as defined in (18).
Our analysis is structured into four main parts. First, Theorem 1 identifies the convergence
and divergence domains for x. Then, Theorem 2 explores the behavior of the initial series
F1(x). Building on this, Theorem 3 introduces a recurrence relation that outlines the series
progression. Finally, Theorem 4 uses this relation to establish a closed-form expression,
enhancing our understanding of the series. Additionally, we examine how variations in x
and m affect the results, revealing diverse outcomes from applying the established formulas.

Theorem 1. For a natural number m and a nonzero real number x, the Apéry-like series

Fm(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

(2n + 2m − 1)

converges if x ∈ [−1, 1) and diverges if x ∈ (−∞,−1) ∪ [1, ∞).

Proof of Theorem 1. Let m ∈ N and x ∈ R. We define an := (n!)2(4x)n

(2n)!(2n+2m−1) . To determine
the convergence of Fm(x), we apply the ratio test as follows:

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)2(4x)(2n + 2m − 1)
(2n + 2)(2n + 1)(2n + 2m + 1)

∣∣∣∣ = |x|.

Thus, the series converges when |x| < 1, which implies that the convergence domain is
x ∈ (−1, 1). Furthermore, the ratio test indicates that the series diverges when |x| > 1,
establishing the divergence domain as x ∈ (−∞,−1) ∪ (1, ∞).

Next, we explore the behavior of the Apéry-like series where x = −1:

Fm(−1) =
∞

∑
n=0

(n!)2

(2n)!
(−4)n

(2n + 2m − 1)
=

∞

∑
n=0

(−1)nbn,

where bn := (n!)24n

(2n)!(2n+2m−1) > 0 for all m ∈ N and n ∈ N0. To verify convergence, we apply
the alternating series test, which requires analyzing the limit of bn as n → ∞. To consider
the boundary of bn, we have

0 < bn =
(n!)24n

(2n)!(2n + 2m − 1)
≤ (n!)2n

(2n − 1)!!(2n + 1)
=

(2n)!!
(2n + 1)!!

.

Since limn→∞ 0 = 0 and limn→∞
(2n)!!

(2n+1)!! = 0 were obtained in [22], which is one of the
Wallis integral properties, by squeezing theorem, limn→∞ bn = 0. This result implies that
the terms of the series decrease in magnitude and approach zero, satisfying the conditions
for the alternating series test. Further, we examine the monotonicity of the sequence bn:

bn+1 =
4(n + 1)2(n!)24n

(2n)!(2n + 2)(2n + 1)(2n + 2m + 1)
· 2n + 2m − 1

2n + 2m − 1

=
(n!)24n

(2n)!(2n + 2m − 1)
· (2n + 2)(2n + 2m − 1)
(2n + 1)(2n + 2m + 1)

<
(n!)24n

(2n)!(2n + 2m − 1)
= bn

This calculation shows that bn forms a decreasing sequence of non-negative real numbers,
and thus bn → 0 as n → ∞. Hence, the alternating series test confirms that the Apéry-like
series Fm(x) converges at x = −1.
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Finally, we examine the behavior of the Apéry-like series at x = 1 as follows

Fm(1) =
∞

∑
n=0

bn ≥
∞

∑
n=0

(n!)24n

(2n)!(2n + 2m)
=

∞

∑
n=0

(2n)!!
(2n − 1)!!(2n + 2m)

≥
∞

∑
n=0

1
2n + 2m

.

Since lim
n→∞

n
2n+2m = 1

2 > 0 and ∑∞
n=1

1
n is a divergent p-series, then ∑∞

n=0
1

2n+2m di-

verges by the limit comparison test. Thus, by the comparison test, Fm(1) diverges. Hence,
x = 1 falls within the divergence domain for the Apéry-like series Fm(x). The proof
is complete.

Now, our focus shifts to computing the specific convergence values for Fm(x) on the
interval [−1, 1), starting with the particular case where m = 1. In this context, Theorem 2
provides the explicit formula for F1(x), utilizing principles of fractional calculus as dis-
cussed in Section 2.

Theorem 2. The initial Apéry-like series F1(x) can be expressed by the following explicit formula:

F1(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 1
=


arcsinh

√
−x√

x(x−1)
; x ∈ [−1, 0),

1 ; x = 0,
arcsin

√
x√

x(1−x)
; x ∈ (0, 1).

(21)

Proof of Theorem 2. Let x ∈ (0, 1). By using the left-sided half integral (13), we can
transform the Apéry-like series F1(x) to be

F1(x) =
∞

∑
n=0

(n!)2(4x)n

(2n + 1)!

√
4πx√
4πx

=

√
π

2
√

x

∞

∑
n=0

(n!)2(4x)n+ 1
2

(2n + 1)!
√

π
=

√
π

2
√

x

∞

∑
n=0

(
I

1
2

0+(xn)

)
.

Based on Definition 3, we can see that the half-integral operator I
1
2

0+ is a linear operation
and

∫ x
0

τn dτ√
x−τ

is convergent for n ∈ N0 and x > 0. Then, we can apply the infinite geometric

series ∑∞
n=0 τn = 1

1−τ for |τ| < 1 to consider the above equation as follows

∞

∑
n=0

(
I

1
2

0+(xn)

)
=

∞

∑
n=0

1
Γ( 1

2 )

∫ x

0

τndτ√
x − τ

=
1√
π

∫ x

0

∑∞
n=0 τn

√
x − τ

dτ =
1√
π

∫ x

0

dτ

(1 − τ)
√

x − τ
.

Next, to evaluate the above integral, we can use a substitution to simplify the integrand.
Let τ = x(1 − u). Then, dτ = −x du and 0 ≤ u ≤ 1. Now, substituting τ = x(1 − u) into
the integrand and u = 1 with u = 0 into the limits of integration, we obtain

∫ x

0

dτ

(1 − τ)
√

x − τ
=
∫ 0

1

−x du
(1 − x + xu)

√
xu

=
∫ 1

0

√
x du

(1 − x + xu)
√

u
.

We use the substitution v =
√

u, where u = v2 and du = 2v dv,∫ 1

0

√
x du

(1 − x + xu)
√

u
=
∫ 1

0

√
x · 2v dv

(1 − x + xv2)v
=
∫ 1

0

2
√

x dv
1 − x + xv2 .

This integral can now be identified as a standard form of the integral that results in the
inverse trigonometric of tangent function:

∫ dv
a+bv2 = 1√

ab
arctan

( v
√

b√
a

)
+ C. Substituting

a = 1 − x and b = x, the above integral can be evaluated as

∫ 1

0

2
√

x dv
1 − x + xv2 =

2
√

x√
x(1 − x)

arctan
(

v
√

x√
1 − x

)∣∣∣∣1
0
=

2 arctan
( √

x√
1−x

)
√

1 − x
=

2 arcsin
√

x√
1 − x

.
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For x ∈ (0, 1), we thus obtain

F1(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 1
=

√
π

2
√

x
· 1√

π

(
2 arcsin

√
x√

1 − x

)
=

arcsin
√

x√
x(1 − x)

.

Next, let x ∈ [−1, 0); then, the Apéry-like series F1(x) can be proved in a similar way to
x ∈ (0, 1) by using the right-sided half integral (15) to reformulate being

F1(x) =
∞

∑
n=0

(n!)2

(2n)!
(−4x)n(−1)n

(2n + 1)

√
−4πx√
−4πx

=

√
π

2
√
−x

∞

∑
n=0

(n!)2(−4x)n+ 1
2 (−1)n

(2n + 1)!
√

π

=

√
π

2
√
−x

∞

∑
n=0

(
I

1
2

0−(xn)

)
.

Subsequently, we consider the summation of the right-sided half integral according to
Definition 3. In addition,

∫ 0
x

τn dτ√
τ−x is convergent for n ∈ N0 and x < 0. This summation

applies the infinite geometric series ∑∞
n=0 τn = 1

1−τ for |τ| < 1; then, we have

∞

∑
n=0

(
I

1
2

0−(xn)

)
=

∞

∑
n=0

1
Γ( 1

2 )

∫ 0

x

τndτ√
τ − x

=
1√
π

∫ 0

x

∑∞
n=0 τn

√
τ − x

dτ =
1√
π

∫ 0

x

dτ

(1 − τ)
√

τ − x
.

This integral can be evaluated similarly to the case of x ∈ (0, 1). Thus, it becomes

∫ 0

x

dτ

(1 − τ)
√

τ − x
=

2√
1 − x

arctanh
(√

τ − x√
1 − x

)∣∣∣∣0
x
=

2 arctanh
( √

−x√
1−x

)
√

1 − x
=

2 arcsinh
√
−x√

1 − x
.

Hence, for x ∈ [−1, 0), we have

F1(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 1
=

√
π

2
√
−x

· 1√
π

(
2 arcsinh

√
−x√

1 − x

)
=

arcsinh
√
−x√

−x(1 − x)
.

Finally, for x = 0, it is clear that F1(0) remains only the first term of summation, resulting
in F1(0) = 1. Therefore, the proof is complete.

It should be noted that using classical integration with respect to x and substituting

x with x2 in (21) yields the same result, namely, y(x) := arcsin2 x = ∑∞
n=0

22n+1(n!)2x2n+2

(2n+2)! , as
stated in Proposition 15 of [23], p. 262. This result is derived by using classical calculus to
find the explicit solution of the ordinary differential equation (1 − x2)(y′)2 = 4y. In other
words, applying classical differential calculus to the result in [23], p. 262 yields (21).

Example 2. The Apéry-like series F1(x) for x ∈ {− 1
8 ,− 1

4 , 1
4 , 1

2} converges to the following values:

F1

(
− 1

8

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 1)
=

8
3

arcsinh
( 1√

8

)
=

4 ln(2)
3

,

F1

(
− 1

4

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

(2n + 1)
=

4√
5

arcsinh
(1

2

)
=

4
√

5 ln(ϕ)
5

,

F1

(1
4

)
=

∞

∑
n=0

(n!)2

(2n)!
1

(2n + 1)
=

4√
3

arcsin
(1

2

)
=

2π
√

3
9

,

F1

(1
2

)
=

∞

∑
n=0

(n!)2

(2n)!
2n

(2n + 1)
= 2 arcsin

( 1√
2

)
=

π

2
,
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where ϕ = 1+
√

5
2 denotes the golden ratio.

Prior to establishing the closed-form formula for the Apéry-like series Fm(x), we can
derive the linear recurrence relation from Fm(x), as delineated in (18). The formulation of
this relation involves a strategy of re-indexing the series coupled with applying the partial
fraction decomposition. The relation is explicated in Theorem 3.

Theorem 3. The Apéry-like series Fm(x) defined in (18) can be expressed in the following linear
recurrence relation

Fm+1(x) =
2mFm(x)
(2m − 1)x

− F1(x)
2m − 1

− 2m
(2m − 1)2x

, (22)

where m ∈ N and x ∈ [−1, 1), starting with F1(x), as defined in (21).

Proof of Theorem 3. Consider

Fm(x) =
1

2m − 1
+

∞

∑
n=0

(n!)2(n + 1)2(4x)n+1

(2n)!(2n + 1)(2n + 2)(2n + 2m + 1)

=
1

2m − 1
+

x
2

∞

∑
n=0

(n!)2(4x)n

(2n)!
4(n + 1)

(2n + 1)(2n + 2m + 1)

=
1

2m − 1
+

x
2

∞

∑
n=0

(n!)2(4x)n

(2n)!

(
1
m

· 1
2n + 1

+
2m − 1

m
· 1

2n + 2m + 1

)
=

1
2m − 1

+
x

2m

∞

∑
n=0

(n!)2(4x)n

(2n)!(2n + 1)
+

(2m − 1)x
2m

∞

∑
n=0

(n!)2(4x)n

(2n)!(2n + 2m + 1)

=
1

2m − 1
+

x
2m

F1(x) +
(2m − 1)x

2m
Fm+1(x).

To manipulate the preceding equation, we arrive at the expression of Fm+1(x) that follows
as (22). The application of mathematical induction on m allows us to substantiate the linear
recurrence relation delineated in (22).

The results elucidated from Theorem 3 are herein presented. Example 3 delineates the
initial five instances of the Apéry-like series Fm(x) for m ∈ {1, 2, 3, 4, 5}.

Example 3. The first five Apéry-like series Fm(x) for m ∈ {1, 2, 3, 4, 5} are the following:

∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 1
= F1(x),

∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 3
=

(
2
x
− 1
)

F1(x)− 2
x

,

∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 5
=

(
8

3x2 − 4
3x

− 1
3

)
F1(x)− 8

3x2 − 4
9x

,

∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 7
=

(
16
5x3 − 8

5x2 − 2
5x

− 1
5

)
F1(x)− 16

5x3 − 8
15x2 − 6

25x
and

∞

∑
n=0

(n!)2

(2n)!
(4x)n

2n + 9
=

(
128
35x4 − 64

35x3 − 16
35x2 − 8

35x
− 1

7

)
F1(x)− 128

35x4 − 64
105x3 − 48

175x2 − 8
49x

.

The results asserted in Example 3 are recursively derived from the linear recurrence re-
lation in Theorem 3 with the initial function F1(x) provided in Theorem 2. Consequently, we
elucidate the closed-form expression for the Apéry-like series Fm(x) by employing the linear
recurrence relation delineated in (22), as thoroughly expounded in Theorem 4.
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Theorem 4. For m ∈ N, x ∈ [−1, 1) and F1(x) as defined in (21), we have

Fm+1(x) =
1

2m + 1
−

m

∑
n=0

(
F1(x)

2n − 1
+

1
2n + 1

)
(2n

n )

(2m
m )

( x
4

)n−m
.

Proof of Theorem 4. First, we rewrite the linear recurrence relation (22) expressed as

Fm+1(x) = am(x)Fm(x)− bm(x), (23)

where am(x) := 2m
(2m−1)x and bm(x) := F1(x)

2m−1 + 2m
(2m−1)2x . Given that m ∈ N and x ̸= 0, it

follows that am(x) ̸= 0. Subsequently, we divide the linear recurrence relation (23) by the
product ∏m

r=1 ar(x) to obtain Fm+1(x)
∏m

r=1 ar(x) =
am(x)Fm(x)
∏m

r=1 ar(x) − bm(x)
∏m

r=1 ar(x) or it can be simplified as

Fm+1(x)
∏m

r=1 ar(x)
− Fm(x)

∏m−1
r=1 ar(x)

= − bm(x)
∏m

r=1 ar(x)
. (24)

For convenience, let us define Qm(x) := Fm(x)
∏m−1

r=1 ar(x)
for m > 1 and Q1(x) := F1(x). Upon sub-

stituting Qm(x) into (24), we obtain the following relation:

Qm+1(x)− Qm(x) = − bm(x)
∏m

r=1 ar(x)
. (25)

Next, we consider the summation of any consecutive differences Qn(x) and Qn+1(x)
for all n ∈ {1, 2, 3, . . . , m} by using (25), which facilitates the derivation of an explicit
formula Fm+1(x) in terms of the initial function F1(x) and the coefficients an(x) and bn(x),

Qm+1(x)− Q1(x) =
m

∑
n=1

(
Qn+1(x)− Qn(x)

)
= −

m

∑
n=1

bn(x)
∏n

r=1 ar(x)
. (26)

Since Qm+1(x) = Fm+1(x)
∏m

r=1 ar(x) and Q1(x) = F1(x), we substitute them back into (26). Then, it
can be expressed as the explicit solution:

Fm+1(x) =

(
m

∏
r=1

ar(x)

)(
F1(x)−

m

∑
n=1

bn(x)
∏n

r=1 ar(x)

)
. (27)

To simplify ∏m
r=1 ar(x) into an explicit form, we proceed as follows:

m

∏
r=1

ar(x) =
m

∏
r=1

2r
(2r − 1)x

=

(
(2m)!!

(2m − 1)!!
· (2m)!!
(2m)!!

)(
1
x

)m
=

(m!)2

(2m)!

(
4
x

)m
. (28)

Finally, we substitute (28) into (27) and manipulate it to obtain the closed-form formula of
the Apéry-like series Fm+1(x) as follows:

Fm+1(x) =
(m!)2

(2m)!

(
4
x

)m
F1(x)−

m

∑
n=1

F1(x)
2n−1 + 2n

(2n−1)2x

(n!)2

(2n)!

(
4
x

)n


=

(m!)2

(2m)!

(
4
x

)m
−

m

∑
n=0

F1(x)
2n−1

(n!)2

(2n)!

(
4
x

)n −
m

∑
n=0

1
2n+1

(n!)2

(2n)!

(
4
x

)n +
1

2m+1
(m!)2

(2m)!

(
4
x

)m


=

(m!)2

(2m)!

(
4
x

)m
−

m

∑
n=0

F1(x)
2n−1 + 1

2n+1
(n!)2

(2n)!

(
4
x

)n

+
1

2m + 1
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=
1

2m + 1
−

m

∑
n=0

(
F1(x)

2n − 1
+

1
2n + 1

)
(2n

n )

(2m
m )

( x
4

)n−m
.

Hence, the proof is complete.

Remark 1. We provide several closed-form formulas of Type I Apéry-like series Fm(x) with
m ∈ {1, 2, 3, 4, 5} and x ∈ {± 1

8 ,± 1
4 ,± 1

2 ,± 3
4} obtained from Theorem 4 in Appendix A. These

formulas are utilized to be instrumental for analyzing the Type III Apéry-like series HA,B(x) later.

3.2. Analysis of Type II: Apéry-like Series Gm(x)

This section delineates the closed-form derivation of the Apéry-like series Gm(x), as
initially defined in (19). Our exploration consists of four critical stages. First, Theorem 5
identifies the convergence domain for Gm(x). Subsequently, Theorem 6 delves into the
initial series G1(x). Theorem 7 introduces a linear recurrence relation characterizing Gm(x),
leading to Theorem 8, which establishes the closed form of the series. Additionally, the
interaction between variables x and m is examined to uncover significant insights.

Theorem 5. For a natural number m and a nonzero real number x, the Apéry-like series

Gm(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

(n + m)

converges if x ∈ [−1, 1) and diverges if x ∈ (−∞,−1) ∪ [1, ∞).

Proof of Theorem 5. By similar argument as in the proof of Theorem 1 and the fact that

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)2(4x)(n + m)

(2n + 2)(2n + 1)(n + m + 1)

∣∣∣∣ = |x|,

where an := (n!)2(4x)n

(2n)!(n+m)
, we can conclude that Gm(x) converges on x ∈ (−1, 1) and diverges

on x ∈ (−∞,−1) ∪ (1, ∞). Next, we examine the convergence at x = −1 for the Apéry-like
series Gm(−1) using the comparison test. The series is defined as

Gm(−1) =
∞

∑
n=0

(n!)2

(2n)!
(−4)n

(n + m)
=

∞

∑
n=0

(−1)nbn,

where bn := (n!)24n

(2n)!(n+m)
> 0 for all m ∈ N and n ∈ N0. To verify convergence, we apply the

alternating series test, which requires analyzing the limit of bn as n → ∞. We have

lim
n→∞

bn = lim
n→∞

(n!)24n

(2n)!(n + m)
· 2n + 1

2n + 1

= lim
n→∞

(2nn!)2(2n + 1)
(2n)!!(2n + 1)!!(n + m)

= lim
n→∞

(2n)!!
(2n + 1)!!

· lim
n→∞

2n + 1
n + m

= 0

because limn→∞
2n+1
n+m = 2 and limn→∞

(2n)!!
(2n+1)!! = 0 provided in [22], which is one of the

Wallis integral properties. Further, we examine the monotonicity of the sequence bn:

bn+1 =
4(n + 1)2(n!)24n

(2n)!(2n + 2)(2n + 1)(n + m + 1)

=
(n!)24n

(2n)!(n + m)
· (2n + 2)(n + m)

(2n + 1)(n + m + 1)
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≤ (n!)24n

(2n)!(n + m)
= bn.

Thus, bn+1 ≤ bn for all n ≥ m − 1; in other words, bn is then an eventually decreasing
sequence and also limn→∞ bn = 0. Hence, the alternating series test confirms that the
Apéry-like series Gm(x) converges at x = −1.

Finally, we analyze the behavior of the Apéry-like series at the domain point x = 1,
specifically to test the divergence of the series Gm(1). Consider the series expressed as
shown below:

Gm(1) =
∞

∑
n=0

(n!)24n

(2n)!(n + m)
≥

∞

∑
n=0

(n!)24n

(2n)!(n + 2m)
≥

∞

∑
n=0

1
n + 2m

.

Since lim
n→∞

n
n+2m = 1 > 0 and ∑∞

n=1
1
n is a divergent p-series, then ∑∞

n=0
1

n+2m diverges

by the limit comparison test. Thus, by the comparison test, Gm(1) diverges. Hence, we
conclude that the point x = 1 lies within the divergence domain of the Apéry-like series,
thus completing our proof.

In the preceding analysis, we confirmed that the Apéry-like series Gm(x) converges
within the domain x ∈ [−1, 0) ∪ (0, 1), as demonstrated by Theorem 5. Building on this
foundation, our next objective is to determine the convergence values for Gm(x), beginning
with the case where m = 1. To this end, we derive the explicit expression for G1(x) as
outlined in Theorem 6, utilizing the principles of fractional calculus discussed in Section 2.

Theorem 6. The initial Apéry-like series G1(x) is expressed in the explicit formula:

G1(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 1
=


2 arcsinh

√
−x√

x(x−1)
+ arcsinh2√−x

x ; x ∈ [−1, 0),

1 ; x = 0,
2 arcsin

√
x√

x(1−x)
− arcsin2 √x

x ; x ∈ (0, 1).

(29)

Proof of Theorem 6. Let x ∈ (0, 1). By utilizing (14), we can transform G1(x) to become

G1(x) =
∞

∑
n=0

(n!)2(4x)n

(2n)! (n + 1)

√
4πx√
4πx

=
√

πx
∞

∑
n=0

2(n!)2(4x)n− 1
2

(2n)!
√

π (n + 1)
=

√
πx

∞

∑
n=0

(
D

1
2
0+(xn)

n + 1

)
.

From Definition 4, we can interchange the summation into half-derivative operator D
1
2
0+,

because
∫ x

0
τn dτ

(n+1)
√

x−τ
is absolutely convergent for n ∈ N0 and x > 0. We further apply

the infinite Mercator series [24], ∑∞
n=1

τn

n = − ln(1 − τ) for |τ| < 1 to evaluate the above
summation. Then, the result obtained is as follows.

√
πx

∞

∑
n=0

(
D

1
2
0+(xn)

n + 1

)
=

√
πx

∞

∑
n=0

(
1

Γ( 1
2 )

d
dx

∫ x

0

τn dτ

(n + 1)
√

x − τ

)

=

√
πx√
π

d
dx

∫ x

0

( ∞

∑
n=0

τn+1

n + 1
· 1

τ
√

x − τ

)
dτ

=
√

x
d

dx

∫ x

0

( ∞

∑
n=1

τn

n
· 1

τ
√

x − τ

)
dτ

=
√

x
d

dx

∫ x

0

− ln(1 − τ)

τ
√

x − τ
dτ. (30)
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Using the integral substitution, let τ = xu; then, dτ = x du. The limits of integration change
accordingly, when τ = 0, u = 0 and when τ = x, u = 1. Thus, the above integral becomes∫ x

0

− ln(1 − τ)

τ
√

x − τ
dτ =

∫ 1

0

− ln(1 − xu)
xu
√

x(1 − u)
x du =

−1√
x

∫ 1

0

ln(1 − xu)
u
√

1 − u
du.

According to the standard integral tables of Gradshteyn and Ryzhik [25], the result of this
specific integral can be expressed in terms of the arcsin function,

−1√
x

∫ 1

0

ln(1 − xu)
u
√

1 − u
du =

−1√
x

(
−2 arcsin2 √x

)
=

2 arcsin2 √x√
x

.

After that, we derivative the above expression with respect to the variable x. Thus, for
x ∈ (0, 1), G1(x) can be evaluated in a simplified form as

G1(x) =
√

x
d

dx

(
2 arcsin2 √x√

x

)
=

2 arcsin
√

x√
x(1 − x)

− arcsin2 √x
x

.

Similarly, for x ∈ [−1, 0), we consider G1(x) by using the relation of the right-sided half
derivative (16) to obtain

G1(x) =
∞

∑
n=0

(n!)2

(2n)!
(−4x)n(−1)n

(n + 1)

√
−4πx√
−4πx

=
√
−πx

∞

∑
n=0

(
D

1
2
0−(xn)

n + 1

)
.

Then, we reformulate the above summation similarly to the process to receive (30) based on
Definition 4 and the infinite Mercator series [24], that is ∑∞

n=1
τn

n = − ln(1 − τ) for |τ| < 1.
Therefore, we have

√
−πx

∞

∑
n=0

(
D

1
2
0−(xn)

n + 1

)
=

√
−πx

∞

∑
n=0

(
1

Γ( 1
2 )

(
− d

dx

) ∫ 0

x

τn dτ

(n + 1)
√

τ − x

)

= −
√
−πx√

π

d
dx

∫ 0

x

( ∞

∑
n=0

τn+1

n + 1
· 1

τ
√

τ − x

)
dτ

= −
√
−x

d
dx

∫ 0

x

( ∞

∑
n=1

τn

n
· 1

τ
√

τ − x

)
dτ

=
√
−x

d
dx

∫ 0

x

ln(1 − τ)

τ
√

τ − x
dτ.

Evaluating the above integral according to the standard integral tables in [25], we obtain

G1(x) =
√
−x

d
dx

(
−2 arcsinh2√−x√

−x

)
=

2 arcsinh
√
−x√

x(x − 1)
+

arcsinh2√−x
x

.

Finally, for x = 0, it is clear that G1(0) consists only of the first term in the summation,
giving G1(0) = 1. Thus, the proof is complete.

Remark 2. We found that the Apéry-like series G1(x) can be written in terms of F1(x) as follows:
G1(x) = 2F1(x)− (1− x)F2

1 (x), where F1(x) and G1(x) are defined in (21) and (29), respectively.

Before deducing the explicit formula for the Apéry-like series Gm(x), we establish a
linear recurrence relation as defined in (19). This process involves a deliberate re-indexing
of the series and applying partial fraction decomposition, which is thoroughly explained in
Theorem 7.
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Theorem 7. The Apéry-like series Gm(x) defined in (19) can be expressed in the following linear
recurrence relation:

Gm+1(x) =
(2m + 1)Gm(x)

2mx
− F1(x)

m
− 2m + 1

2m2x
, (31)

where m ∈ N, x ∈ [−1, 1), and F1(x) and G1(x) defined in (21) and (29), respectively.

Proof of Theorem 7. We derive the linear recurrence relation (31) starting from the defini-
tion of Gm(x) in (19) with the following steps:

Gm(x) =
1
m

+
∞

∑
n=1

((n − 1)!)2n2(4x)n

(2n − 2)!(2n − 1)(2n)(n + m)

=
1
m

+
∞

∑
n=0

(n!)2(n + 1)2(4x)n+1

(2n)!(2n + 1)(2n + 2)(n + m + 1)

=
1
m

+ 2x
∞

∑
n=0

(n!)2(4x)n

(2n)!

(
1

2m + 1
· 1

2n + 1
+

m
2m + 1

· 1
n + m + 1

)
=

1
m

+
2x

2m + 1

∞

∑
n=0

(n!)2(4x)n

(2n)!(2n + 1)
+

2mx
2m + 1

∞

∑
n=0

(n!)2(4x)n

(2n)!(n + m + 1)

=
1
m

+
2x

2m + 1
F1(x) +

2mx
2m + 1

Gm+1(x).

In addition, the mathematical induction technique applied to m enables us to validate the
linear recurrence relation (31). Thus, the proof is complete.

The findings derived from Theorem 7 are hereby explained. Example 4 specifies the
first five cases of the Apéry-like series Gm(x) for m that belong to the set {1, 2, 3, 4, 5}.

Example 4. The first five Apéry-like series Gm(x) for m ∈ {1, 2, 3, 4, 5} hold the following:
∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 1
= G1(x),

∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 2
=

3G1(x)
2x

− F1(x)− 3
2x

,

∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 3
=

15G1(x)
8x2 −

(
5

4x
+

1
2

)
F1(x)− 15

8x2 − 5
8x

,

∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 4
=

35G1(x)
16x3 −

(
35

24x2 +
7

12x
+

1
3

)
F1(x)− 35

16x3 − 35
48x2 − 7

18x
,

∞

∑
n=0

(n!)2

(2n)!
(4x)n

n + 5
=

315G1(x)
128x4 −

(
105
64x3 +

21
32x2 +

3
8x

+
1
4

)
F1(x)− 315

128x4 − 105
128x3 − 7

16x2 − 9
32x

.

The results asserted in Example 4 are recursively derived from the linear recurrence re-
lation in Theorem 7 with the initial functions F1(x) and G1(x) provided in Theorems 2 and 6,
respectively. Accordingly, the explicit formula for the Apéry-like series denoted by Gm(x)
is articulated by utilizing (31), as comprehensively described in Theorem 8, maintaining
the notation introduced in Theorem 7.

Theorem 8. Keeping the notation in Theorem 7, we have the following closed-form formula

Gm+1(x) =
1

m + 1
+

(2m + 1)!(G1(x)− 1)
(m!)2(4x)m −

m

∑
n=1

(
F1(x)

n
+

1
n + 1

) (2m
m ) 2m+1

(4x)m

(2n
n )

2n+1
(4x)n

,

where m ∈ N; and x ∈ [−1, 1), F1(x) and G1(x) defined in (21) and (29), respectively.
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Proof of Theorem 8. From the linear recurrence relation (31), we denote its coefficients by
cm(x) and dm(x). Thus, the recurrence relation (31) can be written as

Gm+1(x) = cm(x)Gm(x)− dm(x), (32)

where cm(x) = 2m+1
2mx and dm(x) = F1(x)

m + 2m+1
2m2x . Given that m ∈ N and x ̸= 0, it follows

that cm(x) ̸= 0. Next, we divide the recurrence relation (23) by the product ∏m
r=1 cr(x) and

simplify it to become

Gm+1(x)
∏m

r=1 cr(x)
− Gm(x)

∏m−1
r=1 cr(x)

= − dm(x)
∏m

r=1 cr(x)
. (33)

Then, we can solve the linear recurrence relation (33) using the same process as in the proof
of Theorem 4. Hence, the explicit solution Gm+1(x) of (33) can be expressed as follows

Gm+1(x) =

(
m

∏
r=1

cr(x)

)(
G1(x)−

m

∑
n=1

dn(x)
∏n

r=1 cr(x)

)
. (34)

To simplify ∏m
r=1 cr(x) into an explicit form, we proceed as follows:

m

∏
r=1

cr =
m

∏
r=1

2r + 1
2rx

=

(
(2m + 1)!!
(2m)!!

· (2m)!!
(2m)!!

)(
1
x

)m
=

(2m + 1)!
(m!)2(4x)m . (35)

Finally, we substitute (35) into (34) and manipulate it to obtain the closed-form formula
of the Apéry-like series Gm+1(x) as follows:

Gm+1(x) =
(2m + 1)!
(m!)2(4x)m

G1(x)−
m

∑
n=1

F1(x)
n + 2n+1

2n2x
(2n+1)!

(n!)2(4x)n


=

(2m + 1)!
(m!)2(4x)m

G1(x)−
m

∑
n=1

F1(x)
n

(2n+1)!
(n!)2(4x)n

−
m

∑
n=0

1
n+1

(2n+1)!
(n!)2(4x)n

+
1

m+1
(2m+1)!

(m!)2(4x)m


=

(2m + 1)!
(m!)2(4x)m

G1(x)−
m

∑
n=1

F1(x)
n

(2n+1)!
(n!)2(4x)n

− 1 −
m

∑
n=1

1
n+1

(2n+1)!
(n!)2(4x)n

+
1

m + 1

=
1

m + 1
+

(2m + 1)!(G1(x)− 1)
(m!)2(4x)m −

m

∑
n=1

(
F1(x)

n
+

1
n + 1

) (2m
m ) 2m+1

(4x)m

(2n
n )

2n+1
(4x)n

.

Hence, the proof is complete.

Remark 3. We also propose eight instances in Appendix B for the Type II familiar of Apéry-like
series Gm(x) for m within the set {1, 2, 3, 4, 5} where each instance, originating from Theorem 8, is
defined for x in the set {± 1

8 ,± 1
4 ,± 1

2 ,± 3
4}. In the next section, these instances will serve a crucial

role in the subsequent analysis of the Type III Apéry-like series HA,B(x).

3.3. Analysis of Type III: Apéry-like Series HA,B(x)

This section delves into the combination of Type I and Type II Apéry-like series,
referred to as Type III, which is represented by the series formula in (20). By synthesizing the
methodologies applied in the series Fm(x) and Gm(x), defined in (18) and (19), respectively,
we unify these expressions under a new framework. Let k ∈ N. We define

Hk(x) :=
∞

∑
n=0

(n!)2

(2n)!
(4x)n

(2n + k)
=

{
Fm(x) ; k = 2m − 1,
1
2 Gm(x) ; k = 2m.

(36)
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Further extending this approach, we generalize the expression for Apéry-like series as
in (20), which allows for a more inclusive representation:

HA,B(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)nQ(n)

PA,B(n)
, (37)

where x is a nonzero real number, n is a non-negative integer, and Q(n) and PA,B(n) are
polynomials with deg Q(n) < deg PA,B(n). Here, A denotes a finite set of positive odd
numbers (A ⊂ 2N− 1), and B includes a finite set of natural numbers (B ⊂ N).

Let PA,B(n) be a polynomial in term of n. Then, we factorize it into two products of
linear functions 2n + ai and n + bj, where ai ∈ A := {a1, a2, a3, . . . , ar1}, with A being a
subset of odd numbers and bj ∈ B := {b1, b2, b3, . . . , br2}, with B being a subset of natural
numbers. The degree of the polynomial PA,B(n), denoted by deg PA,B(n) = r1 + r2 =: r,
encompasses the combined count of elements in sets A and B. The polynomial PA,B(n) can
thus be expressed as

PA,B(n) =
r1

∏
i=1

(2n + ai)
r2

∏
j=1

(n + bj) = 2r1
r1

∏
i=1

(
n +

ai
2

) r2

∏
j=1

(n + bj) = 2r1
r

∏
i=1

(n − λi), (38)

where r := r1 + r2 = n(A ∪ B) and λi ∈ Λ := {− a1
2 ,− a2

2 , . . . ,− ar1
2 ,−b1,−b2, . . . ,−br2}.

Note that elements in the set Λ represent the distinct roots of the polynomial PA,B(n).
For convenience, we let the polynomial R(n) := ∏r

i=1(n − λi); then, PA,B(n) = 2r1 R(n).
This formulation allows us to analyze the rational function Q(n)

PA,B(n)
in (37), with Q(n)

typically chosen to ensure non-repeated linear factors, facilitating the decomposition into
partial fractions using the Lagrange interpolation method [26].

Theorem 9 ([26]). Let Q(x) be a polynomial of degree less than n that interpolates the distinct
points (x1, y1), (x2, y2), . . . , (xn, yn) such that Q(xk) = yk for each k. Suppose R(x) is an nth
order polynomial with zeros at x1, x2, . . . , xn. The expressions for R(x) and its derivative at these
points are given by

R(x) =
n

∏
i=1

(x − xi) and R′(xk) =
n

∏
i=1
i ̸=k

(xk − xi).

The Lagrange interpolating polynomial for Q(x) is then defined as

Q(x) =
n

∑
k=1

R(x) yk
(x − xk)R′(xk)

. (39)

Considering the rational function in (37), assume unique constants ck ∈ R exist such
that the rational function Q(n)

PA,B(n)
can be expressed as a sum of partial fractions:

Q(n)
PA,B(n)

=
Q(n)

2r1 R(n)
=

c1

n − λ1
+

c2

n − λ2
+

c3

n − λ3
+ · · ·+ cr

n − λr
=

r

∑
k=1

ck
n − λk

. (40)

where PA,B(n) is factored as 2r1 R(n). Evaluating the first-order derivative of R(n) at x = λk
using the product rule, we find

R′(λk) =
d

dx

(
r

∏
i=1

(x − λi)

)∣∣∣∣∣
x=λk

=
r

∑
j=1

(
d

dx
(x − λj)

r

∏
i=1
i ̸=j

(x − λi)

)∣∣∣∣∣
x=λk

=
r

∏
i=1
i ̸=k

(λk − λi).
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From the definition of the Lagrange interpolating polynomial in Theorem 9, the coefficients
of the partial fraction decomposition are derived:

Q(n)
PA,B(n)

=
Q(n)

2r1 R(n)
=

1
2r1 R(n)

r

∑
k=1

R(n) Q(λk)

(n − λk)R′(λk)
=

r

∑
k=1

Q(λk)

(n − λk) 2r1 R′(λk)
(41)

To compare the summations of (40) and (41), we thus yield the coefficients ck of decomposi-
tion into the partial fraction as follows:

ck =
Q(λk)

2r1 R′(λk)
=

Q(λk)

2r1 ∏r
i=1
i ̸=k

(λk − λi)
, k ∈ {1, 2, 3, . . . , r}, (42)

where λk represents the zeros of PA,B(n), r = n(A ∪ B) is the degree of PA,B(n) and
r1 = n(A) is the count of terms involving the power of two in PA,B(n).

Remark 4. It should be noted that this section is closely aligned with the results presented in [27].
However, it primarily offers a conceptual methodology for further exploration rather than delivering
comprehensive proof.

Ultimately, the generalized Apéry-like series HA,B(x) can be straightforwardly derived
to the explicit formula by directly using the relations of Fm(x) and Gm(x). To showcase the
usage of this section, we present the following example.

Example 5. Consider the decomposition into partial fractions of the Apéry-like series

HA,B(x) =
∞

∑
n=0

(n!)2

(2n)!
(4x)n(3n2 + 5n − 5)

(2n + 1)(2n + 5)(n + 2)(n + 3)
.

Let the polynomials Q(n) = 3n2 + 5n − 5 and PA,B(n) = (2n + 1)(2n + 5)(n + 2)(n + 3), in
which sets A = {1, 5} and B = {2, 3}. Then, we decompose the proper rational function Q(n)

PA,B(n)
into the partial fractions as in (40), that is,

Q(n)
PA,B(n)

=
3n2 + 5n − 5

4(n + 1
2 )(n + 5

2 )(n + 2)(n + 3)
=

c1

n + 1
2
+

c2

n + 5
2
+

c3

n + 2
+

c4

n + 3
,

where ck for k ∈ {1, 2, 3, 4} are unknown constants. Let Λ := {− 1
2 ,− 5

2 ,−2,−3} be the set of
zeros of the polynomial PA,B(n). Using (42), we can find the unknown constants ck when given
that λk ∈ Λ as the following:

c1 =
Q(λ1)

22 ∏4
i=1
i ̸=1

(λ1 − λi)
=

3λ2
1 + 5λ1 − 5

4(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
= − 9

40
,

c2 =
Q(λ2)

22 ∏4
i=1
i ̸=2

(λ2 − λi)
=

3λ2
2 + 5λ2 − 5

4(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)
=

5
8

,

c3 =
Q(λ3)

22 ∏4
i=1
i ̸=3

(λ3 − λi)
=

3λ2
3 + 5λ3 − 5

4(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
= 1,

c4 =
Q(λ4)

22 ∏4
i=1
i ̸=4

(λ4 − λi)
=

3λ2
4 + 5λ4 − 5

4(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
= −7

5
.
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Hence, after substituting the proper rational function Q(n)
PA,B(n)

into the Apéry-like series HA,B(x), it
can be expressed as the following partial fraction:

HA,B(x) =
∞

∑
n=0

(n!)2

(2n)!

(
− 9(4x)n

20(2n + 1)
+

5(4x)n

4(2n + 5)
+

(4x)n

n + 2
− 7(4x)n

5(n + 3)

)
= − 9

20
H1(x) +

5
4

H5(x) + 2H4(x)− 14
5

H6(x),

where Hk(x) for k ∈ {1, 4, 5, 6} is defined by (36), which can be actually transformed into both
Apéry-like series Fm(x) and Gm(x), i.e., HA,B(x) = − 9

20 F1(x) + 5
4 F3(x) + G2(x)− 7

5 G3(x).

Furthermore, from Example 5, we can evaluate its value at different x ∈ [−1, 1) into
the fundamental constants. For instance, if x = 1

2 , we can directly evaluate HA, B( 1
2 ) using

the Apéry-like series relations Fm(
1
2 ) and Gm(

1
2 ) in Propositions A6 and A15, respectively,

HA,B

(1
2

)
= − 9

20

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 1
+

5
4

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 5
+

∞

∑
n=0

(n!)2

(2n)!
2n

n + 2
− 7

5

∞

∑
n=0

(n!)2

(2n)!
2n

n + 3

= − 9
20

(π

2

)
+

5
4

(
23π

6
− 104

9

)
+

(
−3 +

5π

2
− 3π2

8

)
− 7

5

(
−35

4
+ 6π − 15π2

16

)
= −187

36
− 4π

3
+

15π2

16
.

However, the applications of this particular case in continued fractions will be discussed in
detail in the next section.

4. Applications

This section applies the Apéry-like series in Section 3 to derive continued fractions.
We also validate the Ramanujan Machine’s unproven conjectures (identities) of continued
fractions based on our proposed close-form formulas associated with the Apéry-like series.
Typically, a generalized continued fraction is representable in various forms.

Definition 5. Let (am)m≥1 and (bm)m≥0 be sequences of complex numbers. The continued fraction,
denoted by x, can be expressed as

x := b0 +
a1

b1 +
a2

b2 +
a3

b3 +
. . .

= b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · · . (43)

For any natural number m, the finite continued fraction of order m ≥ 1 is defined by

Am

Bm
:= b0 +

a1

b1 +

a2

b2 +

a3

b3 + · · ·+
am

bm
. (44)

Furthermore, if the limit of (44) exists, the continued fraction (43) corresponds to x = lim
m→∞

Am
Bm

.

Therefore, calculating Am and Bm is essential to demonstrate the validity of the repre-
sentation of the given continuation fraction. The following renowned result of the contin-
ued fraction theory establishes a connection between the convergence and the difference
equations, as referenced in [28].

Laohakosol et al. [3] recently presented a specific closed-form solution for generalized
second-order linear recurrence with coefficients represented by sequences of complex
numbers, which is based on the idea of the counting set in [29,30]. The result can be applied
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with simple continued fractions to confirm the considerable conjectures discovered by the
Ramanujan Machine.

Theorem 10 ([3]). Assume that there exist sequences (cm)m≥1 and (dm)m≥1 of complex numbers,
such that dm ̸= 0 and d1 = b0, satisfying{

am = −cmdm,

bm = cm + dm+1,
(45)

for all m ≥ 1. Then, the multiplicative inverse of the sequence Am
Bm

, namely Bm
Am

, can be expressed by

Bm

Am
=

1
b0 +

a1

b1 +

a2

b2 +

a3

b3 + · · ·+
am

bm
=

m

∑
n=0

1
dn+1

n

∏
k=1

ck
dk

. (46)

Furthermore, the generalized continued fraction can be computed by

lim
m→∞

Am

Bm
=

(
∞

∑
n=0

1
dn+1

n

∏
k=1

ck
dk

)−1

. (47)

The following Example 6 demonstrates applications of Theorem 10 to verify the un-
proven conjectures (identities) of the Ramanujan Machine discovered by Raayoni et al. [13]
in 2021 and later proven by Sutthimat et al. [3] in 2024. Next, three unproven Ramanujan
Machine conjectures listed in [13] are validated in the proofs of Conjectures 1–3, illustrating
the versatility of our work. These conjectures are generated by the Ramanujan Machine
using the MITM-RF algorithm provided in [14].

Example 6 ([13]). Verify the following Ramanujan Machine conjecture:

2
2 − π

= −2 +
−1
−5 +

−6
−8 +

−15
−11 + · · ·+

−m(2m − 1)
−(3m + 2) + · · · .

First, we can establish that am = −m(2m − 1) and bm = −(3m + 2), which allows us to set the
sequences cm = − m2

m+1 and dm = − (2m−1)(m+1)
m . By applying (46) from Theorem 10 and utilizing

the partial fraction as the same process of (42), we obtain

Bm

Am
=

m

∑
n=0

−(n + 1)
(2n + 1)(n + 2)

n

∏
k=1

k3

(2k − 1)(k + 1)2

=
m

∑
n=0

−1
(2n + 1)(n + 2)(n + 1)

· n!
(2n − 1)!!

2nn!
(2n)!!

=
m

∑
n=0

(n!)2

(2n)!
−2n

(2n + 1)(n + 1)(n + 2)

=
m

∑
n=0

(n!)22n

(2n)!

(
− 4/3

2n + 1
+

1
n + 1

− 1/3
n + 2

)
.

It is evident that it converges when m approaches infinity. By using the relation (47) and the familiar
identities of Propositions A6 and A15, we can therefore conclude that

lim
m→∞

Am

Bm
=

(
−4

3

(π

2

)
+

(
π − π2

8

)
− 1

3

(
−3 +

5π

2
− 3π2

8

))−1

=
2

2 − π
.

Next, we proceed to apply the obtained results of the Apéry-like series in Section 3 with
Theorem 10 to validate and prove the following unproven Conjectures 1–3 of continued



Fractal Fract. 2024, 8, 406 20 of 31

fractions. The Ramanujan Machine obtains these conjectures with the MITM-RF technique
provided by [14] and listed in [13].

Conjecture 1 (unproven, listed in [13]). The unproven conjecture (identity) of continued fractions
generated by the Ramanujan Machine: MITM-RF algorithm is

16
π2 + 4

= 1 +
1
7 +

−8
19 +

−81
37 + · · ·+

−2m4 + 3m3

3m(m + 1) + 1 + · · · . (48)

Proof of Conjecture 1. We take am = −2m4 + 3m3, m ≥ 1 and bm = 3m(m + 1) + 1, m ≥ 0

so that the sequences satisfying (45) are cm = m2(m2+m−4)
m2+3m−2 and dm = (2m2−3m)(m2+3m−2)

m2+m−4 for
m ≥ 1. We denote the mth-order continued fraction (48) by

Am

Bm
:= 1 +

1
7 +

−8
19 +

−81
37 + · · ·+

−2m4 + 3m3

3m(m + 1) + 1
.

Next, by using (46) from Theorem 10, we have

Bm

Am
=

m

∑
n=0

(n2 + 3n − 2)
(2n2 + n − 1)(n2 + 5n + 2)

n

∏
k=1

k2(k2 + k − 4)2

(k2 + 3k − 2)2(2k2 − 3k)

=
m

∑
n=0

(n2 + 3n − 2)
(2n − 1)(n + 1)(n2 + 5n + 2)

( n

∏
k=1

(k2 + k − 4)2

(k2 + 3k − 2)2 ·
n

∏
k=1

k
2k − 3

)
=

m

∑
n=0

(n2 + 3n − 2)
(2n − 1)(n + 1)(n2 + 5n + 2)

(
(−2)2

(n2 + 3n − 2)2 · −n!
(2n − 3)!!

2nn!
(2n)!!

)
=

m

∑
n=0

(n!)2

(2n)!
−2(2n)

(n + 1)(n + 2)

(
2(n + 2)

(n2 + 3n − 2)(n2 + 5n + 2)

)
.

Through the telescoping series, considering the above expression Bm
Am

as m → ∞, we have

lim
m→∞

Bm

Am
=

∞

∑
n=0

(n!)2

(2n)!
−2(2n)

(n + 1)(n + 2)

(
1

n2 + 3n − 2
− 1

n2 + 5n + 2

)
=

1
2
− 2

∞

∑
n=1

(
(n!)2(2n)

(2n)!(n + 1)(n + 2)
− ((n − 1)!)2(2n−1)

(2n − 2)!(n)(n + 1)

)(
1

n2 + 3n − 2

)
=

1
2
+ 2

∞

∑
n=1

(
((n − 1)!)2(2n)

(2n)!(n + 1)(n + 2)

)
=

1
2
+ 2

∞

∑
n=0

(n!)2

(2n)!

(
2n

(n + 1)(n + 2)(n + 3)(2n + 1)

)
=

1
2
+ 2

∞

∑
n=0

(n!)22n

(2n)!

(
− 1/2

n + 1
+

1/3
n + 2

− 1/10
n + 3

+
8/15

2n + 1

)
.

By using the familiar identities from Propositions A6 and A15, the last series converges to

lim
m→∞

Bm

Am
=

1
2
+ 2
(
−1

2
G1

(1
2

)
+

1
3

G2

(1
2

)
− 1

10
G3

(1
2

)
+

8
15

F1

(1
2

))
=

1
2
−
(

π − π2

8

)
+

2
3

(
5π

2
− 3π2

8
− 3
)
− 1

5

(
6π − 15π2

16
− 35

4

)
+

16
15

(π

2

)
=

1
2
+

1
16

(
π2 − 4

)
=

π2 + 4
16

.

Finally, the continued fraction (48) converges to lim
m→∞

Am
Bm

= 16
π2+4 , providing evident

verification that Conjecture 1 is valid. Therefore, the proof is complete.
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Conjecture 2 (unproven, listed in [13]). Next, we address the unproven conjecture (identity) of
continued fractions generated by the Ramanujan Machine. The MITM-RF algorithm is

16
π2 − 8

= 9 +
−9
23 +

−96
43 +

−375
69 + · · ·+

−m(m + 2)2(2m − 1)
m(3m + 11) + 9 + · · · . (49)

Proof of Conjecture 2. Take am = −m(m + 2)2(2m − 1), m ≥ 1 and bm = m(3m + 11) + 9,

m ≥ 0 so that sequences cm and dm which satisfy the relation (45) are cm = m(m+2)(m2+5m−2)
m2+7m+4

and dm = (m+2)(2m−1)(m2+7m+4)
m2+5m−2 for m ≥ 1. We denote the continued fraction (48) by

Am

Bm
:= 9 +

−9
23 +

−96
43 +

−375
69 + · · ·+

−m(m + 2)2(2m − 1)
m(3m + 11) + 9

.

Next, we employ (46) from Theorem 10 to consider the inverse continued fraction:

Bm

Am
=

m

∑
n=0

(n2 + 7n + 4)
(n2 + 9n + 12)(n + 3)(2n + 1)

n

∏
k=1

(k2 + 5k − 2)2(k)(k + 2)
(k2 + 7k + 4)2(k + 2)(2k − 1)

=
m

∑
n=0

(n2 + 7n + 4)
(n2 + 9n + 12)(n + 3)(2n + 1)

(
n

∏
k=1

(k2 + 5k − 2)2

(k2 + 7k + 4)2 ·
n

∏
k=1

k
2k − 1

)

=
m

∑
n=0

(n2 + 7n + 4)
(n2 + 9n + 12)(n + 3)(2n + 1)

(
42

(n2 + 7n + 4)2 · n!
(2n − 1)!!

2nn!
(2n)!!

)
=

m

∑
n=0

8(n!)2(2n)

(2n + 1)!(n + 3)(n + 4)

(
2(n + 4)

(n2 + 7n + 4)(n2 + 9n + 12)

)

Through the telescoping series, considering the above expression Bm
Am

as m → ∞, we have

lim
m→∞

Bm

Am
=

∞

∑
n=0

8(n!)2(2n)

(2n + 1)!(n + 3)(n + 4)

(
1

n2 + 7n + 4
− 1

n2 + 9n + 12

)
=

1
6
+ 8

∞

∑
n=1

(
(n!)2(2n)

(2n + 1)!(n + 4)
− ((n − 1)!)2(2n−1)

(2n − 1)!(n + 2)

)(
1

(n + 3)(n2 + 7n + 4)

)
=

1
6
− 8

∞

∑
n=1

(
((n − 1)!)2(2n)(n)

(n + 2)(n + 3)(n + 4)(2n + 1)!

)
=

1
6
− 8

∞

∑
n=0

(n!)2

(2n)!

(
2n

(n + 3)(n + 4)(n + 5)(2n + 1)(2n + 3)

)
=

1
6
− 8

∞

∑
n=0

(n!)22n

(2n)!

(
1/30
n + 3

− 1/35
n + 4

+
1/126
n + 5

+
4/315
2n + 1

− 4/105
2n + 3

)
.

By using the familiar identities from Propositions A6 and A15, the last series converges to

lim
m→∞

Bm

Am
=

1
6
− 8
(

1
30

G3

(1
2

)
− 1

35
G4

(1
2

)
+

1
126

G5

(1
2

)
+

4
315

F1

(1
2

)
− 4

105
F2

(1
2

))
=

1
6
− 4

15

(
−35

4
+ 6π − 15π2

16

)
+

8
35

(
−763

36
+

83π

6
− 35π2

16

)
− 4

63

(
−193

4
+ 31π − 315π2

64

)
− 32

315

(π

2

)
+

32
105

(
3π

2
− 4
)

=
1
6
+

1
48

(
3π2 − 32

)
=

π2 − 8
16

.

Finally, the continued fraction (49) converges to lim
m→∞

Am
Bm

= 16
π2−8 , providing evident

verification that Conjecture 2 is valid. Therefore, the proof is complete.
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Conjecture 3 (unproven, listed in [13]). The unproven conjecture (identity) of continued fractions
generated by the Ramanujan Machine. The MITM-RF algorithm is

32
π2 = 3 +

3
13 +

16
29 +

−135
51 + · · ·+

−m2(m + 2)(2m − 3)
m(3m + 7) + 3 + · · · . (50)

Proof of Conjecture 3. Take am = −m2(m + 2)(2m − 3), m ≥ 1 and bm = m(3m + 7) + 3,

m ≥ 0 so that the sequences cm = m2(m2+5m−10)
m2+7m−4 and dm = (2m−3)(m+2)(m2+7m−4)

m2+5m−10 for m ≥ 1
are corresponding to (45). We denote the continued fraction (48) by

Am

Bm
:= 3 +

3
13 +

16
29 +

−135
51 + · · ·+

−m2(m + 2)(2m − 3)
m(3m + 7) + 3

.

Next, we employ (46) from Theorem 10 to consider the inverse continued fraction:

Bm

Am
=

m

∑
n=0

(n2 + 7n − 4)
(2n − 1)(n + 3)(n2 + 9n + 4)

n

∏
k=1

k2(k2 + 5k − 10)2

(2k − 3)(k + 2)(k2 + 7k − 4)2

=
m

∑
n=0

(n2 + 7n − 4)
(2n − 1)(n + 3)(n2 + 9n + 4)

(
n

∏
k=1

(k2 + 5k − 10)2

(k2 + 7k − 4)2 ·
n

∏
k=1

k
k + 2

·
n

∏
k=1

k
2k − 3

)

=
m

∑
n=0

(n2 + 7n − 4)
(n + 3)(n2 + 9n + 4)

(
(−4)2

(n2 + 7n − 4)2 · 2
(n + 1)(n + 2)

· −n!
(2n − 1)!!

2nn!
(2n)!!

)
=

m

∑
n=0

(n!)2

(2n)!
−16(2n)

(n + 1)(n + 2)(n + 3)(n + 4)

(
2(n + 4)

(n2 + 9n + 4)(n2 + 7n − 4)

)
.

Let ⟨x⟩n = x(x + 1)(x + 2) . . . (x + n − 1) be the Pochhammer symbol used for simplifying
the above expression. Through the telescoping series, the limit Bm

Am
as m → ∞ converges to

lim
m→∞

Bm

Am
=

∞

∑
n=0

(n!)2

(2n)!
−16(2n)

⟨n + 1⟩4

(
1

n2 + 7n − 4
− 1

n2 + 9n + 4

)
=

1
6
− 16

∞

∑
n=1

(
(n!)2(2n)

(2n)!⟨n + 1⟩4
− ((n − 1)!)2(2n−1)

(2n − 2)!⟨n⟩4

)(
1

n2 + 7n − 4

)
=

1
6
+ 16

∞

∑
n=1

(
((n − 1)!)2(2n)

(2n)!(n + 1)(n + 2)(n + 3)(n + 4)

)
=

1
6
+ 16

∞

∑
n=0

(n!)2

(2n)!

(
2n

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(2n + 1)

)
=

1
6
+ 16

∞

∑
n=0

(n!)22n

(2n)!

(
− 1/24

n + 1
+

1/18
n + 2

− 1/20
n + 3

+
1/42
n + 4

− 1/216
n + 5

+
32/945
2n + 1

)
.

By using the familiar identities from Propositions A6 and A15, the last series converges to

lim
m→∞

Bm

Am
=

1
6
+ 16

(
−

G1(
1
2 )

24
+

G2(
1
2 )

18
−

G3(
1
2 )

20
+

G4(
1
2 )

42
−

G5(
1
2 )

216
+

32F1(
1
2 )

945

)

=
1
6
− 2

3

(
π − π2

8

)
+

8
9

(
−3 +

5π

2
− 3π2

8

)
− 4

5

(
−35

4
+ 6π − 15π2

16

)
+

8
21

(
83π

6
− 763

36
− 35π2

16

)
− 2

27

(
31π − 193

4
− 315π2

64

)
+

512
945

(π

2

)
=

π2

32
.

Finally, the continued fraction (50) converges to lim
m→∞

Am
Bm

= 32
π2 , providing evident verifica-

tion that Conjecture 3 is valid. Therefore, the proof is complete.
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5. Conclusions

This paper has explored the intersection of Apéry-like series and fractional calculus,
leveraging the flexibility of fractional operators to derive closed-form expressions for these
series rigorously. Our research addresses the gap in the availability of closed-form expres-
sions for Apéry-like series by focusing on three specific types of functions and providing
the conditions for their convergence. Despite the inherent limitations of computational ap-
proaches, our results mitigate these challenges and demonstrate their practical applicability.
Additionally, we apply our findings to verify three unproven conjectures discovered by the
Ramanujan Machine, illustrating the versatility and impact of our work. For future work,
we plan to extend our study to more general classes of Apéry-like series involved with
the following functions: fn(x) = (4x)n

(2n+a)2 , fn(x) = (4x)n

(n+b)2 and fn(x) = (4x)n

an2+bn+c . This will
enable us to further explore the potential of our methods and to prove other conjectures
such as

16 + 3π2

16 − π2 = 7 +
8

19 +

−27
37 +

−192
61 + · · ·+

−n3(2n − 5)
(n − 1)(3n + 6) + 7 + · · ·

which needs the explicit solution of fn(x) = (4x)n

3n2+23n+10 to complete the proof.
As a final remark, one can observe that a conjecture can be generated from a linear

combination of the Apéry-like series. This raises a common question: which linear combi-
nation of the Apéry-like series satisfies the system (45) and ensures the convergence of (47)?
For example, the following series is not provided by the Ramanujan Machine

4 − π

2
=

∞

∑
n=1

(n!)2 2n

(2n)!

(
1
n
− 2

2n + 1

)
which satisfies Theorem 10 with am = −(m + 1)(2m + 3) and bm = 3(m + 1) for all m ≥ 1.
This observation may lead to improvements in the algorithm of the Ramanujan Machine.
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Appendix A. Additional Results of Type I Apéry-like Series Fm(x)

In this appendix, we propose the closed-form expressions of the Apéry-like series
Fm(x) with m ∈ {1, 2, 3, 4, 5} in Propositions A1–A9, where each proposition, derived
from Theorems 2 and 4, is specified in x ∈ {−1,± 1

8 ,± 1
4 ,± 1

2 ,± 3
4}. These propositions are

utilized to be elemental instruments for analyzing or evaluating other complicated infinite
summations that are in terms of Apéry-like series Fm(x).
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Proposition A1. For x = −1 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm(−1) =
∞

∑
n=0

(n!)2

(2n)!
(−4)n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−4)n

2n + 1
=

√
2 arcsinh(1)

2
,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

2n + 3
= 2 − 3

√
2 arcsinh(1)

2
,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

2n + 5
=

11
√

2 arcsinh(1)
6

− 20
9

,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

2n + 7
=

218
75

− 23
√

2 arcsinh(1)
10

,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

2n + 9
=

179
√

2 arcsinh(1)
70

− 11608
3675

.

Proposition A2. For x = 1
8 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(1
8

)
=

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 1)
=

8
√

7
7

arcsin
(√2

4

)
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 3)
=

120
√

7
7

arcsin
(√2

4

)
− 16,

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 5)
=

3832
√

7
21

arcsin
(√2

4

)
− 1568

9
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 7)
=

61304
√

7
35

arcsin
(√2

4

)
− 125584

75
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(2n + 9)
=

560488
√

7
35

arcsin
(√2

4

)
− 56266432

3675
.

Proposition A3. For x = − 1
8 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(
− 1

8

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 1)
=

4 ln(2)
3

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 3)
= 16 − 68 ln(2)

3
,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 5)
=

724 ln(2)
3

− 1504
9

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 7)
=

120464
75

− 34756 ln(2)
15

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(2n + 9)
=

2224364 ln(2)
105

− 53963072
3675

.
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Proposition A4. For x = 1
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(1
4

)
=

∞

∑
n=0

(n!)2

(2n)!
1

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
1

2n + 1
=

2π
√

3
9

,

∞

∑
n=0

(n!)2

(2n)!
1

2n + 3
=

14π
√

3
9

− 8,

∞

∑
n=0

(n!)2

(2n)!
1

2n + 5
=

74π
√

3
9

− 400
9

,

∞

∑
n=0

(n!)2

(2n)!
1

2n + 7
=

1774π
√

3
45

− 16072
75

,

∞

∑
n=0

(n!)2

(2n)!
1

2n + 9
=

56758π
√

3
315

− 3602528
3675

.

Proposition A5. For x = − 1
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(
− 1

4

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the golden ratio ϕ = 1+
√

5
2 as

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n + 1
=

4
√

5 ln(ϕ)
5

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n + 3
= 8 − 36

√
5 ln(ϕ)
5

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n + 5
=

572
√

5 ln(ϕ)
15

− 368
9

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n + 7
=

14792
75

− 916
√

5 ln(ϕ)
5

,

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n + 9
=

29308
√

5 ln(ϕ)
35

− 3311008
3675

.

Proposition A6. For x = 1
2 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(1
2

)
=

∞

∑
n=0

(n!)2

(2n)!
2n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 1
=

π

2
,

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 3
=

3π

2
− 4,

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 5
=

23π

6
− 104

9
,

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 7
=

91π

10
− 2116

75
,

∞

∑
n=0

(n!)2

(2n)!
2n

2n + 9
=

1451π

70
− 238192

3675
.
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Proposition A7. For x = − 1
2 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(
− 1

2

)
=

∞

∑
n=0

(n!)2

(2n)!
(−2)n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−2)n

2n + 1
=

2
√

3
3

arcsinh
(√2

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

2n + 3
= 4 − 10

√
3

3
arcsinh

(√2
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

2n + 5
=

26
√

3
3

arcsinh
(√2

2

)
− 88

9
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

2n + 7
=

1796
75

− 314
√

3
15

arcsinh
(√2

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

2n + 9
=

5014
√

3
105

arcsinh
(√2

2

)
− 199952

3675
.

Proposition A8. For x = 3
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(3
4

)
=

∞

∑
n=0

(n!)2

(2n)!
3n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
3n

2n + 1
=

4π
√

3
9

,

∞

∑
n=0

(n!)2

(2n)!
3n

2n + 3
=

20π
√

3
27

− 8
3

,

∞

∑
n=0

(n!)2

(2n)!
3n

2n + 5
=

284π
√

3
243

− 16
3

,

∞

∑
n=0

(n!)2

(2n)!
3n

2n + 7
=

2164π
√

3
1215

− 664
75

,

∞

∑
n=0

(n!)2

(2n)!
3n

2n + 9
=

67628π
√

3
25515

− 151136
11025

.

Proposition A9. For x = − 3
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Fm

(
− 3

4

)
=

∞

∑
n=0

(n!)2

(2n)!
(−3)n

(2n + 2m − 1)

using Theorems 2 and 4 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−3)n

2n + 1
=

4
√

21
21

arcsinh
(√3

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

2n + 3
=

8
3
− 44

√
21

63
arcsinh

(√3
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

2n + 5
=

668
√

21
567

arcsinh
(√3

2

)
− 112

27
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

2n + 7
=

4696
675

− 5452
√

21
2835

arcsinh
(√3

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

2n + 9
=

24692
√

21
8505

arcsinh
(√3

2

)
− 1030304

99225
.
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Appendix B. Additional Results of Type II Apéry-like Series Gm(x)

In this appendix, we present closed-form expressions for the Apéry-like series of Type
II, namely, Gm(x) for m ∈ {1, 2, 3, 4, 5} in Propositions A10–A18. The results in each proposi-
tion are derived from Theorems 6 and 8, which focus for x in the set {−1,± 1

8 ,± 1
4 ,± 1

2 ,± 3
4}.

These propositions serve as fundamental tools for analyzing or evaluating other complex
infinite summations involving the Apéry-like series Gm(x).

Proposition A10. For x = −1 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm(−1) =
∞

∑
n=0

(n!)2

(2n)!
(−4)n

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−4)n

n + 1
=

√
2 arcsinh(1)− arcsinh2(1),

∞

∑
n=0

(n!)2

(2n)!
(−4)n

n + 2
=

3
2
+

3 arcsinh2(1)
2

− 2
√

2 arcsinh(1),

∞

∑
n=0

(n!)2

(2n)!
(−4)n

n + 3
= −5

4
− 15 arcsinh2(1)

8
+

9
√

2 arcsinh(1)
4

,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

n + 4
=

133
72

+
35 arcsinh2(1)

16
− 67

√
2 arcsinh(1)

24
,

∞

∑
n=0

(n!)2

(2n)!
(−4)n

n + 5
= −115

64
− 315 arcsinh2(1)

128
+

193
√

2 arcsinh(1)
64

.

Proposition A11. For x = 1
8 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(1
8

)
=

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + 1)
=

16
√

7
7

arcsin
(√2

4

)
− 8 arcsin2

(√2
4

)
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + 2)
= −12 +

184
√

7
7

arcsin
(√2

4

)
− 96 arcsin2

(√2
4

)
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + 3)
= −125 +

1836
√

7
7

arcsin
(√2

4

)
− 960 arcsin2

(√2
4

)
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + 4)
= −10528

9
+

51400
√

7
21

arcsin
(√2

4

)
− 8960 arcsin2

(√2
4

)
,

∞

∑
n=0

(n!)2

(2n)!
1

2n(n + 5)
= −42121

4
+

154198
√

7
7

arcsin
(√2

4

)
− 80640 arcsin2

(√2
4

)
.

Proposition A12. For x = − 1
8 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(
− 1

8

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + 1)
=

8 ln(2)
3

− 2 ln2(2),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + 2)
= 12 − 100 ln(2)

3
+ 24 ln2(2),
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∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + 3)
= −115 +

998 ln(2)
3

− 240 ln2(2),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + 4)
=

9688
9

− 9316 ln(2)
3

+ 2240 ln2(2),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

2n(n + 5)
= −38743

4
+

83843 ln(2)
3

− 20160 ln2(2).

Proposition A13. For x = 1
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(1
4

)
=

∞

∑
n=0

(n!)2

(2n)!
1

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
1

n + 1
=

4π
√

3
9

− π2

9
,

∞

∑
n=0

(n!)2

(2n)!
1

n + 2
=

22π
√

3
9

− 2π2

3
− 6,

∞

∑
n=0

(n!)2

(2n)!
1

n + 3
=

109π
√

3
9

− 10π2

3
− 65

2
,

∞

∑
n=0

(n!)2

(2n)!
1

n + 4
=

508π
√

3
9

− 140π2

9
− 1379

9
,

∞

∑
n=0

(n!)2

(2n)!
1

n + 5
=

4571π
√

3
18

− 70π2 − 5525
8

.

Proposition A14. For x = − 1
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(
− 1

4

)
=

∞

∑
n=0

(n!)2

(2n)!
(−1)n

(n + m)

using Theorems 6 and 8 can be expressed with the golden ratio ϕ = 1+
√

5
2 as

∞

∑
n=0

(n!)2

(2n)!
(−1)n

n + 1
=

8
√

5 ln(ϕ)
5

− 4 ln2(ϕ),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

n + 2
= 6 − 52

√
5 ln(ϕ)
5

+ 24 ln2(ϕ),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

n + 3
= −55

2
+

258
√

5 ln(ϕ)
5

− 120 ln2(ϕ),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

n + 4
=

1169
9

− 3616
√

5 ln(ϕ)
15

+ 560 ln2(ϕ),

∞

∑
n=0

(n!)2

(2n)!
(−1)n

n + 5
= −4667

8
+

5423
√

5 ln(ϕ)
5

− 2520 ln2(ϕ).

Proposition A15. For x = 1
2 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(1
2

)
=

∞

∑
n=0

(n!)2

(2n)!
2n

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
2n

n + 1
= π − π2

8
,
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∞

∑
n=0

(n!)2

(2n)!
2n

n + 2
= −3 +

5π

2
− 3π2

8
,

∞

∑
n=0

(n!)2

(2n)!
2n

n + 3
= −35

4
+ 6π − 15π2

16
,

∞

∑
n=0

(n!)2

(2n)!
2n

n + 4
= −763

36
+

83π

6
− 35π2

16
,

∞

∑
n=0

(n!)2

(2n)!
2n

n + 5
= −193

4
+ 31π − 315π2

64
.

Proposition A16. For x = − 1
2 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(
− 1

2

)
=

∞

∑
n=0

(n!)2

(2n)!
(−2)n

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
(−2)n

n + 1
=

4
√

3
3

arcsinh
(√2

2

)
− 2 arcsinh2

(√2
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

n + 2
= 3 − 14

√
3

3
arcsinh

(√2
2

)
+ 6 arcsinh2

(√2
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

n + 3
= −25

4
+

34
√

3
3

arcsinh
(√2

2

)
− 15 arcsinh2

(√2
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

n + 4
=

553
36

− 80
√

3
3

arcsinh
(√2

2

)
+ 35 arcsinh2

(√2
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−2)n

n + 5
= −34 +

359
√

3
6

arcsinh
(√2

2

)
− 315

4
arcsinh2

(√2
2

)
.

Proposition A17. For x = 3
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(3
4

)
=

∞

∑
n=0

(n!)2

(2n)!
3n

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:

∞

∑
n=0

(n!)2

(2n)!
3n

n + 1
=

8π
√

3
9

− 4π2

27
,

∞

∑
n=0

(n!)2

(2n)!
3n

n + 2
=

4π
√

3
3

− 8π2

27
− 2,

∞

∑
n=0

(n!)2

(2n)!
3n

n + 3
= 2π

√
3 − 40π2

81
− 25

6
,

∞

∑
n=0

(n!)2

(2n)!
3n

n + 4
=

80π
√

3
27

− 560π2

729
− 7,

∞

∑
n=0

(n!)2

(2n)!
3n

n + 5
=

13π
√

3
3

− 280π2

243
− 87

8
.

Proposition A18. For x = − 3
4 and m ∈ {1, 2, 3, 4, 5}, the Apéry-like series

Gm

(
− 3

4

)
=

∞

∑
n=0

(n!)2

(2n)!
(−3)n

(n + m)

using Theorems 6 and 8 can be expressed with the following closed-form formulas:
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∞

∑
n=0

(n!)2

(2n)!
(−3)n

n + 1
=

8
√

21
21

arcsinh
(√3

2

)
− 4

3
arcsinh2

(√3
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

n + 2
= 2 − 20

√
21

21
arcsinh

(√3
2

)
+

8
3

arcsinh2
(√3

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

n + 3
= −5

2
+

94
√

21
63

arcsinh
(√3

2

)
− 40

9
arcsinh2

(√3
2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

n + 4
=

119
27

− 1352
√

21
567

arcsinh
(√3

2

)
+

560
81

arcsinh2
(√3

2

)
,

∞

∑
n=0

(n!)2

(2n)!
(−3)n

n + 5
= −449

72
+

667
√

21
189

arcsinh
(√3

2

)
− 280

27
arcsinh2

(√3
2

)
.
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