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Abstract: We propose a new definition of the y-convex stochastic processes (¢SP) using center and
radius (CR) order with the notion of interval valued functions (%%). By utilizing this definition
and Mean-Square Fractional Integrals, we generalize fractional Hermite-Hadamard-Mercer-type
inclusions for generalized g% versions of convex, tgs-convex, P-convex, exponential-type convex,
Godunova-Levin convex, s-convex, Godunova-Levin s-convex, h-convex, n-polynomial convex,
and fractional n-polynomial (¢SP). Also, our work uses interesting examples of Z-¥ (¢SP) with
Python-programmed graphs to validate our findings using an extension of Mercer’s inclusions with
applications related to entropy and information theory.

Keywords: Hermite-Hadamard; Jensen—Mercer inclusions; interval-valued functions;
mean-square fractional integral; y-convexity; interval-valued stochastic y-convexity with center-

radius order relation

1. Introduction

Interval analysis is a useful tool for dealing with problems involving uncertainty. The
credit it deserved did not come until Moore’s [1] seminal application of interval analysis
for automated error analysis (even though it had roots in Archimedes’ p-calculation). It has
been extended to interval-valued and fuzzy-valued functions by numerous researchers,
such as Costa et al. [2], who established integral inequalities for fuzzy-interval-valued
functions; Flores-Franuli et al. [3], who introduced integral inequalities for interval-valued
functions; and Chalco-Cano et al. [4], with their Ostrowski-type inequalities and applica-
tions in numerical integration for interval-valued functions. The integral inequality was
demonstrated by Zhao et al. [5] by using an interval-valued h-convex function and the
interval inclusion relation. Since the same comparison of intervals may not be applicable in
all situations, the intriguing and challenging milestone of determining a sensible order to
investigate inequality problems involving interval-valued functions is hard to deal with.
Using the (CR) of the interval, Bhunia et al. [6] computed the C.R-order in 2014. This new
ordering relationship is a combination of the mean and scaled difference of the end-points
of an interval, respectively.

Stochastic processes (SP) significantly escalate the training of neural networks, opti-
mizing energy perspectives and modeling complex processes with each possible combi-
nation. Whether implemented via stochastic control, stochastic computing, or generative
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models, these connections increase the efficiency of both the entropy and neural networks.
Modern research has linked the smoothing of energy landscapes in neural networks to
classical work in stochastic control. Adding stochastic elements, such as randomness or
noise, to the training process can modify and improve the optimization process and more
effectively escape local minima [7]. Stochastic control theory allows us to identify complex
energy surfaces, making it relevant for understanding the training dynamics of neural
networks. SPs are also applicable in fault detection, as CNNs (Convolutional Neural
Networks) can learn to create patterns for identifying anomalies or faults in industrial
automation systems. Several neural networks, such as ANNs (Artificial Neural Networks)
and SNNs (Stochastic Neural Networks), can also model stochastic variations in data
visualizations, helping with tasks like image recognition and segmentation [8].

In optimization and information theory, convex and non-convex functions have a
significant impact. Also, convexity and S/Ps are connected closely. The theory of convexity
plays a foundational role in many fields of science, such as modern mathematics and
analysis. The pivotal relationship between the theory of inequalities and the theory of
convexity has forced many researchers to explore several classical inequalities, which were
discussed for (€F)s and have also been generalized for other extensions of (€F)s.

Jensen’s inequality [9], Mercer’s inequality [10], and Hermite-Hadamard’s inequal-
ity [11] using (€F)s are some of the most praised and celebrated inequalities in different
areas of mathematics and optimization. In [12], Fejér inequality is provided, which is the
weighted extension of the Hermite-Hadamard inequality. Jensen and Mercer inequalities
are essential for investigating bounds for entropies. In this paper, by generalizing Mercer’s
inequality, we explore some approaches to Shannon’s entropy since entropy and SPs are
used in finance, signal processing, and neuroscience.

The idea of convexity for (SP)s has recently attracted much attention because of
its applications in numerical estimations, optimal designs, and optimization. In 1974,
Nagy [13] applied a characterization of measurable (SP)s for solving a generalization
of the (additive) Cauchy functional equation. In 1980, Nikodem [14] introduced convex
(SP)s and explored their regularity properties. In 1992, Skowronski [15] provided some
interesting remarks on convex (SP)s that extended some famous (€F)s. Pales discussed
more nonconvex mappings’ characteristics and power means in [16]. Kotrys presented a
modern extension of the Hermite-Hadamard inequality in [17] using convex (SP)s. In [18],
Saleem explored h-convex (SP)s. In [19], Iscan investigated the p-convex (SP)s. In [20],
Maden introduced s-convex (SP)s in the first sense. In [21], Set proposed s-convex (SP)
in the second sense. In [22], Fu discussed the n-polynomial convex (SP).

Rahman et al. [23] were the first to introduce the idea of g%—(@% )s, which paved the
way for studies of generalized inequality types such as Hermite-Hadamard'’s, Jensen’s,
Mercer’s, Schur’s, Fejér and Pachpatte’s. Vivas-Cortez et al. [24] recently provided frac-
tional inequalities that pertain to generalizations of 2-¥ y-(€§)s with interval values. Har-
monical %% (h1, hy)-Godunova-Levin functions were the focus of Sen et al. [25], whereas
Botmart et al. [26] expanded on this class by studying the g% order relation.

Merging the concepts mentioned above and especially given by [24,27,28], we ex-
plore the properties of y-convex (SP)s, a new generalization of %% functions, and use
them to find modern integral inclusions like Hermite-Hadamard'’s, Jensen’s, and Mercer’s
extending over fractional integrals.

In the future, one can extend this field by using generalized harmonically Z-%-(¢SP)s
using stochastic integrals, quantum integrals, and post-quantum integrals for exciting
applications. This paper is organized as follows: First, we will provide some background
information about our research. Then, in Section 3, we will describe our main results, and
in Section 4, we will explain our work’s applications.

2. Preliminaries

First, we recall notions from €Js.
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Definition 1 ([9]). Let S : [U,V] — R; then, S is said to be (€F) if VU1, V1 € [U,V] being a
convex subset of R and Uy < V1, N € [0,1],

S(NU; + (1 — N)V7) < NS(Up) + (1 — N)S(Vy). 1)

Hermite and Hadamard’s inequality is among the most famous and frequently uti-
lized [11]. An example of a popular phrasing for this inequality is as follows.
LetS:[U,V] C R — Rbea (€F) with U; < Vq. Then, if V U,V € [U,V],

Ui +Vq 1 Vi S(Vl) +S(U1)
5( . >§V1U1/U1 S(nydn < - 720U, @)

Given Jensen’s inequality [9], which is based on the same assumption, which may
be expressed in the same way as Hermite and Hadamard'’s inequality, for any X ;z; = 1
where z; > 0,

S (ZJ}N_lzini> S vazlziS(ni). (3)

Definition 2 ([24]). Consider 7y : [0,1] — RT. S: [U, V] — RTis said to be v-(€F), denoted as
S € SX(v,[U,V],R"),if YUy, Vq € [U,V]and N € [0,1], then

S(NU; + (1 = N)V1) < Ny(N)S(Uq) + (1 = N)7(1 = N)S(V). 4)

In (4), if “<” is interchanged with “>”, then becomes a <y-concave function or
S e 3%(7 [U, V], RT).
If the function «y : (0,1) — (0, 00) satisfies the following inequality,

v(mz) > y(m)vy(z). ©)

forall m,z € [0,1], then -y is said to be super-multiplicative. If the sign in inequality (5) is replaced
by <, then vy is considered sub-multiplicative.

Definition 3 ([29]). S : [U,V] — RTis said to be n-polynomial (€F), denoted as S € SX
(n,[U,V],R"),if VU1, V1 € [U,V] and N € [0,1], then

S(NU; + (1= N)Vy) < % [zg_lu —(1=N))S(Uy) +ZX_;(1 = NS(V1)|.  (6)

In (6), if “<” is interchanged with “>", then it becomes a n-polynomial concave function or
S e (n[U,V],RT).

Definition 4 ([10]). S : [U,V] — RTis said to be fractional n-polynomial (€F), denoted as
Se sx(n;’, [U,V],?R*), if VU1, V1 € [U,V] and N € [0,1], then

S(NU; + (1= N)Vq) < % [zg_l(N%)S(ul) + 58 (1-N)SS(Vy). 7)

In (7), if “<” is interchanged with “>", then it becomes a fractional n-polynomial concave
function or S € [ (n,’;, [U,V], 3‘3*).

To avoid mistakes that could lead to erroneous findings, interval analysis uses interval
variables instead of point variables and displays computing results as intervals. Moore
released his first book on interval analysis in 1966 [30]. Additionally, interval arithmetic
is thoroughly covered in [1]. The set S of all real numbers with real values that are both
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closed and bounded is said to be an interval. The definition is,

S:[S®,S®]:{X€§RIS®§X§S®}.

where Sg,S® € R and Sg < S¥.

On the left side of an interval S, we have Sg, and on the right side, we have S® . If the
absolute value of Sg is greater than zero, then the interval [Sg, S*] is non-negative. We
represent the sets of all closed intervals as Jt; and closed intervals that are positive of the
real numbers as R}, respectively.

A (CR) or total order was applied to an interval provided in the following form by
Bhunia et al. [6]:

Se 5% S®_S,
s_<s¢,sm>_<02 T3 O>

This is the relation between two intervals that is known as the (CR) order or total order:

Definition 5 ([26]). For any two intervals, S = [Sg,S®] = (S¢,Ss) and T = [Te, T®] =
(Te, Tsy), we describe the C.R.-order relation as follows:

Se <Te, if Se#Te
=<
S_C'R'T@{ Sm<Txw, if Se=T¢

So, for any two given intervals S, T € Ry, either S <cr. Tor T ¢ . S.
Definition 6. For L € R, Minkowski addition and scalar multiplication are defined by [26],
S+T =[5 S*+[Te, T¥ = [Se + Te,S* + T¥;

[LSe,LS®], L>0,
LS =L.[Ss,S®] =< {0}, L=0,
[LS®,LSg], L<O.

Moore et al. [1] were the first to introduce the concept of the Riemann integral for
functions in the Z, domain. Let 3%([Uy, V4]) and :([Uy, V4]) denote the sets of all Riemann
integrable 11; and real-valued functions on [Uy, V1], respectively. The following outcome
clarifies the connection between Riemann integrable (R)-integrable functions and (J9R)-
integrable functions.

Theorem 1 ([1]). Suppose S : [U1, V1] — Ry be an L, function, where S(m) = [Sg(m),S®(m)],
S € IR([Uy, V1]) iff Se (m), S¥(m) € R([Uy, V1)),

(IR) /Vls(m)dm - [(m) /Vl Se (m)dm, () /V1 S®(m)dm],

Up Uy Up

In their discussion of the order preservation property of integrals incorporating C.R.
order, Shi et al. [5] provided the following outcome.

Theorem 2. Suppose S,M : [Uy, V1] — R} are two L, functions, where S(n) = [Se(n),S®(n)],
M(n) = [Mg(n), M®(n)]. IfS,M € TR[Uy, V] and S(n) <& M(n), then

/Vl S(n)dn <¢ /U\]/l M(n)dn.

Uy

Now, we recall notions from SPs.



Fractal Fract. 2024, 8, 408

50f 26

Definition 7 ([31]). Consider ((2,B, Q) to be any probability space. A mapping S : 1 x QQ — R is

called a random variable when it is B-measurable. A mapping S : | x R is called a stochastic process

(SP) when each V € |, the mapping S(V, .) is a random variable, having | C R being an interval.
The (SP) S is referred to as follows:

*  Stochastically continuous on |, if

N — 1 Vo,.
1 V1—>II\1/OS( ,.) =5S(Vo,.),

for every Vg € |, where Ny — lim shows the limit of probability.
*  Mean square continuous on |, if

2
lim W[S(V,.) —S(Vo,.)]> =0,
Jim, [S(V,.) —S(Vo,.)]

for every Vg € |, where W[S(V, .)] shows the value of the expectation related to the random
variable S(V, .).

Now, we define our main definition, motivated by the works of [24].

Definition 8. Consider y: [0,1] — RT. S: | x Q — R is said to be y-convex (SP), denoted
asS € SX(v,I,R"),if VU1, Vq € [U,V]and N € [0,1], then

S(NU1 + (1 =N)Vy,.) < NY(N)S(Uy,.) + (1= N)7(1 = N)S(Vy,.). ®)
In (8), if “<” is interchanged with “>", then becomes ~y-concave (SP) or S € I (v, I, RT).
Motivated by works from [10,29], we introduce the following.

Definition 9. S : | x Q — R* is said to be an n-polynomial convex (SP), denoted as
S e d%(n, LLRT),if YUy, Vi € land N € [0,1], then

1

S(NUp + (1= N)Vy,.) < ¢ [2@_1(1 —(1=N)¥)S(Uy,.) + 8, (1= NSV, )| (9

In (9), if “<” is interchanged with “>", then becomes n-polynomial concave (SP) or
SeQF(n LRT).

Definition 10. S: | x (2 — R is said to be a fractional n-polynomial convex (SP), denoted as
S et (nq, w), if VU1, V; € land N € [0,1], then

vr\ -

1
3

S(NUp + (1 —N)Vy,.) < Hzg_ (NS)S(Uy,.) +Z8_, (1 = N)SS(Vy, )| (10)

In (10), if “<” is interchanged with “>", then it becomes fractional n-polynomial concave
(SP)orS e Q] (nq,l §R+)

Now, we recall notions from - 7V3 ¢Fs.

Definition 11 ([24]). Consider 7y : [0,1] — RT. S = [Sg,S®] : [U,V] — R is said to be
LX — 7-(€F), denoted as S € SX (LY, — v, [U, V], R}"), if VU1, Vq € [U,V] and N € [0,1], then
S(NU; + (1~ N)V3) < Np(N)S(Uy) + (1 — N)y(1 — N)S(V3). )

In (11), if “=$" is interchanged with “»=¢", then it becomes a &Y% — vy concave function or
S € 3T (ER - 7 VLR,
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Motivated by the works from [10,29], we introduce the following.

Definition 12. S = [Sg,S®] : [U,V] — R} is said to be L-X-n-polynomial (€F), denoted as
SeSX(ZX —n,[UV],R), if VUi, V1 € [U,V] and N € [0,1], then

S(NU; + (1 —N)Vy) <¢ % {2@_1(1 —(1=N)¥)S(Uy) +ZX_;(1 =N3S(V))|. (12

In (12), if “2¢” is interchanged with “>={", then it becomes a g%—n—polynomial concave
function or S € ST (LY —n,[U, V], R]).

Definition 13. S = [Sg,S®] : [U,V] — R} is said to be LY, fractional n-polynomial (€F),
denoted as S € sx(g;;g —nh,[U,V], é]%f’), if VU1, V1 € [U,V] and N € [0,1], then
1

1
S(NU; + (1 N)V1) =¢ & [zg_l(ms)swl) + 38, (1 N):

&=

S(Vh) . (13)

In (13), if "<& is interchanged with “><”, then it becomes a %% fractional n-polynomial
concave function or S € ST (g}é - ng, [U,V], §Rf’)

Now let us introduce the concept for y-convex 5% function using the works of [24].

Definition 14. Consider 7y : [0,1] = RT. (SP) S = [Se, 5] : | x Q — R] where [U,V] C | is
said to be y-convex %}é denoted as
SeS&(EY —v,[UV],R), ifVU;,V; € [U,V] and N € [0,1], then

S(NU1 4+ (1 = N)Vq,.) <ENyY(N)S(Uq,.) + (1 = N)y(1 —N)S(V4,.) (14)
In (14), if “X{” is interchanged with “>{”, then it becomes -y-concave g% or
SeSFEX -7 [UV]L,R).

o Ify(x) =1,(14) givesan X-(€SP).

o Ify(x) = (1—x), (14) gives an Z-¥ -tgs-(€SP).

o Ify(x) =1, (14) givesanZ-X-P (¢SP).

o Ify(x)=C ;1) , (14) gives an Z-¥ exponential-type (€SP).

o Ify(x) = XlZ, (14) gives an £%-Godunova-Levin (¢SP).

o Ify(x) =x1,(14) gives an g%—s-(QfSP).

o Ify(x) =x"571,(14) gives an g%-Godunova—Levin s-(€SP).
o Ifh(x) = xy(x), (14) gives an Z-X-h-(€SP)[27].

) -
o Ify(x) = ﬁzgleg(l (

()
e Ify(x) = %Z%Zl(xé ), (14) gives an Z-¥ fractional n-polynomial (¢SP).
()

= lex) °) , (14) gives an Z-¥ generalized n-polynomial (€SP).
3=1"'S .

Similarly, we introduce the following notions for (g% SPs), using the works of [10,29].

Definition 15. (SP) S = [S,S®] : | x Q — R{ where [U,V] C | is said to be n-polynomial
convex LY, denoted as S € S& (&% —n,[U, V], R]"), if YUy, V4 € [U,V] and N € [0, 1], then

S(NU; + (1= N)Vy,.) <¢ % SR (1= (1=N)¥)S(Uy,.) + 28, (1= N¥)S(Vy,)|. (15)

In (15), if “={” is interchanged with “=¢", then it becomes n-polynomial concave %}é or
S e %g(%% —n,[U,V],R{).
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Definition 16. (SP) S = [Sg,S%] : | x Q — R where [U,V] C | is said to be fractional
n-polynomial convex C% denoted as S € I (g% — ns, [U,V],ﬂ%{), if YUy, V1 € [U,V] and
N € [0,1], then

S(NU; + (1 —N)Vy,.) <¢ ;[ZN LINS)S(Uy,) + 28, (1 — N)%S(vl,.)} (16)

In (16), if “=<¢” is interchanged with “>{”, then it becomes fractional n-polynomial concave
ZY orS € T (g;g —nf, [UV], R ).

Motivated by the works from [32], we introduce the following.
Definition 17. (SP) S = [Sg,S%] : | x Q — R{ where [U,V] C | is said to be generalized
n-polynomial convex 5% denoted as S € S§ (5% —nw, [U, V], R{), if VU1,V € [U,V] and

N € [0 1] then Mg > 0, Zsleo >0,

S(NU; + (1 —N)Vy,.)

12 Mg(1—(1—N)%) R Mg(1—N9)
| ==l = S(Uy,.) + ==L 2 S(\Vy,.)|. (17
-T R Zgleg ( 1 ) Egleg ( 1 ) (17)

In (17), if "= is interchanged with “>£”, then it becomes generalized n-polynomial concave
trorse %g(g}g —nw, [U, V], RY).

Readers can see some recent works related to the interval order relation [33], Kulisch
and Miranker-type inclusions for generalized classes of stochastic processes [34], and the
center radius order relation [35] for further study, respectively [36-57].

3. Main Results

In this section, we will prove the results related to Jensen, Mercer, Hermite-Hadamard,
and a fractional variant of Hermite-Hadamard inclusion, respectively.

3.1. Jensen-Type Inclusion

Theorem 3. Let ng € R+. If 7y is a super multiplicative non-negative function and S : | x (3 — RN

is non-negative y-convex g}é or we term as S € I (g% 71, %;)with zg € |, then the

following holds:
Wl - ()G
—_— ngzg, — — 1S(zg,.)]|. 18
(i Zosor) =t 2 [ ()3 s as)

where My = 2%:1 ng.

Proof. By mathematical induction, when X = 2, then (18) is true. Suppose that (18) holds

for X — 1, then,
1 & - no
S ngzg,. | =S 7ZN+ Z ),
<MN E=E ) ( $-1 My
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[ ()]

Hence, it is proved by mathematical induction. [

Corollary 1.

o Ifv(x) =1, (18) gives a Jensen-type inclusion for (SP) of &% - (€ )

e Ify(x) = (1 —x), (18) gives a Jensen-type inclusion for (373) of L -tgs-(€F).

o Ify(x)=1 (18) gives a Jensen-type inclusion for (SP) of £-¥,-P (CS)

e Ify(x) = 1) , (18) gives a Jensen-type inclusion for (SP) of 5-¥ exponential-type (€F).
e Ify(x) = ( 18) gives a Jensen-type inclusion for (SP) of &%- Godunowz—Levm (€F).

o Ify(x) =x*"1,(18) gives a Jensen-type inclusion for (SP) of &% -s-(€F).

o Ify(x)=x"°" 1 , (18) gives a Jensen-type inclusion for (SP) of &% -Godunova—Levin s-(€F).
o Ifh(x) = xy(x), (18) gives a Jensen-type inclusion for (SP) of &%, -h-(€F).

o Ify(x) = LHEX_,(1— (1—x)%), (18) gives a Jensen-type inclusion for (SP) of LY n-
polynomial (€F).

o Ify(x) = L=%_ (x%), (18) gives a Jensen-type inclusion for (SP) of Z-¥ fractional n-
polynomial (@S)

* Ify(x)= l 28 1’\;;(11'\,'(; x)%) , (18) gives a Jensen-type inclusion for (SP) of geneml—

ized n—polynomml (€F).

3.2. Mercer-Type Inclusion

An extension of the Jensen inequality, given by Sahoo [31], is as follows.

Theorem 4 (Lemma 2.3 ). [31] If S being a convex (SP) on interval | x Q2 := [U,V] x (2,
ng €1,1 <8< Nandﬂgzlzg =1, then

N
Mg (n,z) = S<U +VvV-Y zsng,.) + Z z5S(ng,.) <S(U,.) +S(V,.). (19)
=1

Theorem 5. Let S be a C R y-convex (SP) on [U,V] x Q,Ny, ..., Ny € [U, V] and w =
U;—V, Thus, the following holds:

N 1

1 5<U‘%V,> <o Zo=1SWMNs) e 73D gy vy gy, ). (20)
1 2 N 2

1(%)

Proof. Since Nﬁ}fNN = U;V

, the first inclusion is easy to achieve from Jensen’s inclusion:

Uu+v Ny + ... + Ny (%) &
. < . <¢ E [ PR
S( 2 7 ) —ts( N 7 ) —T N %:lS(N\S’ )/

The second inclusion is achieved as given in the following. Since Ng € [U, V], there
is a sequence {Aq}}_,, Ag € [0,1] such that Ng = AgU + (1 — Ag)V. On the other hand,

since N1+N+NN = U*Z'V, we have
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O

Remark 1. For X = 2 in (20), then
1
() +S(Ns) <573 ) 1S(0,) + SV, @

Remark 2. Let S : (0,00) be a k¥, y-convex (SP) and 1242 = LR Thys, (20) implies,

1 2 /1) =t N )
1(%)

Remark 3. Let S be an &% -convex (SP) on [U,V] and let N € [U,V], Ny = %, Ny = @
and N3 = U +V — N. Then, N1+|\52+N3 = U‘EV; hence, by the use of (20), we revive the Hermite—
Hadamard inequality after integrating over [U, V] with respect to N:

Ui +Vq c 1 /Vl c [S(U1,.)+S(V1,.)]
— . X . <
S< PR > v 1 S(N,.)dN =g >

[S(1,.) +S(R,.)]. (22)

Corollary 2.
o Ifv(x) =1, (20) gives a Mercer-type inclusion for (SP) of L-%-(€F).

o Ify(x) = (1—x),(20) gives a Mercer-type inclusion for (SP) of &% -tgs-(€F).

o Ifv(x) = 1,(20) gives a Mercer-type inclusion for (SP) of 5-%-P (€F).

e Ify(x) = (EX; L 20) gives a Mercer-type inclusion for (SP) of £-¥, exponential-type (€F).
e Ify(x) = Xl—z, (20) gives a Mercer-type inclusion for (SP) of &% -Godunova—Levin (€F).

o Ify(x) =x*"1,(20) gives a Mercer-type inclusion for (SP) of &% -s-(€F).

o Ify(x) = x 571, (20) gives a Mercer-type inclusion for (SP) of 5%, -Godunova-Levin s-(€F).

)
o Ifh(x) = xy(x), (20) gives a Mercer-type inclusion for (SP) of &% -h-(€F).
o Ify(x) = HEN_,(1—(1—x)%), (20) gives a Mercer-type inclusion for (SP) of Z-¥
n-polynomial (€F).
o Ify(x) = LH=8_, (x%), (20) gives a Mercer-type inclusion for (SP) of &% fractional
n-polynomial (€F).

I (1= (1—x%S
e Ify(x) = & Zgzll\gﬁ(l M(l ) ), (20) gives a Mercer-type inclusion for (SP) of &%, general-
F=1V'S :

ized n-polynomial (€F).
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3.3. Hermite-Hadamard-Type Inclusion
Theorem 6. Let v : (0,1) — RT and 'y(l) # 0. Suppose mapping S : 1 x (2 — R is y-convex

(SP) and also mean square integrable for LY. ¥V Up,Vy € [UV] C | if
SeSE(EY -7, [U V] R{) and S € R{. Then, we obtain the following result:

1 U +V; ) 1 Vi
s( ) < S(N, )N
2 7 * V1—U1/U !
7(3) !

1
2

1
<< [S(Uy,.) +S(Vs,.)] /0 sy(s)ds. (23)

Proof. Since S € I (%7% 7,[U,V], R ), and integrating over (0,1), we have

s(U1 ;Lvl,) <ES(sU1 + (1 =5)Vy,.) +S((1 —5)U1 +5Vy, ).

[ OISR

/ (sUy + (1 —s)Vq,.)ds + / ((1—s)Uy + sVl,.)ds]

1 N

1
:[/ Se(sU1 + (1 —s)Vy,. ds+/ Se((1—s)U; 4+ sV, .)ds

1
/0 S®(SU1+(1—S)V1,.)ds+/O S®((1—S)U1+SV1,.)ds}

2 2 MV
- S AN, / 5® N,.dl\n}
o ) s 2 [T s,

_ 2 /VIS(N )dN
_Vl_U] U1 A ’

1 U +Vq c 1 /Vl
= . .
s( ! ) <t gy, s (1)

7(3)]

By (14), we can obtain,

S(sUp + (1 —5s)Vq,.) =£s7(s)S(Ug,.) + (1 —s)y(1 —5)S(Vy,.).

Integrating over (0,1), we can obtain,
1 1 1
/ S(sUp + (1 —s)Vq,.)ds =<2 S(Uyq,.) / sy(s)ds +S(Vq,.) / (1—=15)y(1—s)ds.
0 0 0

Accordingly,

1 U /U\lll S(N,.)dN =t [S(Uy,.) +S(Vy,.)] ./0‘1 s7y(s)ds. (25)

Now, combining (24) and (25), we obtain the required (23). O

Corollary 3.

e Ify(x) =1, (23) gives a Hermite—Hadamard-type inclusion for (SP) of %_‘%—(Qﬁ&).

e Ify(x) = (1 — x), (23) gives a Hermite~Hadamard-type inclusion for (SP) of &% -tgs-(€F).
o Ifv(x) = 1,(23) gives a Hermite—Hadamard-type inclusion for (SP) of &% -P (@%’)
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Ify(x) = (SP) of &% exponential-
type (65)

If y(x) = 2, (23) gives a Hermite—Hadamard-type inclusion for (SP) of &% -Godunova—
Levin ( %)

If y(x) = x*~1, (23) gives a Hermite~Hadamard-type inclusion for (SP) of & c: ¥ -5-(€F).
Ify(x) = x5~ 1 , (23) gives a Hermite-Hadamard-type inclusion for (SP) of &% -Godunova—
Levin s-(€5).

If h(x) = xy(x), (23) gives a Hermite—Hadamard-type inclusion for (SP) of L% -h-(€F).

)
Ify(x) = &E8_,(1— (1 —x)%), (23) gives a Hermite-Hadamard-type inclusion for (SP)
of ¥, n-polynomial (€F).
Ify(x) = &X8_, (x%), (23) gives a Hermite—-Hadamard-type inclusion for (SP) of ¥
fractional n- polynomial (6&)

Ify(x) = XlN e 1th(1 M(l ) ( 23) gives a Hermite—Hadamard-type inclusion for (SP) of
=1V

LY generalized n-polynomial (€F).

Example 1. Consider [Uy,V1] = [0,1],7(n) = 1,Vn € [0,1]. IfS: [Uy, V1] x Q — 1T is
defined below and plotted using Python programmed graphs (Figure 1),

S(N..)

S(N,.) = [-12N? —1,4N? + 9] = (—4N? +4,8N> +5), N [0,1].

Interval-Valued Stochastic Processes with CR order

E [-12N2-1,4N2+ 9]

104 el B [-4NZ + 4, 8N? + 5]

—10 4

0.0 0.2 0.4 0.6 0.8 10
N

Figure 1. The plot above shows 11, 8P with concave and convex ends (blue).

Nevertheless, the newly constructed g}é S'Ps demonstrate that the SPs at the left and right

endpoints (green) are convex when the center and radius order is applied.

Then,

s(U“ZLVl) _ s(i) —3,7],
vliul /Lj\lllS(N,.)dN - [/01<—4N2+4)dN,/01<8N2+5)dN] - [gf]

1
[S(Ul,.)+S(V1,.)]/O ny(n)dn = [2,9].

As a result,
8 23
3,7] =% [3,3] = [29].
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(Figure 2) demonstrates the newly constructed left (red dotted), middle (blue dotted), and right
(green dotted) parts of (23) when substitutions are applied.

Plot of the Inequality

— 5S(z,.) Lower Bound

12 A S(z,.} Upper Bound
-—- LHS
--- RHS
107 ——- Middle part
5 gt .5 s R
NL
@6

Figure 2. The plot above shows g}}e SP with concave (blue) and convex (yellow) ends.
This verifies the (23).

Theorem 7. Suppose v : (0,1) — RT and 7(%) # 0. Suppose mapping S : 1 x 2 — R

is 7y-convex (SP) and also mean square integrable for ¥ v Uy,Vq € [U,V] C I, if S €
S&(ZX =7, (U, V], R]) and S € R{". Then, we obtain the following result:

{’Y(l)} ( | le) E ' E Vl 1‘ Ul /U\1/1 (N’)dN
2
E ? E {[ (Ull.) S(Vl")] |:Z 27(21>:| } /01 sr)/(s)ds, (26)

S, = 11 [s(e’ulzvl,.) +s<3v1:l“,.>},
21(3)

s, Hul;vl’) N s(ul,.);s(vl,.)] /01 59(s)ds.

where,

Proof. Taking [Ul, UV } , we have

2
3Uq +V;
(=)

1 /1 U +V 1 /1 U +V
<t g1(g)s(uir =925 ) ()5 -+ 2.
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Integrating over (0,1), we have
3U; +Vy L1 /1 /1 Up + Vs
AT ) < 2o 2 - ,
S< 5 ,)_t27(2>[05 sUp + (1 —5s) I ds

+/ ( UitV (1—s)V1,.)ds]

U1+V1 U1+V1
1 1 2 2 T2
— (= S(N,.)dN / S(N,.)dN
27(2> — U (NN G—g7 f, SN ]
Up+Vq
1 1 4 7
Accordingly,
Up+Vy
1 V 1 I
1 s<3U1;r 1,.) oo [, SN, 27)
() o
Similarly, for interval {Ulgvl , V1} , we have
1 3V1+ Uy ¢ 1 /Vl
)= N, .)dN 2
Z“VG)S( e E T b, SN )N, 28)

Adding inclusions (27) and (28), we obtain

1 3U +V 3V, + U 1
S = —- {s( L 1,.>+5<14+1,.)] < [v - /UlS(N,.)dN}

Now,

1 Ui +Vq

s(2 )

1 1/3U; +V 1/3V
:25<<U1+1>+<1+Ul>)

{7( } 2 4 2 4

1 1 1 3U; +V; 1 1 3V + Uy
<t —— _|Zq(= - . (= - .
() ()
_ 11 [s(wljvl,)+S(3V1:U1,_)]’

21(3)
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< [S(Uy );S(Vl,.) +;7<;)S(U1, " ;7(;>S(v1, )} /01 r(o)ds,
. [s<u1,.>;s(vl,.> Ly (;)[swl, )+s<v1,.>]} /01 o
¢ {[S(ul,.) +5(Vs,.)] B + ;7(;)] } / sy (s)ds
O
Corollary 4.

o Ifv(x) = 1, (26) gives a Hermite—Hadamard-type inclusion for (SP) of £¥-(€F).

o Ify(x) = (1—x), (26) gives a Hermite-Hadamard-type inclusion for (SP) of &% -tgs-(€F).

o Ifv(x) = 1, (26) gives a Hermite~-Hadamard-type inclusion for (SP) of £¥-P (€§F).

o Ify(x) = (ex; U (26) gives a Hermite—Hadamard-type inclusion for (SP) of &%, exponential-
type (€§

e Ify(x) = XLZ (26) gives a Hermite—Hadamard-type inclusion for (SP) of &% -Godunova—
Levin (€5).

o Ifv(x) =x°1,(26) gives a Hermite—-Hadamard-type inclusion for (SP) of ¥ -s-(€5).

o Ify(x) =x"5"1,(26) gives a Hermite—Hadamard-type inclusion for (SP) of &% -Godunova—
Levin s-(€5).

o Ifh(x) = xy(x), (26) gives a Hermite-Hadamard-type inclusion for (SP) of £-¥ -h-(€F).

o Ify(x) = LEX_,(1— (1—x)%), (26) gives a Hermite~Hadamard-type inclusion for (SP)
of ¥, n-polynomial (€F).

o Ify(x) = &LZ8_, (x%), (26) gives a Hermite—Hadamard-type inclusion for (SP) of ¥
fractional n-polynomial (€F).

N _(1—%)S
o Ifv(x) =% Za=1 '\gﬁ(l M(l ) ), (26) gives a Hermite-Hadamard-type inclusion for (SP) of
3=1""'S

~—

LY generalized n-polynomial (€F).

Example 2. Recall Example 1, we have

S(U1;LV1/~> _ G) = 3,7

SORGIR
vliul /f““' JaN = E 233}
s, {s(ul, )ers(vl, ) +S<;)] /1n7(n)dn: BS}

and,

Thus, we obtain

11 1 2
N E e B L X

(Figure 3) demonstrates the newly constructed left (red), middle (blue), and right (green) parts
of (26) when substitutions are applied.
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Plot of the Inequality

—— 5(z,.) Lower Bound
12 4 S(z,.) Upper Bound
=== LHS
—-=- RHS

101 __. Middle Part

Figure 3. The plot above shows g% &SP with concave (blue) and convex (yellow) ends.

This verifies (26) with the help of a Python-programmed graph.

Theorem 8. Lety1, 72 : (0,1) — R+ and 'yl,'yz # 0. The functions S,M : | x (2 — R} are -y convex
(SP) and also mean square integrable for LY. v Uy, Vy € 1,if S € S& (&% — 11, [U, V], R ), M €
SEEX =72, [U, V], R]) and S,M € IR,. Then we obtain the following result:

1
—Up.

S( JOM(N, .)dN
1 1

: P(U1,V1)/0 271 (s)a(s)ds + Q(UllVl)/O s(1=s)711(5)r2(1 —s)ds. (29
where,

P(Ul ) = S( ) ( 1/') + S(Vl/‘)M(Vll‘)r

Q(U, V1) = S(Uy, )M(Vy,.) +S(V1,.)M(Uy, .).
Proof. Consider S € 3% (CR 71, [U, V], R} ), M € 8% (CR Y2, [U, V], R]"), then we have
S(Uis+ (1 —5)Vq,.) =2¢s71(s)S(U,.) + (1 —s)y1(1 —s)S(Vy,.),

M(Ugs + (1 —5)Vq,.) =5 s72(s)M(Uq,.) + (1 —s)72(1 —s)M(Vq,.),

Then,
S(U1S + (1 — S)Vl, .)M(Uls + (1 — S)Vl, )

=t (s71(5)S(U1, ) + (1 = s)71(1 = 5)S(Vy, .))
X (s72(s)M(U1,.) + (1 — s)72(1 — s)M(V1,.)).

Integrating over (0,1), we have
1
/ S(Ups + (1 — )V, )M(Uys + (1 — s)Vy,.)ds
0
1
- [/0 S (Ugs + (1 — $)Vy, )M (Ups + (1 — s)V4,.)ds,

/01 S#¥(Uys + (1 —8)Vq, )M®(Ugs + (1 —s)Vq,.)ds]
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_{ 1 /Vls (N, )Mg(N,.)dN ! /Vls@(N IM® (N, .)dN
I A7V T A e VI VY T} " g
_ 1 /Vls(N IM(N,.)dN

_V17U1 Ul 7 a

1 1

=i P(Ul,V1)/0 5271(5)72(5)dS+Q(U1/V1)/0 s(1—5)71(5)72(1 — s)ds.
It follows that,

1 Vi
Vl - Ul Up

S(N, . )M(N,.)dN

1 1
= PULVY) [ Pra(e)72(s)ds + QUL V) [ s(1 = s)m()72(1 - s)ds.

The theorem is proved. O

Corollary 5.

o Ifv(x) =1, (29) gives a Hermite—Hadamard-type inclusion for (SP) of L% -(€F).

o Ify(x) = (1—x), (29) gives a Hermite-Hadamard-type inclusion for (SP) of &% -tgs-(€F).

o Ifv(x) = 1,(29) gives a Hermite-Hadamard-type inclusion for (SP) of £-¥-P (€§F).

o Ify(x) = L;l), (29) gives a Hermite-Hadamard-type inclusion for (SP) of 5% exponential-
type (&3).

e Ify(x) = XLZ (29) gives a Hermite—Hadamard-type inclusion for (SP) of &% -Godunova—
Levin (€5F).

o Ify(x) =x*"1,(29) gives a Hermite—Hadamard-type inclusion for (SP) of &% -s-(€F).

o Ify(x) =x"5"1,(29) gives a Hermite—Hadamard-type inclusion for (SP) of &% -Godunova—
Levin s-(€5).

o Ifh(x) = xy(x), (29) gives a Hermite-Hadamard-type inclusion for (SP) of £-¥ -h-(€F).

o Ify(x) = LEX_,(1— (1—x)), (29) gives a Hermite-Hadamard-type inclusion for (SP)
of ¥, n-polynomial (€F).

o Ify(x) = LEZ8_, (x%), (29) gives a Hermite-Hadamard-type inclusion for (SP) of =¥
fractional n-polynomial (€F).

N _(1—%)S
e Ify(x) = % 231 '\gﬁ(l M(l x) ), (29) gives a Hermite-Hadamard-type inclusion for (SP) of
3=1""'S

LY fractional n-polynomial (€F).

Example 3. Let [U1, V1] = [0,1],571(s) = s,572(s) = 1 foralls € (0,1). IfS,M : [Uy,Vq] C
| x O — R} are defined as

S(N,.) = [-12N? —1,4N? + 9] = (—4N? + 4,8N? +5),

and,
M(N,.) = [~14N> — 1,4N3 +-11] = (5N +5,9N° +6).

Then, we have

1 Vi 35 277
S(N, JM(N, .)dN = | —, — |,
o, StvamM(v.) [34]

7

P(Uy, V1) /Ol s271(s)y2(s)ds = P(0,1) /01 sds = [10, 225}
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and,
Q(Uy, V1) /01 s71(5)(1 = 5)72(1 = s)ds = Q(0,1) /01 sds = [Of 123]

35 277 225 153
[3,4} {10 } + {0, 2} = [10,189).

Since

The plot below (Figure 4) demonstrates the newly constructed left (red dotted) and right (green
dotted) parts of (29) when substitutions are applied.

Plot of the Inequality

--------------------------- —— 5(N, ...) Lower Bound -
175 4 S(N, ...) Upper Bound
—— M(N, ...) Lower Bound
150 - —— M(N, ...) Upper Bound
-—- LHS
—~ 125 A F==_RHS
=
=
= 100 1
=
[+
= 751
e e S S EE
Il
50

Figure 4. The plot above shows ¢ }}3 &Ps with concave and convex ends.

Thus, (29) is verified with the help of a Python-programmed graph.

Theorem 9. Let 71,7y, : (0,1) — R and 1,72 # 0. Suppose mappings S,M : | x Q — R} are
v convex (SP) and also mean squure integrable for LX. vV U,Vy € |, if
SeIL(EX — 71, [U VLR ),Me SL(EX — 72, [U, V], R{) and S,M € IR}. Then, we obtain
the following result:

1 U1—|—V1,‘> (U1+V1,'>
z~n<a>w<;>s<2 /(%

¢ 1
—TVi—-Us

1
S(N JOM(N ,.)dN+P(U1,V1)/O s(1—s)y1(s)72(1 —s)ds
1
£QWUL V1) [ P1i(s)nas)ds. 60)
Proof. Since S € S& (5% — 11, [U, V], R ), M € S& (5% — 712, [U, V], R]"), we have
U +V; 1
s(B2) =tam(

Uy +V 11 1 /1
M( 12 1 ) E (2)M Uis + (1 —s)Vy,.) + 272<2)M(U1(1—s)—|—sV1,.).

NI~

«-rn

1 1
>S Uqis + 1 — S)Vl,.) + E’)/l <2>S(U1(1 — S) +SV1,.),

1A
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S(Ul ;Vl,)M(Ul ;Vl,)
<ty (3)72(3) 18U + (= 9Vi, MUis + (1 -5V, )
FS(Up(1—s) 48V, JM(Uy (1 —s) + sV, )]
tim (;)72 (;) [S(Us + (1— $)V4, JM(Uy (1 — ) + sVy,.)
4 S(U (1= 8) + sV, IM(Us + (1 — s)Vy, )]

<ty (3)72(3) 18U + -9V Ms + (1 -9V,
(U1(1*S)+SV1 ) (U1(1*S)+SV1,.)]
3 (3)7(3) En s+ 1 -9m-ssv,.)

X ((1=5)72(1 = $)M(Uy,.) + 572(s)M(V1,.))]
+ (1 =5)71(1 =5)S(Up,.) +571(5)S(V1, )
X (s72(s)M(Uy,.) + (1 = 5)72(1 = s)M(Vy,.))]

=t %ﬂl G)vz (é) [S(Uis+ (1 =)V, JM(Uss + (1 = 5)V1,.)

+ S(Ul(l — S) +SV1,.)M(U1(1 — S) +SV1,.)]

+3m(3)72(3) 60 = 9mE =5+ 50 - 9m 1 - 972() P )

+(s71()72(8) + (1 =527 (1 = $)72(1 = 5) ) Q(Uy, Vi)

Integrating over (0,1), we have
1 Ui +Vyq Ui +Vy
[( (2, )
- 1 U +V; Ui +Vq 1 ® Ui +Vq ® U +V;
s (S o (B s [ (2, Yo (U5,
. Ui +Vq Ui +Vq
SRR TEIN
1 1 1 1 Vi
< 271( )72( ){Vl_ul /ul S(N,.)M(N,.)dN]

271 (1>72<1) [P(UbVl) /01 s(1—s)y1(s)r2(1 — s)ds
o) [ 5271(5)72(5)015]-

Multiplying both sides by m in the above equation, we obtain the required result:

1 U1+V1,'> <U1+V1,')
ez O
1

Vi 1
<Gy o, SN AN+ P(UL V) [ s(1 =) () a(1 = s)ds

1
+Q(U1,V1)/O s271(s)y2(s)ds.

It completes the proof. [
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Corollary 6.
o Ify(x) = 1,(30) gives a Hermite—-Hadamard-type inclusion for (SP) of &-%-(€ )

e Ify(x) = (1 — x), (30) gives a Hermite-Hadamard-type inclusion for (SP) of -tgs-(€F).

e Ify(x) =+ (30) gwes a Hermite—Hadamard-type zncluszonfor (SP) of £X-P (@S)

e Ify(x) = (SP)o f LY exponential-
type (€ )

e Ify(x) = 2, (30) gives a Hermite~Hadamard-type inclusion for (SP) of Z-¥ -Godunova—
Levin ( S)

o Ify(x) =x*"1,(30) gives a Hermite~Hadamard-type inclusion for (SP) of 5% -s-(€F).

o Ify(x) = x"°1,(30) gives a Hermite-Hadamard-type inclusion for (SP) of Z-¥ -Godunova—
Levin s-(€F).

o Ifh(x) = xy(x), (30) gives a Hermite—-Hadamard-type inclusion for (SP) of &-%-h-(€F).

o Ify(x) = HEN_,(1-(1- x)%), (30) gives a Hermite—-Hadamard-type inclusion for (SP)

of &Y, n-polynomial (Qﬁ{?)
o Ify(x) = HE_,(x3 3), (30) gives a Hermite—Hadamard-type inclusion for (SP) of Z-¥
fractional n—polynomlal (€3).

N C(1-x)3
e Ify(x) = % 231 I\gi(:l M(i ) ), (30) gives a Hermite—Hadamard-type inclusion for (SP) of

LY generalized n-polynomial (CF).

3.4. Fractional Hermite—Hadamard—Mercer-Type Inclusion

Definition 18 ([31]). LetS : | x 2 — R bea SP. We recall the mean square continuous fractional
integrals (MSCFI) 3§, and 3\ - having order k > 0 are given as,
1 2

1 /" 1«
TSI = = [ OIS (m, Y dm, (0 <Ny <0 < Ny),
1 K JN
and,
1 'NZ 1-x
35 [S](n) = %/ e MImS(m Ydm, (0 <Ny <1 < Ny),
2 n
respectively. Using Theorems 1 and 2, we can easily utilize (MSCFZI) on %7)}2 settings.
For convenience, we use & = =% (n — m).

Theorem 10. Let S : | x Q — R be a y-convex g}é or we termas S € I (g% 71, §R§r) in the

interval |, such that N1, Ny € |, with 0 < Ny < Nj. Then, for m,n > 0, the following fractional
inclusion holds true:

(1—e%) m+n
AAAAYAA*S N]'+'N2‘— 2 7.

cl—x
: 2

LA

(3N, 0y —m- [SI(N1 4 N2 = n) + 3§, i [SI(N1 + Ny —m)]

S(m,.) +S(n,.

m [S(le-)+S(N2,-)— 5 ) P (31)

where, .
a:Aeiﬂwm%w@+u—9ﬂvwWK
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Proof. Suppose S : [Ny, Ny] — R being an Z-¥ ~y-convex (SP). Thus, by assumption,
we obtain
S< Uu+V >_S<N1+N2—U+N1+N2—V )

N Ny — —,.
1+ Np 5 >

1 1

Subsequently, when we substitute the inputs as
Ny + N, —U :S(N1+N2—m)+(1—s)(N1+N27n),

Nl—I—NZ—V:s(N1+N2—n)—|—(1—s)(N1—|—N2—m),

Thus, we obtain
S(N1 + Ny — m;n,.)

< 37(3 ) SN+ N = m) 4 (1= 5) (N -+ Mo =),

+S(s(Ny +Nz—n)+ (1 —s)(N; + Ny — m),.)].

L (n-m)

When multiplying on both sides of the above inclusion by e™
ing integration on the result over [0, 1], we obtain

e
(1 ¢ )S<N1+N2m+n,.)
o« 2
1
_<C ,)/(2)

* and also apply-

"N{+Ny—
/ 1+N; me_l%(r—(Nl-&-Nz—”))S(r,.)dl’
N1+N2_n

N1+Np—
N1+N2—n

1
= 21;:<_221) (TN, +Ny—m- [ST(N1 4+ N2 —n) + 3%, o+ [SI(Ny + N2 —m)],

Thus, we obtain

(1—e%) _m+n
715 N]+N2 > 7.

1—x) .
= % [‘J1I§I1+N2—m* [SJ(Ny + Nz —n) + j;|§|1+N2—n+ [SI(N1 + N2 — m)]

It gives us the first part of the inclusion.
For, the second part of the inclusion, we utilize the %% y-convexity of S, applied as,

S(S(N] + Ny — m) + (1 — S)(Nl + Ny — n),.)
=5 s7(s)S(N; + Ny —m,.) + (1 —s)y(1 —s)S(Ny + Ny —n,.),

S(S(Nl + Nz — n) + (1 - S)(Nl + Nz - m),.)
=5s7(s)S(N;1 + N2 —n, ) + (1 —s)y(1 —s)S(Ny + Nz — m, ).
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Summing both the above-given inclusions, we obtain that,

S(s(N7 +Nz —m) + (1 —s)(Ny + Nz —n),.) +S(s(Ng + Nz —n) + (1 —s)(N; +Np, —m),.)
e (s7(s) + (1 =9)7(1 =) [S(Ny + N2 —m,.) + S(Ny + Nz —n, )]
=t (s7(s) + (1 =5)7(1—5))[S(Ny,.) +S(N2,.) = S(m,.) +S(Ny,.) +S(N2,.) = S(n,.)]
= (s7(s) + (1 —s)y(1 —5))(2[S(N,.) +S(N2,.)] — [S(m,.) +S(n,.)]).

Taking the product on both sides of the above inclusion by e~ 5 (n-m)s

the integration over [0, 1|, we obtain

and thus taking

1 —K
/e_l (n— m)SS( (N1+N2_m)+(1—s)(N1+N2—n),~)d5

+/ (n— msS (s(Ny +Nz —n)+ (1 —s)(Ny + N —m),.) ds
jt 2[[5('\‘1/) + S(NZI)] - [S(m,) + S(n/)]]

) /: e (M (5y(s) + (1 - 5)y(1 = 5))ds.

This results in using the above inclusions,

2(nfm)[

e[t 400 - S0

jK'lJer*m* [S](Nl + N2 — n) + jil§|1+N2—n+[SMNl + Ny — m)]

2
This consequently implies,

1—x
2

o [s(Nl,.) +S(Ny,.) —

(3N, Ny —m- [SI(N1 4+ No —n) + 3§y, o+ [S](N7 + Np —m)]

S(m,.) ;— S(n,.)}Pl.

This leads us to the proof of the desired fractional inclusion. [J

Corollary 7.

o Ifv(x) =1, (31) gives a Hermite—Hadamard—Mercer-type inclusion for (SP) of Z-¥-(€F).
. If v(x) = (1 —x), (31) gives a Hermite—Hadamard—Mercer-type inclusion for (SP) of
Rtgs-(€ 8).

. If v(x) = 1, (31) gives a Hermite~Hadamard-Mercer-type inclusion for (SP) of &% -P (€F).

o Ify(x) = ( = 1 (31) gives a Hermite—Hadamard—Mercer-type inclusion for (SP) of g%
exponential-type (€F).

e Ify(x) = %, (31) gives a Hermite—-Hadamard—Mercer-type inclusion for (SP) of &%-
Godunova—Levin (€F).

o Ify(x) =x"1,(31) gives a Hermite~Hadamard—Mercer-type inclusion for (SP) of &% -s-
(€3).

o Ify(x) = x5, (31) gives a Hermite-Hadamard—Mercer-type inclusion for (SP) of g:%—
Godunova—Levin s-(€F).

o Ifh(x) = xy(x), (31) gives a Hermite~Hadamard—Mercer-type inclusion for (SP) of &-%-h-
(€3).

o Ify(x) = &£ (1-(1-x)° %), (31) gives a Hermite—Hadamard—Mercer-type inclusion

for (SP) o f g% n-polynomial (€F).

. If T(x) = HE8_, (x%), (31) gives a Hermite—Hadamard—Mercer-type inclusion for (SP) of

‘R fractzomzl n-polynomial (€F).
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I _(1—x\S
e Ify(x) = ﬁ Zi‘f:l'\ggi M(i ) ), (31) gives a Hermite—Hadamard—Mercer-type inclusion for

SP) of LY qeneralized n-polynomial (€F).
CRE poly

Corollary 8. By substituting Ny = m and Ny = n in (31), we obtain the following new fractional
integral inclusion for £-% ~y-convex (SP):

(17(f;a)5(mz+ ") < % 5l00) + 3% sl
2
< [S(m)gs(")}pl

The above inclusion becomes the one given by [31] for y(n) = 1and S¢ = Ss.

Corollary 9. When x — 1, we obtain lim,_,q 2(11_*8",“) = 2(n1_m>. Thus, from (31), the given new
Hermite-Hadamard—Mercer-type inclusion for %7]}2 y-convex (SP) is:

n
115<N1+N2_”“2+",_) jgz(nlm)/ S(Ny 4+ Ny —u,.) du
7(3) "

S(m,.)+S(n,.) Pl
2 (1—e )"

= {S(NL.) +5S(Np,.) —

The above inclusion becomes the one given by [31] for y(n) = 1and S¢ = S..

Remark 4. Substituting Ny = m, y(n) = 1 and Ny = n in (31), thus for x — 1, the Hermite—
Hadamard-type inclusion for convex (SP) presented by Kotrys [17] is reproduced for S; = S..

4. Applications

Entropy quantifies uncertainty in (SP)s. The greater the value of the entropy, the less
predictable the next event will be. Shannon entropy, a vital idea in information theory, is
usually used to calculate this. In this section, we discuss some valuable notations from the
literature that provide applications in entropy and information theory related to our work
using Python-programmed graphs.

Example 4. Taking S(n,.) = [(—1 —n)log(n), (—1+ n)log(n)] = (—log(n), nlog(n)). See
Figure 5.

Iv. Stochastic Process [S.,S.] =[~log(n), n*log(n)]

20 4

10 ~

Si(n,.)

Interval [5., 5/]
—— lower bound=(-1-n)log{n)

—— upper bound=(-1+n)log(n)
—20 4 5= —log(n)
Sr=n*Jogin)

2 4 6 8 10
n

—10 4

Figure 5. The plot above shows 112 SP with concave (green) and convex (red) ends, respectively.
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Nevertheless, the newly constructed %,}é S'Ps demonstrate that the SPs at the left (blue) and
right (yellow) endpoints are convex when the center and radius order is applied.

Definition 19. The Shannon entropy of a positive probability distribution Q = (q1, ..., qx) is
defined by,

X 1
E(g):= ) g3log —
=1 qs

and
(

denote the usual arithmetic and geometric means of {ng}, respectively. From (20), we conclude

with the following result.

Proposition 1. Let U > 0,9(n) = 1,Ng € [U,V], S = 1,.., R and Ag(x) = YV, then

(20) implies

VIV log (3 )| =e o Bl <5 |25 es(5) | @)

Proof. Taking S.(n,.) = —log(n) in (20),

—log<U—£V) < —log(Nj) — ... —log(Ny) < —log(U)z— log(V)’

N

So,
log(U) +log(V) < log(N7) + ... + log(Ny) < log<U +V>
2 - N - 2 ’

Subsequently,
U+V

log(VUV) <log(Tx(n)) < log<2),
Since S¢(n) = —log(n) is nondecreasing, the result follows from above:

VUV < Ta(x) < UZLV (33)

Now, taking, ng = qg, Se(n,.) = nlog(n), n #0, U=0, V= % in (20),

1 1 q1log(q1) + ...+ qnlog(qs) _ 1 2
il — ) < < = =
Nlog(n> = N SRles(R)

log@) < E(q) < log(R), (34)

(33) and (34) yield,
N U+Vv 1 2
VIV tog(3 )] =6 et E) =5 |25 fos(3) |
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5. Conclusions

Merging the concepts of interval analysis, stochastic processes, and generalized con-
vexity, g% order relation is used in this manuscript for y-convex (SP)s. Using these notions,
we developed inclusions of the Jensen, Mercer, and Hermite-Hadamard types. A distin-
guishing feature of this notion is that the inclusion terms derived from it reproduce results
for 2% (convex, tgs-convex, P-convex, exponential-type convex, Godunova-Levin convex,
s-convex, Godunova-Levin s-convex, h-convex, n-polynomial convex, and fractional n-
polynomial convex (SP)s). Specific interesting examples related to Python-programmed
graphs, entropy, and information theory applications make our work more advanced than
the existing results in [17,27,31]. In the future, one can extend these results via stochastic
integrals, quantum integrals, and post-quantum integrals in fuzzy interval settings.
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