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Abstract: The L-fractional derivative is defined as a certain normalization of the well-known Caputo
derivative, so alternative properties hold: smoothness and finite slope at the origin for the solution,
velocity units for the vector field, and a differential form associated to the system. We develop a
theory of this fractional derivative as follows. We prove a fundamental theorem of calculus. We
deal with linear systems of autonomous homogeneous parts, which correspond to Caputo linear
equations of non-autonomous homogeneous parts. The associated L-fractional integral operator,
which is closely related to the beta function and the beta probability distribution, and the estimates
for its norm in the Banach space of continuous functions play a key role in the development. The
explicit solution is built by means of Picard’s iterations from a Mittag–Leffler-type function that
mimics the standard exponential function. In the second part of the paper, we address autonomous
linear equations of sequential type. We start with sequential order two and then move to arbitrary
order by dealing with a power series. The classical theory of linear ordinary differential equations
with constant coefficients is generalized, and we establish an analog of the method of undetermined
coefficients. The last part of the paper is concerned with sequential linear equations of analytic
coefficients and order two.

Keywords: non-integer-order differential equation; Leibniz and Caputo fractional operators; linear
and sequential linear equations; Mittag–Leffler function; power series; Picard’s iterations
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1. Introduction
1.1. Literature Review

Fractional calculus is concerned with non-integer differentiation, where the new
derivative operator is often presented as an integral expression with respect to a kernel
function. The operator depends on the fractional order or index, which may be a real
number in (0, 1), a real number with no bounds, or even a complex value, and the ordinary
derivative is retrieved for order 1. Good expositions of the topic are given in the mono-
graphs [1–6]. There are many notions of fractional derivatives, and different approaches
and rules have been followed to study these operators and associated differential equa-
tions [7–13]. Among all of the definitions, in this paper, we will consider the important
Caputo fractional operator, with the consequent Caputo fractional differential equations.
This operator was proposed nearly sixty years ago in [14] in the context of viscoelasticity
theory. However, it is still of use in current mathematical and applied research; see for
example the recent publications [15–21]. The operator is defined as a convolution with
respect to a singular kernel so that a continuous delay is incorporated into the differential
equation. This definition brings about a new kind of functional differential equations,
which exhibit memory and hereditary effects that may capture different dynamics more
flexibly. Compared to the Riemann–Liouville formulation, the ordinary derivative is placed
within the integral so that initial conditions are posed as in the classical sense. Due to
the applicability of fractional calculus and the similarities with ordinary calculus, some
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definitions and computations in the literature lack sufficient rigor, as pointed out in [10];
thus, we aim at giving precise results, in line with [3,10], for instance.

Throughout this article, we will be interested in explicit and closed-form solutions to
fractional differential equations. In fact, we will build a theory on a new class of fractional
differential equations and their corresponding solutions, but details will be given later. By
explicit solution, we mean a state or response function that can be solved and isolated,
whereas a closed-form solution refers to a more detailed final expression in terms of the
input data. For Caputo fractional differential equations, there are many works that con-
struct explicit solutions, often in the realm of applicable models. In the homogeneous and
autonomous linear case, the solution depends on the most important function in fractional
calculus, the (one-parameter) Mittag–Leffler function, which is defined as a power-series
expansion that extends the Taylor series of the exponential function [22–26]. The theory of
fractional Taylor series was first introduced in [27], where some examples of homogeneous
linear equations were shown. For non-homogeneous linear models, the two-parameter
Mittag–Leffler function appears in the solution’s expression too, within a convolution; this
result can be deduced by means of Picard’s iterations [28]. When moving to nonlinear
equations, fractional power series may be employed as well, albeit the recursive relation
for the expansion’s coefficients is not solvable in closed form. Some examples, which
were published quite recently, are the logistic equation [29], the Bernoulli equation [30],
SIS equations [31], and general compartmental models with polynomial nonlinearity [32].
In fact, the Cauchy–Kovalevskaya theorem has just been proved for systems of Caputo
fractional differential equations with analytic inputs [33], hence giving a theoretical justifi-
cation of the method in general. Since fractional calculus differs from standard calculus
(product rule, chain rule, etc. [34]), the contribution [33] circumvents the problems and em-
ploys the method of majorants and the implicit-function theorem to achieve a proof of the
Cauchy–Kovalevskaya theorem. For variations and generalizations of the Caputo operator,
which expand the possible kernel functions, power series also play an important role as
well, for instance, for Prabhakar fractional logistic equations [35] and Caputo generalized
proportional fractional logistic equations [36]. Further explicit expressions compared to
power-series expansions are not usually available; see the discussions in [37–39]. There are
alternative analytical techniques, such as the Laplace-transform method [18,40–42] (which
is often applied with formal calculations), which has even been used in the stochastic sense
together with other probabilistic tools [43]. As most Caputo models do not possess explicit
solutions, numerical schemes have been implemented to compute approximations on mesh
discretizations [44–46]. Building numerical solvers for fractional models is much more diffi-
cult than in the standard integer-order case due to persistent memory terms. Here, we will
not use Laplace transforms or numerical resolutions; we will focus on power-series-related
methods instead, with rigorous proofs of convergence.

Motivated by issues with the Caputo fractional derivative, in this paper, we investigate
a variant that has been applied in mechanics, already called the L-fractional derivative by
other authors, with associated L-fractional differential equations [47,48]. It has also been
introduced in the logistic equation for growth processes [49]. The definition is based on
normalizing the Caputo operator, so that the fractional derivative of the identity function is
1. With such an approach, as will be seen, the class of fractional differentiable functions
is enlarged from absolute continuity to classical analyticity so that the calculus is less
restrictive. It is true that the normalization of fractional derivatives has a straightforward
definition, but it gives rise to distinct and interesting geometrical, physical, and qualitative
features. Thus, it should be further investigated in theory and in modeling. See [49]
and the recent arXiv preprint [50], for example. In contrast to the Caputo derivative, the
ordinary derivative of an L-fractional solution is always finite at the initial instant, which
likely makes more sense when modeling real dynamics. The L-fractional derivative can be
interpreted in terms of differentials [51–55], with usual units of time−1 in the vector field in
the model. Thus, the disadvantages of the Caputo derivative are overcome. Although the
normalization is directly related to the original Caputo fractional derivative and numerical
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solvers available for Caputo fractional differential equations are readily extended to the
L-fractional situation, the new L-fractional differential equations exhibit many properties,
and the search for solutions thus deserves specific attention. We develop a complete theory
on linear L-fractional differential equations, with ideas that might be adapted to other
fractional operators. Interestingly, the theory provides a new insight into the classical
exposition of linear ordinary differential equations, and it gives rise to the definition of
a new Mittag–Leffler-type function with a certain power series. As in other treatments
for the Caputo derivative [56,57], we deal with sequential-type models by composing the
L-fractional derivative.

A related fractional derivative that could be investigated in the future is the Λ-
fractional derivative, which normalizes the Riemann–Lioville operator instead [58,59].

In the article, we fix the fractional order α ∈ (0, 1). The case α = 1 is possible as well,
and it corresponds to the classical integer-order setting.

1.2. Previous Context

We base this on the references previously cited. In this paper, all integrals will be
understood in the sense of Lebesgue, which may be interpreted as improper Riemann
integrals or Riemann integrals under appropriate conditions, for example, the continuity of
the integrand. Let L1[0, T] be the Lebesgue space of integrable functions on the interval
[0, T], T > 0. If the function x : [0, T] → Cd belongs to L1[0, T], then its Riemann–Liouville
fractional integral is defined as [3,10]

RLJαx(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1x(τ)dτ =

1
Γ(α)

(tα−1 ∗ x)(t), (1)

where α ∈ (0, 1) ∗ is the convolution and

Γ(z) =
∫ ∞

0
τz−1e−τdτ

is the gamma function. The gamma function generalizes the factorial: Γ(n + 1) = n!, for
integers n ≥ 0. As x ∈ L1[0, T] and tα−1 ∈ L1[0, T], a standard result tells us that the
convolution in (1) is defined as an L1[0, T] function; in particular, it is pointwise defined
almost everywhere on [0, T] (i.e., everywhere except a set of Lebesgue measure zero).
Of course, there are functions for which the Riemann–Liouville integral exists for every
t ∈ [0, T]. Some texts define (1) whenever the integral exists, but that is certainly imprecise.

We say that x : [0, T] → Cd is absolutely continuous if its derivative x′ exists almost
everywhere, x′ ∈ L1[0, T], and

x(t) = x(0) +
∫ t

0
x′(s)ds (2)

for all t ∈ [0, T], i.e., Barrow’s rule holds in the Lebesgue sense. These conditions are
weaker than the continuous differentiability demanded by Riemann integration. Essen-
tially, we are saying that x belongs to the Sobolev space W1,1[0, T] with values on Cd. The
identity (2) is necessary, as the Cantor’s function shows. According to [10] (Proposition 3.2),
the operator RLJα from (1) maps W1,1[0, T] into W1,1[0, T] (it does not map infinitely differ-
entiable functions C∞[0, T] into continuously differentiable functions C1[0, T] in general).
For absolutely continuous functions on [0, T], the Riemann–Liouville fractional derivative
is defined as [3,10]

RLDαx(t) =
d
dt

RLJ1−αx(t) =
1

Γ(1 − α)

d
dt

∫ t

0

x(τ)
(t − τ)α

dτ, (3)
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where α ∈ (0, 1) is the fractional order of differentiation. Note that RLJ1−αx is absolutely
continuous on [0, T]; therefore, it makes sense to differentiate RLJ1−αx almost everywhere
on [0, T].

The Caputo fractional derivative is defined as [3,10]

CDαx(t) = RLJ1−αx′(t) =
1

Γ(1 − α)

∫ t

0

x′(τ)
(t − τ)α

dτ, (4)

where α ∈ (0, 1) is the fractional order of differentiation and t ∈ [0, T]. Compared to (3),
the ordinary derivative is placed within the integral. The operator (4) is a convolution with
continuous delay with respect to a singular kernel

K(t − τ) = (t − τ)−α.

Since x′ ∈ L1[0, T], the Caputo derivative RLJ1−αx′(t) exists almost everywhere on
[0, T], and it belongs to L1[0, T]. The boundary values of the operator are

CD0+x(t) = x(t)− x(0), (5)

for every t ∈ [0, T], and if f is continuously differentiable on [0, T] [3] (page 37),

CD1−x(t) = x′(t), (6)

for all t ∈ [0, T]. Then, it interpolates between the discrete difference x(t) − x(0) =∫ t
0 x′(τ)dτ, which is related to the mean value, and the ordinary derivative x′(t).

Useful examples of computation for (4) are

CDαtβ =
Γ(β + 1)

Γ(β − α + 1)
tβ−α, (7)

for powers β > 0 [60]. In particular,

CDαt =
1

Γ(2 − α)
t1−α (8)

and
CDα1 = 0. (9)

Therefore, while CDαc = 0 holds for constants c ∈ C, it is not true that CDαt = 1.
Motivated by the definition of ordinary differential equations, a Caputo fractional

differential equation is an equation of the form

CDαx(t) = f (t, x(t)), (10)

with an initial condition or state x(0) = x0, where f : [0, T]× Ω ⊆ [0, T]×Rd → Rd, or
f : [0, T]× Ω ⊆ [0, T]×Cd → Cd, is a continuous function such that x0 ∈ Ω. Problem (10)
can be interpreted in an almost-everywhere sense, considering that CDαx ∈ L1[0, T]. As
usual, the equation is said to be autonomous if f (t, x) does not depend on t explicitly, i.e.,
f (t, x) ≡ f (x), so that the involved input parameters are constant. Equation (10) exhibits
non-local behavior due to the delay involved in CDαx(t). The units in (10) are time−α.

In general, the solution of (10) cannot be twice continuously differentiable on [0, T].
Indeed, if it were, then we could apply integration by parts on (4) so that the kernel would
become non-singular:
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CDαx(t) =
1

Γ(1 − α)

(
t1−α

1 − α
x′(0) +

1
1 − α

∫ t

0
(t − τ)1−αx′′(τ)dτ

)
=

1
Γ(2 − α)

(
t1−αx′(0) +

∫ t

0
(t − τ)1−αx′′(τ)dτ

)
.

(11)

Then, at t = 0, f (0, x0) =
CDαx(0) = 0, which is not often the case. In practice, one has

|x′(0)| = ∞. This comment highlights the need to consider absolutely continuous functions
in the setting of Caputo fractional differential equations.

As occurs with classical differential equation problems, Caputo Equation (10) does
not usually have explicit solutions, and numerical methods must be used. When possible,
analytical or semi-analytical techniques that have been employed to derive solutions are
Laplace transform and power series. For example, the simplest linear model

CDαx(t) = λx(t), (12)

where λ ∈ C and x(0) = x0, can be solved with those techniques.
The fractional power-series solution (i.e., a power series evaluated at tα)

x(t) =
∞

∑
n=0

xn(tα)n =
∞

∑
n=0

xntαn, (13)

where xn ∈ C and t ≥ 0, formally satisfies

λ
∞

∑
n=0

xntαn =
∞

∑
n=0

xn · CDαtαn =
∞

∑
n=0

xn+1
Γ((n + 1)α + 1)

Γ(nα + 1)
tαn (14)

in (12), by (7). (We use a centered dot for the notation of the product when there may be
confusion with superscripts.) After matching terms,

xn+1 =
Γ(nα + 1)

Γ((n + 1)α + 1)
λxn (15)

is the first-order difference equation for the coefficients. Notice that the property (9) is key
in the development. The closed-form solution to (15) is

xn =
λn

Γ(nα + 1)
x0.

The solution (13) is then expressed as

x(t) = Eα(λtα)x0, (16)

where

Eα(s) =
∞

∑
n=0

sn

Γ(nα + 1)
(17)

is the well-known Mittag–Leffler function [22–24,26]. It is an entire function on the complex
plane C and extends the exponential function through its Taylor series.

The Laplace-transform technique can also be used to derive (16) and (17). The Laplace
transform is defined as

L[x](s) =
∫ ∞

0
x(t)e−stdt.

The most important property of L is

L[CDαx](s) = sαL[x](s)− sα−1x(0), (18)

see [1] (page 81). By applying (18) into (12),
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sα x̃(s)− sα−1x(0) = λx̃(s),

where x̃ = Lx for simplicity. That is,

x̃(s) =
sα−1

sα − λ
x0.

It is known [1] (chapter 4) that

L[Eα(λtα)](s) =
sα−1

sα + λ
.

Hence, (16) is obtained again.
Problem (12) and the solution (16) can be extended to the matrix case λ = A ∈ Cd×d.

The Mittag–Leffler function (17) is defined for matrix arguments s = A ∈ Cd×d, with the
same series.

A general result is the following: if

CDαx(t) = Ax(t) + b(t), (19)

where A ∈ Cd×d is a matrix and b : [0, T] → Cd is a continuous vector function, then

x(t) = Eα(Atα)x0 +
∫ t

0
τα−1Eα,α(Aτα)b(t − τ)dτ = Eα(Atα)x0 +

(
tα−1Eα,α(Atα)

)
∗ b(t), (20)

where

Eα,β(s) =
∞

∑
n=0

sn

Γ(nα + β)
(21)

is the two-parameter Mittag–Leffler function. The procedure to derive (20) relies on solving
Picard’s iterative scheme [28], via the associated Volterra integral operator

CJαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds =

1
Γ(α)

tα−1 ∗ x(t) = RLJαx(t), (22)

which is defined for integrable or continuous functions on [0, T]. Although the properties

CJα ◦ CDαx(t) = x(t)− x(0) (23)

and
CDα ◦ CJαx(t) = x(t), (24)

where ◦ denotes the composition of operators, are often used in the literature without
detailed explanations, they deserve an in-depth discussion [3,10] (all this will be carried
out in Lemma 1, Remarks 1 and 3). They are analogous to the relationship between
the Lebesgue integral and the standard derivative (Barrow’s rule and the fundamental
theorem of calculus, respectively). Only in that case, (10) would be equivalent to the
fixed-point problem

x(t) = x0 +
CJα f (t, x(t)), (25)

the details of which can be found in [10] (Remark 5.2 and Addendum). For the complete
linear Equation (19), the authors of [28] define the Picard’s iterative scheme from (25) and
then obtain (20) with (21).

1.3. Objectives

A great deal of research in applied mathematics is concerned with obtaining analytical
or semi-analytical solutions of models. The present contribution continues this purpose,
with the use of power series for fractional models.
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The homogeneous part of Equation (19), CDαx(t) = Ax(t), is autonomous, meaning
that A does not depend on t. An aim of our paper is to address a situation of the time
dependency of A, specifically,

CDαx(t) = t1−α Ax(t) + b(t), (26)

where A ∈ Cd×d is a matrix and b : [0, T] → Cd is a continuous vector function. To the best
of our knowledge, this type of model has not previously been solved in the literature in
closed form. We also deal with the case in which b(t) is given by certain fractional-power
functions, for which specific closed forms of the solution appear.

The key fact is that (26) can be transformed into a complete linear equation with an
autonomous homogeneous part, but with respect to the other fractional derivative, LDα.
The L-fractional derivative, as will be seen, has many properties that may be advantageous
compared with the conventional Caputo derivative. With (26) and this alternative deriva-
tive, a new Mittag–Leffler-type function Eα emerges, with a similar structure to (17). This
fact opens up a wide range of research possibilities.

To deal with linear L-fractional differential equations and build their solution with
Picard’s iterations, the associated L-fractional integral operator, the fundamental theorem of
L-fractional calculus, and the estimates for its norm have a relevant role in the development.
Due to the form of the kernel function, many of the computations are related to the beta
function and the beta probability distribution. Considering this fact, the form of the solution
and the proposed Mittag–Leffler-type function are analyzed probabilistically.

In the second part of the paper, we address autonomous linear equations of sequential
type to extend scalar homogeneous first-order linear models. We base it entirely on power-
series expressions. The classical theory of linear ordinary differential equations is fully
generalized, where the alternative Mittag–Leffler function substitutes the exponential
function of the algebraic basis in a suitable way. In the non-homogeneous case, some
forcing terms with a special form (polynomials and ordinary derivatives of the Mittag–
Leffler-type function) are allowed to extend the well-known method of undetermined
coefficients to the fractional context.

Finally, a class of sequential non-autonomous linear equations is studied of order two
and analytic coefficients. The solutions are expressed by means of power series, where
the coefficients satisfy recursive relations but are not given in closed form in general. Two
important models are illustrated in the fractional sense: Airy’s and Hermite’s equation.

The techniques used in the article are essentially based on power series, integral
equations and operators, norm estimates, Picard’s iterations, probability distributions, and
the algebra of vector spaces and operators, in the setting of fractional calculus.

Some equations related to (26) have been investigated in the literature. For example,
papers [61,62] study linear fractional differential equations with variable coefficients, of
the Riemann–Liouville and Caputo type. The solutions are given by a convergent infinite
series involving compositions of fractional integrals. Our methodology and results are
distinct and more specific to L-fractional differential equations. In [56], the authors examine
the problem CDαx(t) = λtαx(t), where λ ∈ C, and formally build the fractional power-
series solution. In [63], the authors solve the complete non-autonomous linear problem in
symbolic form, with a distinct expression for the solution.

1.4. Organization

Concisely, the plan of the paper is the following. In Section 2, we introduce and work
with the alternative L-fractional derivative and pose the linear-equation problem (26) in the
setting of L-fractional calculus. In Section 3, we address L-fractional autonomous homoge-
neous linear equations with power series and define a new Mittag–Leffler-type function.
In Section 4, we study the associated integral operator of the L-fractional derivative, with
the fundamental theorem of calculus, explicit computations, and norm estimates. This is
necessary to solve, in Section 5, the complete linear equation in the L-fractional sense with
Picard’s iterations, which corresponds to (26). The form of the solution and the proposed
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Mittag–Leffler-type function are analyzed with probabilistic arguments. The concrete case
of the fractional-power source term is addressed. The uniqueness of the L-fractional solu-
tions is justified and discussed. In Section 6, we investigate linear L-fractional differential
equations of sequential type, with constant coefficients. We start with sequential order two
and then turn to any order. By using power series, the main result is the derivation of the
algebraic basis of solutions for an arbitrary order, in terms of the alternative Mittag–Leffler
function. This is a nice extension of the classical theory. Some non-homogeneous equations
are solved, with a generalized method of undetermined coefficients. In Section 7, the
investigation is concerned with linear L-fractional differential equations of the sequential
type, with analytic coefficients and order two. Power series are employed again, where the
coefficients of the solution satisfy recurrence relations. Lastly, Section 8 is devoted to future
research lines.

2. The L-Fractional Derivative and Formulation of the Complete Linear Equation

The (Leibniz) L-fractional derivative of an absolutely continuous function x : [0, T] →
Cd is [47,48]

LDαx(t) =
CDαx(t)

CDαt
, (27)

where α ∈ (0, 1) is the fractional order of differentiation, t ∈ (0, T], and CDα is the Caputo
fractional derivative (4). We know that LDαx is defined almost everywhere on [0, T], at
least, by the properties of the Riemann–Liouville and Caputo operators. This fractional
derivative (27) was envisioned to deal with fractional differentials in geometry [51,52],

dαx(t) = LDαx(t)dαt,

and it has recently been utilized in [49] for logistic growth.
By (8),

LDαx(t) =
Γ(2 − α)

t1−α
CDαx(t). (28)

Two important properties of the L-fractional derivative are

LDα1 = 0, (29)

by (9), and, in contrast to the Caputo derivative,

LDαt = 1.

Property (29) will be very important when dealing with initial states in fractional dif-
ferential equations and with power series, to derive difference equations for the expansion’s
coefficients. For the Riemann–Liouville or the Λ-derivative, the corresponding result (29)
does not hold.

If

∆sx(t) =
x(t)− x(s)

t − s

is the derivative discretization (mean past velocity over [s, t]), then the fractional deriva-
tive (28) interpolates between

∆0x(t) =
x(t)− x(0)

t
=

1
t

∫ t

0
x′(τ)dτ︸ ︷︷ ︸

mean value of x′

, when α → 0+,

and, if x is continuously differentiable on [0, T],

lim
s→t

∆sx(t) = x′(t), when α → 1−;
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see (5) and (6). We notice that, for the Caputo derivative, the value at α = 0+ is x(t)− x(0)
instead of (x(t)− x(0))/t, which is not the mean value on [0, t] exactly.

Analogously to (10), an L-fractional differential equation is

LDαx(t) = f (t, x(t)), (30)

for t ∈ (0, T], with an initial condition or state x(0) = x0, where f : [0, T]× Ω ⊆ [0, T]×
Rd → Rd, or f : [0, T]× Ω ⊆ [0, T]×Cd → Cd, is a continuous function such that x0 ∈ Ω.
We remove t = 0 from (30) by the division of t1−α in (28). In fact, we can interpret (30) in
the almost-everywhere sense. Due to the close relation between LDα and CDα,

CDαx(t) =
t1−α

Γ(2 − α)
f (t, x(t)),

there are of course methods and results for Caputo fractional differential equations that
readily apply to the L-fractional counterpart. For example, the finite difference scheme
from [45] is suitable, taking t1−α into account. The proof of the Cauchy–Kovalevskaya
theorem from [33] works as well, just by modifying the gamma-function factor in [33]
(expression (2.19)), which is bounded too. Despite these matching properties, other topics
on L-fractional differential equations deserve further attention; for example, the analysis
of associated geometrical/physical features, the attainment of explicit and closed-form
solutions, or the applicability in modeling. This paper is devoted to obtaining solutions,
which offers some insight into their behavior and the derivative.

By considering (28), the target Equation (26) can be transformed into

LDαx(t) = Ax(t) + ϑ(t), (31)

where A ∈ Cd×d is a matrix and ϑ : [0, T] → Cd is a continuous function. The relations

A = Γ(2 − α)A, ϑ(t) =
Γ(2 − α)

t1−α
b(t) (32)

hold. The new system (31) has an autonomous homogeneous part, which is a key reduction
to solve (28). Due to the equivalence between (28) and (31) through (32), we will work
with (31).

As will be seen, solutions of (31) are C∞ and analytic, with power-series expansions
expressed in terms of tn, not tαn. For L-fractional differential equations, the units of the
vector field f are time−1, instead of time−α.

As the solution x is smooth and not only absolutely continuous, we can conduct
integration by parts on (4) and (28), so the equalities (11) and

LDαx(t) = x′(0) +
1

t1−α

∫ t

0
(t − τ)1−αx′′(τ)dτ (33)

hold, pointwise, on (0, T]. Thus, these fractional derivatives contain a non-singular kernel
function that is continuous on [0, T],

K̃(t − τ) = (t − τ)1−α,

with the second-order derivative of x. Nevertheless, the L-fractional derivative has the
denominator t1−α that controls LDαx(t) when t → 0+, so

CDαx(0) = 0 ̸= LDαx(0)

in general, and no controversies arise at the initial instant. This is a relevant property,
considering the documented deficiencies of certain fractional operators with non-singular
kernels [11]. As an illustration, the Caputo–Fabrizio derivative [64]
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CFDαx(t) =
1

1 − α

∫ t

0
e−

α
1−α (t−s)x′(s)ds

is always subject to the restriction

CFDαx(0) = 0,

so for applications on fractional differential equations, one is forced to work with the
Losada–Nieto integral problem, which is equivalent to a certain ordinary differential
equation [65–67]. For the L-fractional derivative, the factor 1/t1−α avoids issues associated
with bounded kernels and makes dimensionality consistent so that the vector field f is a
true velocity from a physical viewpoint. In fact, for smooth functions x on [0, T], we have
LDαx(0) = x′(0) by (33), and we can consider t = 0 in Equation (30) as well. Indeed, by
translation in the integral (commutativity of the convolution) and L’Hôpital’s rule,

lim
t→0+

LDαx(t)− x′(0) = lim
t→0+

1
t1−α

∫ t

0
(t − τ)1−αx′′(τ)dτ (by (33))

= lim
t→0+

1
t1−α

∫ t

0
τ1−αx′′(t − τ)dτ (convolution)

= lim
t→0+

tα

1 − α

(
t1−αx′′(0) +

∫ t

0
τ1−αx′′′(t − τ)dτ

)
(L’Hôpital)

= 0.

(34)

In the third equality above, we differentiated the denominator, which gives (1 − α)t−α,
and the numerator, which is a parametric integral. The function LDαx in (33) is then
continuous on [0, T].

Table 1 reports a schematized comparison between the L- and the Caputo fractional
derivatives. It highlights the changes when normalizing the standard operator.

Table 1. Comparison between the Caputo and the L-fractional derivatives and their applications in
differential equations.

Caputo Derivative L Derivative

α = 1 x′(t) x′(t)

α = 0 x(t)− x(0) (x(t)− x(0))/t

α = 0, t = 0 0 x′(0)

derivative of constants 0 0

initial condition x(0) = x0 x(0) = x0

derivative of t ̸= 1 1

power series fractional (tαn) classical (tn)

regularity of solution absolutely continuous smooth

α ∈ (0, 1), x′(0) ±∞ it is LDαx(0) ∈ (−∞, ∞)

kernel singular singular and non-singular

issues at t = 0 no no

units time−α time−1

differential form dαx(t)/(dt)α dαx(t)/dαt

velocity no yes

fluxes no yes

memory yes yes

“exponential” function yes (Mittag–Leffler) yes (another Mittag–Leffler)
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In the notation, we will follow the convention that ∑0
j=1 = 0 and ∏0

j=1 = 1; that is,
an empty sum is zero and an empty product is one. In the power series, s0 = 1 for every
s ∈ C, even for s = 0.

3. Homogeneous Linear Equation: A New Mittag–Leffler-Type Function

Let us consider the simplest problem of L-fractional differential equations:

LDαx = λx, (35)

where λ ∈ C, t ≥ 0, and the dimension d is 1. Analogously to Section 1.2, which was
focused on the Caputo setting, we consider a Taylor-series solution, but now in terms of tn

instead of tαn. The motivation for this thought is the dimensionality time−1 of the problem,
instead of time−α; see the previous section.

The candidate power-series solution

x(t) =
∞

∑
n=0

xntn (36)

satisfies, in a formal sense,

λ
∞

∑
n=0

xntn =
∞

∑
n=0

xn · LDα(tn) =
∞

∑
n=0

xn+1
Γ(n + 2)Γ(2 − α)

Γ(n + 2 − α)
tn, (37)

as per (7). After the terms are equated, the recursive equation for the coefficients is given by

xn+1 =
Γ(n + 2 − α)

Γ(n + 2)Γ(2 − α)
λxn. (38)

As it occurs with Caputo fractional equations, the fact that the L-fractional derivative
of a constant is zero—see (29)—is key to deriving a first-order difference equation. The
relation (38) can be solved:

xn =
λn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

x0 =
λn

Γ(2 − α)nΓ(1 + α)n ∏n
j=1 (

j
j−α)

x0,

where x0 = x(0) ∈ C is the initial value. The solution of (35) is thus expressed as

x(t) = Eα(λt)x0, (39)

where

Eα(s) =
∞

∑
n=0

sn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

=
∞

∑
n=0

sn

Γ(2 − α)nΓ(1 + α)n ∏n
j=1 (

j
j−α)

, (40)

for s ∈ C. This is a new extension of the exponential function, an alternative to the Mittag–
Leffler formulation (17). It is related to the family of functions studied in [68], with a distinct
motivation.

For α ∈ (0, 1], convergence of the new function (40) holds on C by the ratio test:

lim
n→∞

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

Γ(2 − α)n+1 ∏n+1
j=1

Γ(j+1)
Γ(j+1−α)

=
1

Γ(2 − α)
lim

n→∞

Γ(n + 2 − α)

Γ(n + 2)

=
1

Γ(2 − α)
lim

n→∞

1
(n + 2 − α)α

= 0.

(41)
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The asymptotic relation
Γ(y + α) ∼ Γ(y)yα, (42)

when y → ∞, which is a consequence of Stirling’s formula, has been used. For the standard
Mittag–Leffler function (17), the corresponding quotient (41) behaves asymptotically as

1
((n + 1)α + 1 − α)α

,

which is lower by the factor Γ(2 − α) ∈ (0, 1) compared to our Eα. The fastest rate of
convergence occurs for the classical exponential function, when α = 1, as the corresponding
quotient (41) is 1/(n + 1) asymptotically.

The boundary values of Eα are

E0(s) =
1

1 − s
, |s| < 1,

and
E1(s) = es, s ∈ C.

Actually, although the solution (39) converges by (41), it is still formal; see (37). Later,
through the integral operator associated with the L-fractional derivative, we will prove
that (39) is indeed the solution for (35) (Theorem 1). For now, in this section, we are only
interested in how the new Mittag–Leffler-type function (40) is built.

From (40), a nice identity is

E1/2(s) =
∞

∑
n=0

sn

2n2

n

∏
j=1

(
2j
j

)
.

This gives a new interpretation of the product of central binomial coefficients,

n

∏
j=1

(
2j
j

)
,

in terms of the power-series solution to the fractional problem

LD1/2x = x, x(0) = 1.

The development of this section can be readily adapted to matrix arguments. Let

LDαx = Ax, (43)

where A ∈ Cd×d is a matrix and x takes vector values in Cd. Then, the power-series method
can be employed, which yields

x(t) = Eα(At)x0, (44)

where x0 ∈ Cd.

4. On the Associated Integral Operator

In this section, we study the integral operator associated with the L-fractional derivative.

4.1. Introduction

By (22) and (28), the integral operator associated with LDα is
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LJαx(t) =
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αx(s)ds

=
tα−1

Γ(α)
∗
(

t1−α

Γ(2 − α)
x(t)

)
= CJα

[
t1−α

Γ(2 − α)
x
]
(t).

(45)

If x ∈ L1[0, T], then LJαx ∈ L1[0, T], by standard properties of the convolution. Note
that, if x is continuous on [0, T], then LJαx is well defined everywhere on [0, T] and poses
no problem at t = 0. Indeed,

|LJαx(t)| ≤
(

max
[0,T]

|x|
)

T1−α

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1ds

=

(
max
[0,T]

|x|
)

T1−αtα

Γ(α)Γ(2 − α)α
t→0+−→ 0.

The same occurs for CJαx.
We rigorously prove the L-fractional fundamental theorem of calculus in the following

proposition. We first need a lemma on (23) and (24) concerning the Caputo fractional
calculus. We emphasize here the important remarks of [10] about the conditions and
assumptions in fractional computations, as well as the rigorous results in [3].

Lemma 1. If x : [0, T] → C is absolutely continuous, then (23) holds for all t ∈ [0, T] and (24)
holds for almost every t ∈ [0, T]. If x is given by a fractional power series on [0, T] (i.e., a power
series evaluated at tα), then (24) is verified at every t ∈ [0, T].

Proof. When x is absolutely continuous, we know that

y = CDαx = RLJ1−αx′ ∈ L1[0, T]

exists almost everywhere. Indeed, recall that RLJ1−α maps L1[0, T] into L1[0, T]. Then,

CJαy = RLJαy = RLJα ◦ RLJ1−αx′ = RLJ1x′ = x − x0,

for all t ∈ [0, T]. We used the integral operators (3) and (22), as well as [10] (Lemma 3.4) for
the composition RLJα ◦ RLJ1−α. The idea of this part has been taken from the first paragraph
of the proof of [10] (Theorem 5.1).

On the other hand, we know that RLJαx is absolutely continuous on [0, T]; see [10]
(Proposition 3.2) (it states that RLJα maps absolutely continuous functions onto absolutely
continuous functions, among other results). We also know that

CDα
∗ ◦ CJαx(t) = x(t)

for all t in [0, T], where
CDα

∗ = RLDα[x − x0] (46)

is a modified Caputo operator [3,10]. Since CJαx = RLJαx is absolutely continuous, Ref. [3]
(Theorem 3.1) ensures that

CDα ◦ CJαx(t) = CDα
∗ ◦ CJαx(t) = x(t)

holds almost everywhere.
We remark that, in the literature, one usually finds applications of (24) for every t and

when x is merely continuous. This result is not true, because RLJα does not necessarily map
continuous functions into absolutely continuous functions (see [10] (Addendum (3)) on a
paper by Hardy and Littlewood), and CDα is not identically equal to CDα

∗ .
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The case of x being given by a fractional power series on [0, T] is postponed to
Remark 1 after Corollary 1.

Proposition 1. If x : [0, T] → C is absolutely continuous, then

LJα ◦ LDαx(t) = x(t)− x(0) (47)

for all t ∈ [0, T], and
LDα ◦ LJαx(t) = x(t) (48)

for almost every t ∈ (0, T]. If x is real analytic at t = 0 with a radius of convergence ≥ T, then (48)
is verified at every t ∈ [0, T].

Proof. On the one hand, by (23) (see Lemma 1),

LJα ◦ LDαx(t) =
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α · LDαx(s)ds

=
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α · Γ(2 − α)

s1−α
· CDαx(s)ds

=
1

Γ(α)

∫ t

0
(t − s)α−1 · CDαx(s)ds

= CJα ◦ CDαx(t)

= x(t)− x(0).

On the other hand, clearly,
t1−α

Γ(2 − α)
x

is absolutely continuous on [0, T]. Then, for almost every t,

LDα ◦ LJαx(t) = LDα ◦ CJα

[
t1−α

Γ(2 − α)
x
]
(t)

=
Γ(2 − α)

t1−α
CDα ◦ CJα

[
t1−α

Γ(2 − α)
x
]
(t)

=
Γ(2 − α)

t1−α

t1−α

Γ(2 − α)
x(t)

= x(t).

We used (24) (see Lemma 1).
The part on x being real analytic will be justified in Corollary 1.

We denote
LJα ◦ · · · ◦ LJα︸ ︷︷ ︸

m times

= LJm◦α, LDα ◦ · · · ◦ LDα︸ ︷︷ ︸
m times

= LDm◦α, (49)

for m ≥ 1, whenever the compositions make sense. We use this notation to distinguish LJm◦α

from LJmα and LDm◦α from LDmα, where mα is another fractional index; see the following
proposition. The main ideas are taken from the interesting note [69].

Proposition 2. LJ2◦α ̸= LJ2α and LD2◦α ̸= LD2α, if 0 < α ≤ 1/2.

Proof. Suppose that
LJ2◦α = LJ2α.
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By definition (49), this means that

LJα ◦ LJα = LJ2α.

Then, by (47),
LJα ◦ LJα ◦ LD2α = LJ2α ◦ LD2α = Id − x0.

By (48),
LDα ◦ LDα = LD2α. (50)

This is the negation of the second condition in the proposition. Let us see that we
arrive at a contradiction, with an adequate set of functions. We consider the operators from
Cω to Cω, where Cω is the vector space of real analytic functions at t = 0 with values in C.
According to Proposition 1, the fundamental theorem of calculus holds for every point t
with functions of Cω, so the above compositions are justified. Since

LDβ

(
∞

∑
n=0

yntn

)
=

∞

∑
n=0

yn · LDβ(tn) =
∞

∑
n=0

yn+1
Γ(n + 2)Γ(2 − β)

Γ(n + 2 − β)
tn,

for 0 < β ≤ 1 and ∑∞
n=0 |yn|tn < ∞ (see the forthcoming Corollary 1 for rigorous details),

the operator
LDβ : Cω → Cω

is surjective and
Ker(LDβ) = {k : k ∈ C}. (51)

Consequently, given 1 ∈ Cω, there exists y ∈ Cω such that

1 = LDαy. (52)

Therefore, by (52) and (50),

0 = LDα1 = LDα ◦ LDαy = LD2αy,

which implies that y ∈ Ker(LD2α). Then, y is constant by (51) and

LDαy = 0,

contradicting (52) and completing the proof.

Recall [70] that a linear map Λ between normed spaces X and Y, expressed by Λ :
X → Y, is continuous if and only if there exists a constant K > 0 such that

∥Λx∥ ≤ K∥x∥ (53)

for all x ∈ X. In such a case, the induced norm for Λ is

∥Λ∥ = sup
∥x∥≤1

∥Λx∥ = sup
∥x∥=1

∥Λx∥ = min{K > 0 : ∥Λx∥ ≤ K∥x∥, ∀ x ∈ X}. (54)

We denote by L(X, Y) the normed space of linear continuous maps from X and Y, so
that Λ ∈ L(X, Y). If Y is a Banach space, then L(X, Y) is Banach too.

Let | · | be the usual Euclidean norm for vectors, which becomes the absolute value for
real scalars and the modulus for complex scalars. The induced norm for matrices A ∈ Cd×d

is also denoted by | · |:

|A| = sup
v∈Cd , |v|≤1

|Av| = sup
v∈Cd , |v|=1

|Av|.
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It satisfies the submultiplicative property, namely |AB| ≤ |A||B|, for all matrices A
and B. We work with the specific case of X = Y = C[0, T], which is the Banach space of
continuous functions y = (y1, . . . , yd) : [0, T] → Cd with the supremum norm

∥y∥∞ = max
t∈[0,T]

|y(t)|.

The Banach space L(X, Y) is then denoted by L(C[0, T]), with the induced operator’s
norm ∥ · ∥∞ defined by (54).

The set C p[0, T], for integers p ≥ 1 or p = ∞, is given by the functions that have partial
derivatives up to order p and are continuous on [0, T].

4.2. List of Results

We state and prove the results that are needed to solve (31). These are concerned with
explicit computations, especially regarding the so-called beta function and norm estimates
in L(C[0, T]).

Lemma 2. If δ > α − 2 and t > 0, then∫ t

0
(t − s)α−1s1−α+δds = t1+δ Γ(2 − α + δ)Γ(α)

Γ(2 + δ)
.

Proof. We make the change of variable s = tu, ds = tdu, and the resulting integral is
related to the beta function

B(z1, z2) =
∫ 1

0
uz1−1(1 − u)z2−1du, (55)

defined for complex numbers z1 and z2 such that Re(z1) > 0 and Re(z2) > 0. A key
property [71] of the beta function is its connection with the gamma function:

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
. (56)

In our case, we have∫ t

0
(t − s)α−1s1−α+δds = t

∫ 1

0
(t − tu)α−1(tu)1−α+δdu

= t1+δ
∫ 1

0
(1 − u)α−1u1−α+δdu

= t1+δ Γ(2 − α + δ)Γ(α)
Γ(2 + δ)

,

where z1 = 2 − α + δ > 0 and z2 = α > 0 in the notation of (55) and (56).

Proposition 3. If C[0, T] is endowed with the supremum norm ∥ · ∥∞, then LJα : C[0, T] → C[0, T]
is a continuous operator. Thus, if L(C[0, T]) denotes the Banach space of linear continuous maps
from C[0, T] to C[0, T] with the induced norm ∥ · ∥∞, then LJα ∈ L(C[0, T]) and ∥LJα∥∞ ≤ T.

Proof. We first check that LJα is well defined from C[0, T] into C[0, T]. Let y ∈ C[0, T]. We
rewrite the convolution (45) as

LJαy(t) =
1

Γ(α)Γ(2 − α)

∫ t

0
sα−1(t − s)1−αy(t − s)ds.

If 0 < h < 1, then
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|LJαy(t + h)− LJαy(t)| (57)

=
1

Γ(α)Γ(2 − α)

∣∣∣∣∫ t+h

0
sα−1(t + h − s)1−αy(t + h − s)ds −

∫ t

0
sα−1(t − s)1−αy(t − s)ds

∣∣∣∣
≤ 1

Γ(α)Γ(2 − α)

∫ t+h

t
sα−1(t + h − s)1−α|y(t + h − s)|ds

+
1

Γ(α)Γ(2 − α)

∫ t

0
sα−1|(t + h − s)1−αy(t + h − s)− (t − s)1−αy(t − s)|ds

≤ 1
Γ(α)Γ(2 − α)

(T + 1)∥y∥∞

∫ t+h

t
sα−1ds (58)

+
1

Γ(α)Γ(2 − α)

∫ t

0
sα−1|(t + h − s)1−αy(t + h − s)− (t − s)1−αy(t − s)|ds. (59)

The bound (t + h − s)1−α ≤ (T + 1)1−α ≤ T + 1 has been used. We analyze the limit
of both (58) and (59) when h → 0. On the one hand, for (58),∫ t+h

t
sα−1ds =

(t + h)α − tα

α

h→0−→ 0.

On the other hand, for (59),

|(t + h − s)1−αy(t + h − s)− (t − s)1−αy(t − s)| h→0−→ 0

and

sα−1|(t + h − s)1−αy(t + h − s)− (t − s)1−αy(t − s)|

≤ sα−1
(
(t + h − s)1−α|y(t + h − s)|+ (t − s)1−α|y(t − s)|

)
≤ 2(T + 1)∥y∥∞sα−1 ∈ L1([0, T], ds),

so the dominated convergence theorem ensures that∫ t

0
sα−1|(t + h − s)1−αy(t + h − s)− (t − s)1−αy(t − s)|ds h→0−→ 0.

Thus, from (57),

|LJαy(t + h)− LJαy(t)| h→0−→ 0.

For h < 0, one proceeds analogously, and then LJα ∈ C[0, T], as wanted.
The linearity of LJα is clear, based on the properties of the integral. Now we prove

continuity of LJα by using (53). If y ∈ C[0, T], then

|LJαy(t)| ≤ 1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α|y(s)|ds

≤ ∥y∥∞
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αds

= ∥y∥∞
1

Γ(α)Γ(2 − α)
t
Γ(2 − α)Γ(α)

Γ(2)
(60)

= t∥y∥∞ (61)

≤ T∥y∥∞.

In the first equality (60), Lemma 2 has been employed with δ = 0 > α − 2. Hence,

∥LJαy∥∞ ≤ T∥y∥∞,
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LJα ∈ L(C[0, T]), and
∥LJα∥∞ ≤ T,

by (54).

Corollary 1. If
∞

∑
n=0

|xn|tn < ∞

for all t ∈ [0, ϵ], where ϵ > 0 and xn ∈ C, then

LDα

(
∞

∑
n=0

xntn

)
=

∞

∑
n=0

xn · LDα(tn)

on [0, ϵ]. Furthermore, (48) holds for all t ∈ [0, ϵ] for ∑∞
n=0 xntn, not just almost everywhere, hence

completing the statement of the fundamental theorem of L-fractional calculus; see Proposition 1.

Proof. Let x : [0, ϵ] → C be defined by the power series,

x(t) =
∞

∑
n=0

xntn.

Consider new coefficients

x̃n =
Γ(2 − α)Γ(n + 2)

Γ(2 − α + n)
xn+1,

for n ≥ 0. Notice that
∞

∑
n=0

|x̃n|tn < ∞

on [0, ϵ], because

lim
n→∞

Γ(2−α)Γ(n+2)
Γ(2−α+n)

Γ(2−α)Γ(n+1)
Γ(1−α+n)

= 1.

Then,

LJα

(
∞

∑
n=0

x̃ntn

)
=

∞

∑
n=0

x̃n · LJα(tn) (62)

=
∞

∑
n=0

x̃n
Γ(2 − α + n)

Γ(2 − α)Γ(n + 2)
tn+1 (63)

=
∞

∑
n=0

xn+1tn+1 = x(t)− x0. (64)

Equality (62) holds by Proposition 3 (the convergence of ∑∞
n=0 x̃ntn is uniform on [0, ϵ],

i.e., in the space C[0, ϵ]). In (63), the computation in Lemma 2 is used. Consequently,

LDαx(t) = LDα(x − x0)(t)

=
∞

∑
n=0

x̃ntn (65)

=
∞

∑
n=0

Γ(2 − α)Γ(n + 2)
Γ(2 − α + n)

xn+1tn

=
∞

∑
n=0

xn · LDα(tn), (66)
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almost everywhere. For (65), we use (64) and (48). Now, as x and tn are smooth, both LDαx
and (66) are continuous on [0, ϵ]; see (33) and (34). Hence, the previous equality almost
everywhere becomes a pointwise equality for every t ∈ [0, ϵ]. The point t = 0 does not
pose any problem, because

LDαx(0) = x′(0) = x1 =
∞

∑
n=0

xn · LDα(tn)|t=0,

by (33) and (34).
Finally, we need to check that (48) holds for all t ∈ [0, ϵ], from the obtained results:

LDα ◦ LJαx(t) = LDα

[
∞

∑
n=0

xn
Γ(2 − α + n)

Γ(2 − α)Γ(n + 2)
tn+1

]

=
∞

∑
n=0

xn
Γ(2 − α + n)

Γ(2 − α)Γ(n + 2)
· LDαtn+1

=
∞

∑
n=0

xn
Γ(2 − α + n)

Γ(2 − α)Γ(n + 2)
· Γ(2 − α)Γ(n + 2)

Γ(2 − α + n)
tn

=
∞

∑
n=0

xntn

= x(t).

Remark 1. In the Caputo fractional calculus, the previous Corollary 1 reads as follows:
“If

∞

∑
n=0

|xn|tαn < ∞

for all t ∈ [0, ϵ], where ϵ > 0 and xn ∈ C, then

CDα

(
∞

∑
n=0

xntαn

)
=

∞

∑
n=0

xn · CDα(tαn) (67)

on [0, ϵ]. Furthermore, (24) holds for all t ∈ [0, ϵ] for ∑∞
n=0 xntαn, not just almost everywhere, hence

completing the statement of the fundamental theorem of Caputo fractional calculus, see Lemma 1”.
This property is often used in the literature when solving linear and nonlinear fractional

models in the Caputo sense; see, for example, (14). Here, we validate it rigorously based on the
operator’s theory.

We note that

x(t) =
∞

∑
n=0

xntαn

is absolutely continuous on [0, ϵ]. Indeed, we decompose x as

x(t) =
Nα−1

∑
n=0

xntαn +
∞

∑
n=Nα

xntαn, (68)

where Nα ≥ 1 is an integer satisfying α · Nα ≥ 1. The first sum in (68) is a finite combination
of absolutely continuous functions and hence absolutely continuous. The second sum in (68) is
C1[0, ϵ], because the series of ordinary derivatives converges uniformly.

The proof of the corresponding formula
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CJα

(
∞

∑
n=0

x̃ntαn

)
= x(t)− x0,

where

x̃n =
Γ((n + 1)α + 1)

Γ(nα + 1)
xn+1,

is analogous to Corollary 1 until (64). This is due to the fact that CJα is also an element of L(C[0, ϵ]).
Now, the part of the proof until (66) in the Caputo setting, which justifies the equality (67)

almost everywhere on [0, ϵ], is analogous too. One needs to use (24) from Lemma 1. To finally prove
that the equality almost everywhere becomes a pointwise equality for every t ∈ [0, ϵ], we notice that
the right-hand side of (67) is clearly continuous (by uniform convergence), and the left-hand side
of (67) satisfies, at every t,

CDαx(t) =
Nα

∑
n=0

xn · CDαtαn + CDα

(
∞

∑
n=Nα+1

xntαn

)
, (69)

as per (68). The first sum in (69) is finite and continuous. The second part of (69) is continuous too,
because

∞

∑
n=Nα+1

xntαn ∈ C2[0, ϵ]

and (11) holds. Therefore, both sides of (67) are continuous on [0, ϵ], so we have the equality (67) at
every t ∈ [0, ϵ], as wanted. The remark is concluded.

Proposition 4. If δ > α − 2, m ≥ 1 and t > 0, then

LJm◦αtδ =
∏m+1

i=2 Γ(i − α + δ)

Γ(2 − α)m ∏m+1
i=2 Γ(i + δ)

tm+δ. (70)

Proof. By induction on m, for m = 1, we have

LJαtδ =
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αsδds

=
1

Γ(α)Γ(2 − α)
× t1+δ Γ(2 − α + δ)Γ(α)

Γ(2 + δ)

=
Γ(2 − α + δ)

Γ(2 − α)Γ(2 + δ)
t1+δ,

after applying Lemma 2. Now suppose the result is true for m − 1 (induction hypothesis).
Then,

LJm◦αtδ = LJα ◦ LJ(m−1)◦αtδ (71)

= LJα

(
∏m

i=2 Γ(i − α + δ)

Γ(2 − α)m−1 ∏m
i=2 Γ(i + δ)

tm−1+δ

)
(72)

=
∏m

i=2 Γ(i − α + δ)

Γ(2 − α)m−1 ∏m
i=2 Γ(i + δ)

LJαtm−1+δ

=
∏m

i=2 Γ(i − α + δ)

Γ(2 − α)m−1 ∏m
i=2 Γ(i + δ)

× 1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αsm−1+δds

=
∏m

i=2 Γ(i − α + δ)

Γ(2 − α)m−1 ∏m
i=2 Γ(i + δ)

× 1
Γ(α)Γ(2 − α)

t1+(m−1+δ) Γ(2 − α + (m − 1 + δ))Γ(α)
Γ(2 + (m − 1 + δ))

(73)

=
∏m+1

i=2 Γ(i − α + δ)

Γ(2 − α)m ∏m+1
i=2 Γ(i + δ)

tm+δ.
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The first equality (71) is the definition (49). In the second equality (72), the induction
hypothesis is employed. In the fifth equality (73), Lemma 2 is used with m − 1 + δ instead
of δ.

Proposition 5. If m ≥ 1, t ∈ [0, T] and y ∈ C[0, T], then

|LJm◦αy(t)| ≤ ∥y∥∞
∏m+1

i=2 Γ(i − α)

Γ(2 − α)m ∏m+1
i=2 Γ(i)

tm (74)

and

∥LJm◦α∥∞ ≤ ∏m+1
i=2 Γ(i − α)

Γ(2 − α)m ∏m+1
i=2 Γ(i)

Tm. (75)

Proof. We first notice that LJm◦α ∈ L(C[0, T]), by Proposition 3 and definition (49). Sec-
ond, (75) is a consequence of (74). For (74), we proceed by induction on m ≥ 1. For
m = 1, the result is known by our previous estimate (61). Suppose the inequality for m − 1
(induction hypothesis), and let us prove it for m. We have

LJm◦αy(t) = LJα ◦ LJ(m−1)◦αy(t)

=
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α · LJ(m−1)◦αy(s)ds.

By applying | · |, we have

|LJm◦αy(t)| ≤ 1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α|LJ(m−1)◦αy(s)|ds

≤ ∥y∥∞
∏m

i=2 Γ(i − α)

Γ(2 − α)m−1 ∏m
i=2 Γ(i)

1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α+(m−1)ds (76)

= ∥y∥∞
∏m

i=2 Γ(i − α)

Γ(2 − α)m−1 ∏m
i=2 Γ(i)

1
Γ(α)Γ(2 − α)

tm Γ(2 − α + (m − 1))Γ(α)
Γ(2 + (m − 1))

(77)

= ∥y∥∞
∏m+1

i=2 Γ(i − α)

Γ(2 − α)m ∏m+1
i=2 Γ(i)

tm.

In the second inequality (76), the induction hypothesis is used. In the first equality (77),
Lemma 2 is employed with δ = m.

Proposition 6. The series of operators

∞

∑
j=0

Aj · LJ(j+1)◦α (78)

is convergent in L(C[0, T]).

Proof. We first notice that Aj · LJ(j+1)◦α ∈ L(C[0, T]), with

∥Aj · LJ(j+1)◦α∥∞ = |Aj|∥LJ(j+1)◦α∥∞ ≤ |A|j∥LJ(j+1)◦α∥∞.

The submultiplicative property of the matrix norm has been used. Since L(C[0, T]) is
a Banach space, for (78), it suffices to prove that

∞

∑
j=0

|A|j∥LJ(j+1)◦α∥∞ < ∞. (79)

By Proposition 5, specifically inequality (75), we bound the series in (79) as
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∞

∑
j=0

|A|j∥LJ(j+1)◦α∥∞ ≤
∞

∑
j=0

|A|j ∏
j+2
i=2 Γ(i − α)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i)

T j+1. (80)

To justify the convergence of the right-hand series in (80), we employ the ratio test:

lim
j→∞

|A|j+1 ∏
j+3
i=2 Γ(i−α)

Γ(2−α)j+2 ∏
j+3
i=2 Γ(i)

T j+2

|A|j ∏
j+2
i=2 Γ(i−α)

Γ(2−α)j+1 ∏
j+2
i=2 Γ(i)

T j+1
=

|A|T
Γ(2 − α)

lim
j→∞

Γ(j + 3 − α)

Γ(j + 3)

=
|A|T

Γ(2 − α)
lim
j→∞

1
Γ(j + 3 − α)α

= 0.

5. Solution of the Complete Linear Equation

In this section, we solve the complete linear equation in the L-fractional sense with
Picard’s iterations. Later, we give a probabilistic form to this solution by using the beta-
distributed delay of the L-fractional operators. The new Mittag–Leffler-type function
is connected with basic probability theory as well, via generalized moment-generating
functions. The concrete case of fractional-power source term is addressed. Finally, the
uniqueness of L-fractional solutions is justified and discussed.

5.1. General Equation and Explicit Solution

We give the explicit solution to (31). We remark on the difference between (31) and
the integral problem (81), considering the absolutely continuous functions (Proposition 1);
this is not usually carried out in the literature, which states an equivalence vaguely.

Proposition 7. The new Mittag–Leffler-type function Eα—see (40)—converges for matrix argu-
ments s = A ∈ Cd×d. The convergence for Eα(At) is uniform on [0, T], and hence (44) belongs to
C[0, T].

Proof. For t ∈ [0, T], we have

∞

∑
n=0

|An|tn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

≤
∞

∑
n=0

|A|ntn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

≤
∞

∑
n=0

|A|nTn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

,

by the submultiplicative property of the matrix norm. The convergence of the last series,
which is independent of t, is checked with the ratio test; see (41). Thus, the series of Eα(At)
exhibits uniform convergence on [0, T]. In particular, for t = 1, the function Eα(A) is well
defined. Finally, the continuity of t 7→ Eα(At) is clear, because it is the uniform limit of
polynomials, which are continuous.

Theorem 1. The solution of

x(t) = x0 +
LJα(Ax(t) + ϑ(t)) = x0 +

1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α(Ax(s) + ϑ(s))ds (81)

on [0, T], with initial condition x(0) = x0, is

x(t) = Eα(At)x0 +
∞

∑
j=0

Aj · LJ(j+1)◦αϑ(t). (82)
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If x and ϑ are absolutely continuous on [0, T], then (82) solves (31) almost everywhere on
[0, T]. If x and ϑ are given by power series on [0, T], then (82) solves (31) for every t ∈ [0, T].

Proof. Since ϑ ∈ C[0, T], the function x in (82) belongs to C[0, T], by Propositions 6 and 7. We
need to check that x in (82) is a fixed point of the associated Volterra integral
operator (81). We build the solution to (81) with Picard’s iteration method:

xk(t) = x0 +
LJα(Axk−1(t) + ϑ(t)) = x0 +

1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α(Axk−1(s) + ϑ(s))ds, (83)

for k ≥ 1.
Let us see by induction on k that

xk(t) =

(
k

∑
j=0

tjAj
j+1

∏
i=2

Γ(i − α)

Γ(2 − α)Γ(i)

)
x0 +

k−1

∑
j=0

Aj · LJ(j+1)◦αϑ(t). (84)

For k = 0, it is clear because the identity x0 = x0 is obtained. Suppose that the
expression is true for k − 1. We have

xk(t) = x0 +
LJα(Axk−1(t) + ϑ(t)) (85)

= x0 +

(
k−1

∑
j=0

(
LJαtj

)
Aj+1

j+1

∏
i=2

Γ(i − α)

Γ(2 − α)Γ(i)

)
x0 +

k−2

∑
j=0

Aj+1 · LJ(j+2)◦αϑ(t) + LJαϑ(t) (86)

= x0 +

[
k−1

∑
j=0

(
t1+j Γ(2 − α + j)

Γ(2 − α)Γ(2 + j)

)
Aj+1

j+1

∏
i=2

Γ(i − α)

Γ(2 − α)Γ(i)

]
x0

+
k−2

∑
j=0

Aj+1 · LJ(j+2)◦αϑ(t) + LJαϑ(t) (87)

= x0 +

(
k−1

∑
j=0

t1+jAj+1
j+2

∏
i=2

Γ(i − α)

Γ(2 − α)Γ(i)

)
x0 +

k−2

∑
j=0

Aj+1 · LJ(j+2)◦αϑ(t) + LJαϑ(t)

=

(
k

∑
j=0

tjAj
j+1

∏
i=2

Γ(i − α)

Γ(2 − α)Γ(i)

)
x0 +

k−1

∑
j=0

Aj · LJ(j+1)◦αϑ(t),

which is exactly (84). In the first equality (85), we use (83). The second equality (86) is the
induction hypothesis. The third equality (87) is obtained from Lemma 2.

From the form of xk in (84) and Propositions 6 and 7, the convergence of xk toward x
in (82) is guaranteed in C[0, T]. We need to check that this x indeed solves (81).

Since xk → x in the sense of C[0, T] as k → ∞, we obtain that Axk−1 + ϑ → Ax + ϑ in
C[0, T]. By Proposition 3, we know that LJα ∈ L(C[0, T]); therefore,

lim
k→∞

LJα(Axk−1 + ϑ) = LJα(Ax + ϑ)

in C[0, T]. Thus, taking limits as k → ∞ in the recurrence’s definition (83), the fixed-point
identity (81) is established, as wanted.

By (48) in Proposition 1, if x and ϑ are absolutely continuous on [0, T], then (82)
solves (31) almost everywhere on [0, T]. If x and ϑ are given by power series on [0, T],
then (82) solves (31) for every t ∈ [0, T].

5.2. A Link with Probability Theory

For computations and proofs concerning LJα, the incorporation of t1−α in the
convolution of (45) is obviously a handicap. For the Caputo fractional derivative, the
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fact that CJαy(t) = 1
Γ(α) tα−1 ∗ y(t) (see (22)) and the associative property of the convolution

permit having the iterations of CJα:

CJα ◦ · · · ◦ CJα︸ ︷︷ ︸
m times

y(t) =
1

Γ(α)m (tα−1 ∗ · · · ∗ tα−1︸ ︷︷ ︸
m times

) ∗ y(t)

=
1

Γ(α)m tmα−1 ∗ y(t).

(88)

Unfortunately, this is not the case for the L-fractional derivative and its iterated integral
operator LJm◦α, which has an effect on the computation of the solution (82).

A probabilistic interpretation [72] may help us understand the structure of LJm◦α more.
From the definition (45), we notice that

LJαy(t) = tE[y(tU)], (89)

where U is a random variable with distribution Beta(2 − α, α) and E is the expectation
operator. The L-fractional derivative (28) is

LDαy(t) = E[y′(tW)], (90)

where W is a random variable with distribution Beta(1, 1 − α). Expression (90) emphasizes
the memory property and the non-local behavior associated with the fractional derivative.
Lemma 2 is, in fact, a result of statistical moments of the beta distribution. When α = 1, we
obtain the ordinary operators that depend on Uniform(0, 1) distributions. The iterations
of (89) are the following:

LJ2◦αy(t) = tEU2 [
LJα(tU2)]

= tEU2 [tU2EU1 [y(tU1U2)]]

= t2EU2 [U2EU1 [y(tU1U2)]],

LJ3◦αy(t) = tEU3 [
LJ2◦αy(tU3)]

= tEU3 [(tU3)
2EU2 [U2EU1 [y(tU1U2U3]]]

= t3EU3 [U
2
3EU2 [U2EU1 [y(tU1U2U3]]], . . . ,

LJm◦αy(t) = tmEUm [U
m−1
m EUm−1 [U

m−2
m−1 · · ·EU2 [U2EU1 [y(tU1 · · ·Um)]] · · · ]], (91)

where U1,U2, . . . are Beta(2 − α, α)-distributed and independent. Here, EU[g(U,V)] =
E[g(U,V)|V] denotes an expectation of g(U,V) with respect to U, as if we were conditioning
on the other random quantity V. We arrive at the following theorem, which highlights the
difficulty when dealing with LJm◦α.

Theorem 2. The solution of (81) on [0, T], with initial condition x(0) = x0, is

x(t) = Eα(At)x0 +
∞

∑
j=0

Ajtj+1EUj+1 [U
j
j+1EUj [U

j−1
j · · ·EU2 [U2EU1 [ϑ(tU1 · · ·Uj+1)]] · · · ]],

where U1,U2, . . . are Beta(2 − α, α)-distributed and independent. If x and ϑ are absolutely continu-
ous on [0, T], then x solves (31) almost everywhere on [0, T]. If x and ϑ are given by power series
on [0, T], then (82) solves (31) for every t ∈ [0, T].

Proof. See (91) and the previous development.

The appearance of ϑ(tU1 · · ·Uj+1) in Theorem 2 makes us investigate what happens
when ϑ is given by a power function. Indeed, in that case, the various expectations can
be separated.
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Remark 2. The difference between the explicit form of (88) and (91) has an effect on the theory of
Taylor series and their residuals as well. In the Caputo case, the mean-value theorem is

x(t)− x(0) =
1

Γ(α)
CDαx(ξ) · tα,

where ξ ∈ (0, t), t > 0. For the L-fractional derivative,

x(t)− x(0) = LJα ◦ LDαx(t) (92)

=
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α · LDαx(s)ds (93)

=
LDαx(ξ)

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αds (94)

= LDαx(ξ) · t. (95)

In (92), the analog of Barrow’s rule (47) is used. In (93), definition (45) is applied. The
mean-value theorem gives (94), by the continuity of LDαx when x is smooth. Finally, Lemma 2 is
utilized in the last equality (95). Observe, as a consequence, that

LDαx(0) =
dx
dt

(0) = x′(0) ∈ (−∞, ∞),

in contrast to the Caputo derivative (see also the justification (34)). Hence, locally, at the beginning
of the dynamics around t ≈ 0, the system (30) is very similar to the ordinary differential equation
analog, and the change with α is smoother than in the Caputo case.

The mean-value theorem may be seen as the residual of the zeroth-order Taylor series. When
the order of the Taylor series is increased, the Caputo derivative has the residual

x(t) =
n

∑
i=0

xitαi +
CD(n+1)◦αx(ξ)

Γ((n + 1)α + 1)
t(n+1)α,

where t > 0 and CD(n+1)◦α = CDα ◦ · · · ◦ CDα is the iterated derivative. This formula mimics the
expression for the ordinary derivative (α = 1), and it is a consequence of (88). Unfortunately, for
the L-fractional derivative, one cannot expect a similar expression for

x(t)−
n

∑
i=0

xiti = LJ(n+1)◦α ◦ LD(n+1)◦αx(t),

because LJ(n+1)◦α is not given in closed form, as a convolution. See [27] (expression (3.11)) for
details in the context of the Caputo fractional calculus. These observations conclude the remark.

We noticed that both operators LJα and LDα have a probabilistic interpretation in terms
of the beta distribution. Does the new Mittag–Leffler-type function Eα enjoy a connection
with probability theory? If a is a random variable and

φa(s) = E[eas]

is its moment-generating function, it is known that [73,74]:

∃C, n0 > 0, 0 ≤ p < 1 :
E[|a|n+1]

E[|a|n] ≤ Cnp, ∀ n ≥ n0

⇒ φa(s) < ∞, ∀ s ∈ R ⇔ lim
n→∞

∥a∥n

n
= 0;

(96)
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∃C, n0 > 0, 0 ≤ p ≤ 1 :
E[|a|n+1]

E[|a|n] ≤ Cnp, ∀ n ≥ n0

⇔ ∃ δ > 0 : φa(s) < ∞, ∀ s ∈ (−δ, δ) ⇔ lim sup
n→∞

∥a∥n

n
< ∞,

(97)

where ∥a∥n = E[|a|n]1/n is the n-th norm. In (96), the converse of the first implication is not
true, as the Poisson distribution shows with its moments given by the Bell numbers. Let

φα
a (s) = E[Eα(as)],

s ∈ R, be the L-fractional moment-generating function of a, of order α ∈ (0, 1]. This is
an extension of the usual moment-generating function, which is retrieved for α = 1. We
obtain a partial version of (96) and (97) for φα

a , because we need to employ the ratio test of
convergence instead of the Cauchy–Hadamard theorem.

Theorem 3. The following implications hold:

∃C, n0 > 0, 0 ≤ p < 1 :
E[|a|n+1]

E[|a|n] ≤ Cnαp, ∀ n ≥ n0 ⇒ φα
a (s) < ∞, ∀ s ∈ R;

∃C, n0 > 0, 0 ≤ p ≤ 1 :
E[|a|n+1]

E[|a|n] ≤ Cnαp, ∀ n ≥ n0 ⇒ ∃ δ > 0 : φα
a (s) < ∞, ∀ s ∈ (−δ, δ).

Proof. Considering our definition (40), we aim to prove that

∞

∑
n=0

E[|a|n]|s|n

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

< ∞. (98)

According to (41), the ratio test gives

E[|a|n+1]Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

E[|a|n]Γ(2 − α)n+1 ∏n+1
j=1

Γ(j+1)
Γ(j+1−α)

≤ Cnαp
Γ(2 − α)n ∏n

j=1
Γ(j+1)

Γ(j+1−α)

Γ(2 − α)n+1 ∏n+1
j=1

Γ(j+1)
Γ(j+1−α)

= Cnαp 1
Γ(2 − α)

Γ(n + 2 − α)

Γ(n + 2)

∼ Cnαp 1
Γ(2 − α)

1
(n + 2 − α)α

. (99)

If p < 1, then (99) tends to 0 and (98) holds for s ∈ R. If p = 1, then (99) converges to

C
Γ(2 − α)

> 0,

so (98) is satisfied for s ∈ (−δ, δ), where

δ =
Γ(2 − α)

C
.

If a is a bounded random variable, then

E[|a|n+1]

E[|a|n] ≤ C
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and φα
a is finite on R. If a is a Gaussian random variable, then

E[|a|n+1]

E[|a|n] ≤ Cn1/2,

so φα
a is finite on the real line for α > 1/2, and it is finite on a neighborhood of zero for

α = 1/2. Since the gamma distribution satisfies

E[|a|n+1]

E[|a|n] ≤ Cn,

one cannot work with φα
a for α < 1. Finally, the Weibull distribution with shape parameter

β has the ratio
E[|a|n+1]

E[|a|n] ≤ Cn1/β,

therefore φα
a is finite on R for α > 1/β, and it is finite around zero for α = 1/β. For

information on these distributions, see [73].
It would be of certain relevance to investigate whether we can expect a better characteri-

zation for the finiteness of the fractional moment-generating function of random variables.
One would likely need to use the Cauchy–Hadamard theorem, rather than the ratio test. Since
the new Mittag–Leffler-type function is defined with products of gamma functions, the ratio
test is the most straightforward tool to check the convergence of the series.

5.3. Fractional Powers and Closed-Form Solutions

For an example of closed form of (82), let us consider

ϑ(t) = (ℓ1tδ1 , . . . , ℓdtδd)⊤, (100)

where ℓ1, . . . , ℓd ∈ C and δ1, . . . , δd ∈ (0, ∞). Equivalently,

b(t) = (κ1tµ1 , . . . , κdtµd)⊤,

where κ1, . . . , κd ∈ C and µ1, . . . , µd > 1 − α satisfy

ℓj = Γ(2 − α)κj, δj = µj − 1 + α;

see Section 2 and, specifically, the link conditions (32). Here, ⊤ denotes the transpose of the
vectors, for column form. The powers δj or µj are not necessarily integers; therefore, they
are called fractional.

Lemma 3. (Analogous to Corollary 1) If

∞

∑
n=0

|xn|tn+1+δ < ∞

for all t ∈ [0, ϵ], where ϵ > 0, δ > 0, and xn ∈ C, then

LDα

(
∞

∑
n=0

xntn+1+δ

)
=

∞

∑
n=0

xn · LDα(tn+1+δ)

on [0, ϵ]. Furthermore, (48) holds for all t ∈ [0, ϵ] for ∑∞
n=0 xntn+1+δ.

Proof. The proof is analogous to Corollary 1 and its subsequent Remark 1. Conduct the
steps in the proof of Corollary 1, adapted to this case, until (66), which holds almost
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everywhere. To justify equality everywhere based on continuity at both sides, proceed as
in Remark 1. Notice that

∞

∑
n=0

xntn+1+δ = x0t1+δ + x1t2+δ +
∞

∑
n=2

xntn+1+δ,

where
∞

∑
n=2

xntn+1+δ ∈ C3[0, T],

so the left-hand side of the corresponding Equation (66) is

LDα

(
∞

∑
n=0

xntn+1+δ

)
∈ C[0, T];

see (33) and (34).

Theorem 4. The solution of (31), with source term (100) and initial condition x(0) = x0, is

x(t) = Eα(At)x0 +
∞

∑
j=0

Ajνj(t),

where

νj(t) =

(
ℓ1

∏
j+2
i=2 Γ(i − α + δ1)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i + δ1)

tj+1+δ1 , . . . , ℓd
∏

j+2
i=2 Γ(i − α + δd)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i + δd)

tj+1+δd

)⊤

,

for every t in [0, T].

Proof. In the general form (82) from Theorem 1, use Proposition 4. By Lemma 3, we have
a solution for all t in [0, T]. (Without Lemma 3, the conclusion would have been almost
everywhere.)

Theorem 5. The solution of (31), with source term (100) and initial condition x(0) = x0,
dimension d = 1, A = a ∈ C, ℓ1 = ℓ and δ1 = δ, is

x(t) = Eα(at)x0 + ℓ
∞

∑
j=0

aj ∏
j+2
i=2 Γ(i − α + δ)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i + δ)

tj+1+δ,

for every t in [0, T].

Proof. Apply Theorem 4 in the scalar case.

For another example of a closed form of (82), now consider

ϑ(t) =
∞

∑
n=0

ϑntn (101)

on [0, T], where ϑn ∈ Cd. That is, ϑ is real analytic at t = 0 with values in C. Equivalently,

b(t) =
t1−α

Γ(2 − α)

∞

∑
n=0

ϑntn,

by Section 2 and (32). In contrast to the previous case, the powers of ϑ are integer numbers.
For b, the powers are fractional.
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Theorem 6. The solution of (31), with source term (101) and initial condition x(0) = x0, is

x(t) = Eα(At)x0 +
∞

∑
n=0

n−1

∑
k=0

Ak ∏n
j=n−k Γ(j − α + 1)

Γ(2 − α)k+1 ∏n
j=n−k Γ(j + 1)

ϑn−k−1tn, (102)

for every t in [0, T].

Proof. For j ≥ 0, we perform the following computations:

LJ(j+1)◦αϑ(t) = LJ(j+1)◦α

(
∞

∑
n=0

ϑntn

)

=
∞

∑
n=0

ϑn · LJ(j+1)◦αtn (103)

=
∞

∑
n=0

ϑn
∏

j+2
i=2 Γ(i − α + n)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i + n)

tj+1+n (104)

=
∞

∑
l=j+1

ϑl−j−1
∏

j+2
i=2 Γ(i − α + l − j − 1)

Γ(2 − α)j+1 ∏
j+2
i=2 Γ(i + l − j − 1)

tl (105)

=
∞

∑
l=j+1

ϑl−j−1
∏l

i=l−j Γ(i − α + 1)

Γ(2 − α)j+1 ∏l
i=l−j Γ(i + 1)

tl . (106)

In the equality from (103), the continuity of LJ(j+1)◦α is used; see Proposition 3. In the
equality from (104), the formula (70) in Proposition 4 is employed with m = j + 1 and
δ = n > α − 2. In the equality from (105), the change in variable n + j + 1 = l is applied.
The equality from (106) follows by expanding the product.

From Theorem 1, (82) and (106),

x(t) = Eα(At)x0 +
∞

∑
j=0

Aj · LJ(j+1)◦αϑ(t)

= Eα(At)x0 +
∞

∑
j=0

Aj
∞

∑
l=j+1

ϑl−j−1
∏l

i=l−j Γ(i − α + 1)

Γ(2 − α)j+1 ∏l
i=l−j Γ(i + 1)

tl

= Eα(At)x0 +
∞

∑
l=0

l−1

∑
j=0

Ajϑl−j−1
∏l

i=l−j Γ(i − α + 1)

Γ(2 − α)j+1 ∏l
i=l−j Γ(i + 1)

tl ,

which corresponds to (102). We finally note that x and the corresponding ϑ are ana-
lytic; hence, we have a solution for every t ∈ [0, T] and not just almost everywhere;
see Theorem 1.

Remark 3. In the Caputo case, we have the fact that (20) solves (19) almost everywhere on
[0, T] if x and b are absolutely continuous on [0, T]. If b is given by a fractional power series
on [0, T] (in terms of tαn), then (20) is the solution of (19) everywhere on [0, T]. Otherwise,
we only know that (20) solves the corresponding Volterra integral problem associated with (19),
x(t) = x0 +

CJα(Ax + b)(t), for all t ∈ [0, T]. All these assertions are a consequence of Lemma 1.
Thus, one should be careful when proposing solutions to fractional differential equations; imprecise
statements may give rise to solutions of the integral problem or almost-everywhere solutions. If b
only belongs to C[0, T], then (20) solves the modified Caputo equation CDα

∗x(t) = Ax(t) + b(t)
for every t ∈ [0, T], where CDα

∗ is defined by (46); see [10] (Lemma 4.5). If x in (20) is absolutely
continuous on [0, T], then CDα

∗x(t) = CDαx(t) almost everywhere [10] (Lemma 4.12), and (19)
holds almost everywhere on [0, T].
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5.4. On Uniqueness

We notice that all of the obtained solutions are unique. For a general L-fractional Equa-
tion (30), where the input function f can be nonlinear, uniqueness holds if f is Lipschitz-
continuous with respect to the second component on every compact set, independently of
the size of the Lipschitz constant. Indeed, if there are two solutions 1x(t) and 2x(t) of (30)
with 1x(0) = 2x(0) = x0, then

|1x(t)− 2x(t)| = |LJα f (t, 1x(t))− LJα f (t, 2x(t))|

≤ 1
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−α| f (s, 1x(s))− f (s, 2x(s))|ds,

(107)

by (47). Since 1x([0, T]) and 2x([0, T]) are bounded, there exists a constant M > 0 such that

| f (s, 1x(s))− f (s, 2x(s))| ≤ M|1x(s)− 2x(s)|,

for all s ∈ [0, T]. As a consequence, from (107),

|1x(t)− 2x(t)| ≤ T1−α M
Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1|1x(s)− 2x(s)|ds.

By Gronwall’s inequality with singularity [75], one concludes that |1x(t)− 2x(t)| = 0
and 1x = 2x on [0, T], as wanted.

The precise statement that has been proved is the following:

Proposition 8. Given an L-fractional differential Equation (30), if f is Lipschitz-continuous with
respect to the second component on every compact set (i.e., for every R > 0, there exists M > 0 such
that | f (t, 1x)− f (t, 2x)| ≤ M|1x − 2x| for all |t| ≤ R, |1x| ≤ R and |2x| ≤ R), then (30) has a
unique solution for any initial condition (0, x0) (in the set of absolutely continuous functions).

We observe that Proposition 8 may be proved without relying on Gronwall’s inequality
with singularity. This is a nice fact because proofs of uniqueness often use Gronwall’s
lemmas. If z = 1x − 2x on [0, T], then

|z(t)| ≤ M · LJα|z(t)| (108)

for every t ∈ [0, T], by (107). If we iterate (108) m times,

|z(t)| ≤ Mm · LJm◦α|z(t)|. (109)

By Proposition 5, (109) continues with

|z(t)| ≤ Mm · LJm◦α|z(t)| ≤ Mm∥z∥∞
∏m+1

i=2 Γ(i − α)

Γ(2 − α)m ∏m+1
i=2 Γ(i)

Tm. (110)

As m → ∞, the right-hand side of the inequality (110) tends to 0, because

∞

∑
m=1

Mm∥z∥∞
∏m+1

i=2 Γ(i − α)

Γ(2 − α)m ∏m+1
i=2 Γ(i)

Tm < ∞

by the ratio test (see (41), for instance). Hence z(t) = 0, and we are finished.
In spite of this, I am not aware of a proof that does not draw on the integral operator

LJα (or CJα). Let us consider the case of dimension d = 1. If z = 1x − 2x were non-zero at
some point on (0, T], then we could define

t∗ = max{t ∈ [0, T] : z([0, t]) = {0}} < T.
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For some δ > 0 such that z(t) ̸= 0 on (t∗, t∗ + δ), we would have

LDαz(t) =
f (s, 1x(s))− f (s, 2x(s))

z(t)
z(t) = a(t)z(t)

on (t∗, t∗ + δ). By extending a to [0, t∗] with the zero value, the equation

LDαz(t) = a(t)z(t)

would hold on [0, t∗ + δ). That is, the initial problem is converted into a linear equation.
The function a is bounded by M, by the Lipschitz condition of f ; therefore, it is Lebesgue-
integrable. In the case α = 1, one defines

ã(t) =
∫ t

0
a(τ)dτ.

By using the integrating-factor method,

e−ã(t)z′(t) = e−ã(t)a(t)z(t),

i.e.,
(e−ãz)′(t) = 0

almost everywhere. Hence e−ã(t)z(t) = z(0) = 0 and z(t) = 0 on [0, t∗ + δ). For α < 1, one
cannot use the same reasoning, because the product rule is not satisfied.

6. Sequential Linear Equations with Constant Coefficients: Context and Solution

The aim of this section is to investigate autonomous linear L-fractional differential
equations of the sequential type. The term “sequential” comes from the fact that higher-
order derivatives are defined by composition, in a sequential manner, while maintaining
the original index α in (0, 1). We define these equations and highlight some of the issues
and problems that arise. We then proceed to find solutions, by exploiting the vector-
space structure. We first elaborate on the case of sequential order two, which gives the
necessary intuition to tackle the general case. The novel Mittag–Leffler-type function plays
an essential role and gives rise to a new view of how the exponential function works in
the setting of linear ordinary differential equations. Most of the development is concerned
with the homogeneous model. Eventually, some forcing terms are possible, by extending
the method of undetermined coefficients. Several examples illustrate the theory.

6.1. Definitions and Problems

Considering the composition of operators (49), and in analogy to ordinary differential
equations, a sequential L-fractional differential equation of order m ≥ 1 and dimension
d ≥ 1 is

LDm◦αx(t) = f (t, x(t), LDαx(t), LD2◦αx(t), . . . , LD(m−1)◦αx(t)), (111)

where f : [0, T]× Ω ⊆ [0, T]×Rdm → Rdm, or f : [0, T]× Ω ⊆ [0, T]×Cdm → Cdm, is a
continuous function. The initial data to be met are

x(0) = x0, LDαx(0) = x0,1, LD2◦αx(0) = x0,2, . . . , LD(m−1)◦αx(0) = x0,m−1, (112)

where x0, x0,1, x0,2, . . . , x0,m−1 ∈ C. Model (111) with (112) generalizes, in principle, (30),
since m can be greater than 1. However, as occurs with the ordinary case α = 1, one may
see that (111) and (30) are equivalent.

Proposition 9. Equations (111) and (30) are equivalent.
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Proof. If x satisfies (111), then

x̃(t) = (x(t), LDαx(t), LD2◦αx(t), . . . , LD(m−1)◦αx(t))

solves

LDα x̃(t) = (LDαx(t), LD2◦αx(t), LD3◦αx(t), . . . , LDm◦αx(t))

= (x̃2(t), x̃3(t), . . . , x̃m(t), f (t, x̃(t)))

= f̃ (t, x̃(t)),

which is a first-order system of dimension dm. The initial condition is

x̃(0) = (x0, x0,1, . . . , x0,m−1).

Although this proposition reduces (111) to (30), the dimension of the associated sys-
tem (30) is greater, of size dm. Hence, in some situations, this procedure may not be
convenient to derive explicit or closed-form solutions for (111).

A sequential linear L-fractional differential equation of order m ≥ 1 and dimension
d = 1 is

LDm◦αx(t) + am−1
LD(m−1)◦αx(t) + . . . + a1

LDαx(t) + a0x(t) = 0. (113)

The coefficients a0, . . . , am−1 are scalars in C and x : [0, T] → C. The initial condition
to be met is (112). Note that (113) is scalar, homogeneous, and autonomous.

By Proposition 9, (113) can be reduced to a linear system of the form (43), with matrix
A ∈ Cm×m and solution (44):

LDα x̂ = Ax̂, x̂ =


x

LDαx
...

LD(m−1)◦αx

, A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −am−1

. (114)

Let S be the set of solutions of (113), equivalently (114), without specifying initial
conditions. By Theorem 6, it is clear that S ⊆ Cω . In the following proposition, we examine
the algebraic structure of S .

Proposition 10. The set S is a vector space over C, of dimension m.

Proof. Since LDα is a linear operator, it is obvious that S satisfies the properties of a vector
space. Another proof relies on the fact that S = KerΛ, where

Λ : Cω → Cω, (115)

Λ = LDm◦α + am−1
LD(m−1)◦α + . . . + a1

LDα + a0. (116)

The fact that dimS ≤ m follows from the injectivity of the linear map

Ξ : S → Cm, (117)

Ξx = (x(0), LDαx(0), LD2◦αx(0), . . . , LD(m−1)◦αx(0)). (118)

Indeed, since (113) can be expressed as a first-order system (114) by Proposition 9, and
uniqueness for these models is known—see Proposition 8—we then have that initial
conditions in Cm give rise to at most one solution in S .
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The surjectivity of (117)–(118), which is equivalent to the existence of a solution for any
initial-value problem (113) with (112), is true by Proposition 9 (transformation to first-order
system (114)) and Theorem 1. It implies that dimS ≥ m. This completes the proof.

Consider the polynomial

p(λ) = λm + am−1λm−1 + . . . + a1λ + a0, (119)

which is the characteristic polynomial of the matrix A ∈ Cm×m associated with the corre-
sponding first-order linear system (114). By the fundamental theorem of algebra,

p(λ) = (λ − λ1)
n1 · · · (λ − λr)

nr ,

where λ1, . . . , λr ∈ C are the distinct roots of p (eigenvalues of A) with multiplicities
n1, . . . , nr ≥ 1, respectively, and n1 + . . . + nr = m.

To solve (113), we express (113) as a sequential model of scalar first-order linear
equations of the form (35). We rely on solving scalar linear problems iteratively, entirely
based on power-series calculations, with no need for matrix variables. It is important to
emphasize that, since we deal with power series, computations hold for every t, and not
only almost everywhere; see Theorem 1 and Theorem 6. Equation (113) is rewritten as

(LDα − λ1)
n1 ◦ · · · ◦ (LDα − λr)

nr x = 0. (120)

All those factors commute. To find x, one needs to consider, in order,

(LDα − λ1)y1,λ1 = 0, (LDα − λ1)y2,λ1 = y1,λ1 , . . . , (LDα − λ1)yn1,λ1 = yn1−1,λ1 , (121)

(LDα − λ2)y1,λ2 = yn1−1,λ1 , (LDα − λ2)y2,λ2 = y1,λ2 , . . . , (LDα − λ2)yn2,λ2 = yn2−1,λ2 , (122)

(LDα − λr)y1,λr = ynr−1−1,λr−1 , (LDα − λr)y2,λr = y1,λr , . . . , (LDα − λr)ynr ,λr = ynr−1,λr , (123)

x = ynr ,λr . (124)

In the following parts, we investigate how to solve the sequential problems (121)–(124).
We first address the order m = 2 and then generalize to any m. Besides the former case
being easier, it permits establishing the methodology and deducing how the general solution
should be.

Actually, we will only need the upper bound dimS ≤ m, which holds by uniqueness
(Proposition 8). Note that dimS ≤ m can be justified alternatively, based on the sequential
decomposition (120), by

dimS = dim KerΛ ≤
m

∑
j=1

nj · dim Ker(LDα − λj)︸ ︷︷ ︸
⟨Eα(λjt)⟩

=
m

∑
j=1

nj · 1 = m, (125)

where Λ was defined in (115), (116). The first inequality in (125) comes from the fact
that, if g1, g2 : V → V are two linear maps, then Ker(g1 ◦ g2) = g−1

2 (Kerg1) and G :
Ker(g1 ◦ g2) → Kerg1, v 7→ g2(v), is well defined and linear with KerG = Kerg2, so that
Ker(g1 ◦ g2)/Kerg2 ∼= ImG ≤ Kerg1 by the first isomorphism theorem and dim Ker(g1 ◦
g2) ≤ dim Kerg1 + dim Kerg2 holds.

6.2. Solution for Sequential Order Two

When m = 2, Equation (113) is

(LD2◦α + a1
LDα + a0)x = 0, (126)
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where a0, a1 ∈ C. The associated polynomial p in (119),

p(λ) = λ2 + a1λ + a0,

has two roots, λ1 and λ2. Let S be the complete set of solutions of (126). From (112), and
consider the initial states

x(0) = x0, LDαx(0) = x0,1. (127)

With this notation, the following theorem gives the solution to (126).

Theorem 7. If the roots of the associated polynomial, λ1 and λ2, are distinct in R or in C, then

x(t) =
x0,1 − λ2x0

λ1 − λ2
Eα(λ1t) +

λ1x0 − x0,1

λ1 − λ2
Eα(λ2t) (128)

is the solution of (126) with initial conditions (127), on [0, ∞). The set

{Eα(λ1t), Eα(λ2t)} (129)

is a basis of S .
On the contrary, if λ1 = λ2 = λ (in R), then

x(t) = x0Eα(λt) + (x0,1 − λx0)tE ′
α(λt) (130)

is the solution of (126) with initial conditions (127), on [0, ∞). The set

{Eα(λt), tE ′
α(λt)} (131)

is a basis of S .
Here, Eα is the new Mittag–Leffler-type function (40) and E ′

α denotes its ordinary derivative.

Proof. Consider the roots λ1 and λ2, irrespective of whether these are different or not.
Problem (126) decomposes as

(LDα − λ1) ◦ (LDα − λ2)x = 0;

see (120) with m = n1 + n2 = 2, n1, n2 ∈ {1, 2}.
First, we solve

(LDα − λ1)y = 0,

which gives
y = Eα(λ1t)c1, (132)

where c1 ∈ C and t ∈ [0, ∞). See, for example, the general result of Theorem 1. Since

(LDα − λ2)x = y, (133)

the constant c1 is
c1 = y(0) = LDαx(0)− λ2x(0) = x0,1 − λ2x0. (134)

Second, from (132) and (133), we solve

(LDα − λ2)x(t) = ϑ(t) = Eα(λ1t)c1. (135)

We need to use Theorem 6, which deals with power-series source terms. In this case,

ϑn = c1λn
1

∏n
j=1 Γ(j + 1 − α)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

,
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considering the expansion’s coefficients of the new Mittag–Leffler function (40). Therefore,
by Theorem 6, the solution of (135) is

x(t) = Eα(λ2t)x0 +
∞

∑
n=0

n−1

∑
k=0

λk
2

∏n
j=n−k Γ(j − α + 1)

Γ(2 − α)k+1 ∏n
j=n−k Γ(j + 1)

c1λn−k−1
1

×
∏n−k−1

j=1 Γ(j + 1 − α)

Γ(2 − α)n−k−1 ∏n−k−1
j=1 Γ(j + 1)

tn

= Eα(λ2t)x0 + (x0,1 − λ2x0)
∞

∑
n=0

∏n
j=1 Γ(j + 1 − α)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tn
n−1

∑
k=0

λn−k−1
1 λk

2 (136)

where the constant (134) is substituted into (136). To deal with the sum

n−1

∑
k=0

λn−k−1
1 λk

2,

we distinguish between λ1 ̸= λ2 and λ1 = λ2 = λ. In the former case,

n−1

∑
k=0

λn−k−1
1 λk

2 =
λn

1 − λn
2

λ1 − λ2

and, from (136),

x(t) = Eα(λ2t)x0 +
x0,1 − λ2x0

λ1 − λ2
[Eα(λ1t)− Eα(λ2t)]

=
x0,1 − λ2x0

λ1 − λ2
Eα(λ1t) +

λ1x0 − x0,1

λ1 − λ2
Eα(λ2t),

which is (128). In the latter case,

n−1

∑
k=0

λn−k−1
1 λk

2 = nλn−1,

and (130) is obtained.
We finally need to justify that (129) and (131) are bases of S , when λ1 ̸= λ2 and

λ1 = λ2 = λ, respectively. Since they generate S , we need to prove linear independence.
(Analogously, since dimS ≤ 2 by Proposition 10 or (125), the linear independence of the
two elements suffices.)

For (129), consider a linear combination

β1Eα(λ1t) + β2Eα(λ2t) = 0

for all t ∈ R, where β1, β2 ∈ C. Then,

β1
LDαEα(λ1t) + β2

LDαEα(λ2t) = 0.

Since

det
(

Eα(λ1t) Eα(λ2t)
LDαEα(λ1t) LDαEα(λ2t)

)
= det

(
Eα(λ1t) Eα(λ2t)

λ1Eα(λ1t) λ2Eα(λ2t)

)
= (λ2 − λ1)Eα(λ1t)Eα(λ2t)

gives λ2 − λ1 ̸= 0 at t = 0, we conclude that β1 = β2 = 0 and that linear independence
of (129) holds.

Analogously, for (131), consider a linear combination

β1Eα(λt) + β2tE ′
α(λt) = 0
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for all t ∈ R, where β1, β2 ∈ C. Then,

β1
LDαEα(λt) + β2

LDα(tE ′
α(λt)) = 0.

Simple computations yield

LDα(tE ′
α(λt)) =

∞

∑
n=1

nλn−1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

Γ(n + 1)Γ(2 − α)

Γ(n + 1 − α)
tn−1. (137)

Since

det
(

Eα(λt) tE ′
α(λt)

LDαEα(λt) LDα(tE ′
α(λt))

)∣∣∣∣
t=0

= det
(

1 0
λ 1

)
= 1 ̸= 0,

it follows β1 = β2 = 0 and the linear independence of (131).

Later, in Section 7, we will address (126) when the coefficients are analytic functions.
The solution will be a power series, with coefficients defined recursively.

6.3. Solution for Arbitrary Sequential Order and Method of Undetermined Coefficients

Consider the general problem (113). The associated polynomial (119) has distinct roots
λ1, . . . , λr ∈ C, with multiplicities n1, . . . , nr ≥ 1, m = n1 + . . . + nr. Let the complete set of
solutions be S . Initial conditions are denoted by (112).

Theorem 7 provides the intuition to establish the following general result. Later,
we will give several remarks, examples, and an immediate corollary on the method of
undetermined coefficients (i.e., the resolution of (113) when it is perturbed by a certain
source term).

Theorem 8. For each eigenvalue λl with multiplicity nl , l = 1, . . . , r, consider

Bλl ,nl = {Eα(λlt), tE ′
α(λlt), t2E ′′

α (λlt), . . . , tnl−1E (nl−1)
α (λlt)}, (138)

where Eα is the new Mittag–Leffler-type function (40) and E (k)
α denotes its ordinary k-th derivative

(for k ∈ {1, 2, 3}, we use primes). Let

B =
r⋃

l=1

Bλl ,nl . (139)

Then, B is a basis for S .

Proof. Fix 1 ≤ l ≤ r. Successive differentiation for (40) gives

tkE (k)
α (λlt) =

∞

∑
n=k

n(n − 1) · · · (n − k + 1)
tnλn−k

l

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

. (140)

Let us prove by induction on 0 ≤ q ≤ k that

(LDα − λl)
q(tkE (k)

α (λlt)) = tk−q

(
q−1

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q

(n − i)

)
tn−kλn−k

l

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

. (141)

For q = 0, (141) corresponds to (140). Suppose the expression is true for q − 1 (induc-
tion hypothesis), and we prove it for q. With detailed steps, we have:



Fractal Fract. 2024, 8, 411 37 of 55

(LDα − λl)
q(tkE (k)

α (λlt)) = (LDα − λl) ◦ (LDα − λl)
q−1(tkE (k)

α (λlt))

= (LDα − λl)

tk−q+1

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
tn−kλn−k

l

Γ(2 − α)n−q+1 ∏
n−q+1
j=1

Γ(j+1)
Γ(j+1−α)

 (142)

=

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
λn−k

l

Γ(2 − α)n−q+1 ∏
n−q+1
j=1

Γ(j+1)
Γ(j+1−α)

(LDα − λl)(tn−q+1) (143)

=

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
λn−k

l

Γ(2 − α)n−q+1 ∏
n−q+1
j=1

Γ(j+1)
Γ(j+1−α)

×
[

Γ(n − q + 2)Γ(2 − α)

Γ(n − q + 2 − α)
tn−q − λltn−q+1

]
(144)

=

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
λn−k

l tn−q

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

(145)

−
(

q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
λn−k+1

l tn−q+1

Γ(2 − α)n−q+1 ∏
n−q+1
j=1

Γ(j+1)
Γ(j+1−α)

(146)

=

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q−1

(n − i)

)
λn−k

l tn−q

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

(147)

−
(

q−2

∏
i=0

(k − i)

)
∞

∑
n=k+1

(
k−1

∏
i=q−1

(n − 1 − i)

)
λn−k

l tn−q

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

(148)

=

(
q−2

∏
i=0

(k − i)

)
∞

∑
n=k+1

[(
k−1

∏
i=q−1

(n − i)

)
−
(

k−1

∏
i=q−1

(n − 1 − i)

)]
λn−k

l tn−q

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

(149)

+

(
q−2

∏
i=0

(k − i)

)(
k−1

∏
i=q−1

(k − i)

)
λk−k

l tk−q

Γ(2 − α)k−q ∏
k−q
j=1

Γ(j+1)
Γ(j+1−α)

(150)

=

(
q−1

∏
i=0

(k − i)

)
∞

∑
n=k+1

(
k−1

∏
i=q

(n − i)

)
tn−qλn−k

l

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

(151)

+

(
q−1

∏
i=0

(k − i)

)
(k − q)!

λk−k
l tk−q

Γ(2 − α)k−q ∏
k−q
j=1

Γ(j+1)
Γ(j+1−α)

(152)

= tk−q

(
q−1

∏
i=0

(k − i)

)
∞

∑
n=k

(
k−1

∏
i=q

(n − i)

)
tn−kλn−k

l

Γ(2 − α)n−q ∏
n−q
j=1

Γ(j+1)
Γ(j+1−α)

. (153)

Equality (142) comes from the induction hypothesis. Equality (143) is merely the linear-
ity of LDα − λl . In (144), the fractional derivative of the power is computed.
In (145)–(146), we just expand the previous expression. For expression (148), we just
change the variable n in the sum, while (147) is unchanged. In (149), we join the two
sums (147) and (148) from n = k + 1, leaving the k-th term of (147) at (150). For (151), we
apply the equality(

q−2

∏
i=0

(k − i)

)[(
k−1

∏
i=q−1

(n − i)

)
−
(

k−1

∏
i=q−1

(n − 1 − i)

)]
=

(
q−1

∏
i=0

(k − i)

)(
k−1

∏
i=q

(n − i)

)
.
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Expression (152) comes from(
q−2

∏
i=0

(k − i)

)(
k−1

∏
i=q−1

(k − i)

)
=

(
q−1

∏
i=0

(k − i)

)
(k − q)!.

Finally, for (153), we merge terms to derive (141).
Considering (141), for q = k, we obtain

(LDα − λl)
k(tkE (k)

α (λlt)) = k!
∞

∑
n=k

tn−kλn−k
l

Γ(2 − α)n−k ∏n−k
j=1

Γ(j+1)
Γ(j+1−α)

= k!Eα(λlt). (154)

Therefore,

(LDα − λl)
k+1(tkE (k)

α (λlt)) = k!(LDα − λl)(Eα(λlt)) = 0.

Thus,
(LDα − λl)

nl (tkE (k)
α (λlt)) = 0 (155)

for all k = 0, . . . , nl − 1, so the operator Λ from (115)–(116) vanishes at tkE (k)
α (λlt). This

result proves that
Bλl ,nl ⊆ S

and, in general,
B ⊆ S . (156)

Since B consists of n1 + . . . + nr = m elements, and dimS ≤ m by
Proposition 10 or (125), it suffices to prove that the functions in B are linearly independent.

First, we prove that the functions in each Bλl ,nl are linearly independent. Consider a
linear combination

β0Eα(λlt) + β1tE ′
α(λlt) + β2t2E ′′

α (λlt) + . . . + βnl−1tnl−1E (nl−1)
α (λlt) = 0,

for all t ∈ R, where β0, β1, . . . , βnl−1 ∈ C. Then,

β0
LDq◦αEα(λlt) + β1

LDq◦α(tE ′
α(λlt))

+β2
LDq◦α(t2E ′′

α (λlt)) + . . . + βnl−1
LDq◦α(tnl−1E (nl−1)

α (λlt)) = 0,

for 1 ≤ q ≤ nl − 1. Now, by (140),

LDq◦α(tkE (k)
α (λlt)) =

∞

∑
n=k

n(n − 1) · · · (n − k + 1)
LDq◦α(tn)λn−k

l

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

=
∞

∑
n=k

n(n − 1) · · · (n − k + 1)
tn−qλn−k

l

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

Γ(2 − α)q
n+1

∏
i=n−q+2

Γ(i)
Γ(i − α)

,

which vanishes at t = 0 for q + 1 ≤ k ≤ nl − 1 and takes the value 1 at t = 0 for k = q.
Consequently, the matrix

Eα(λlt) tE ′
α(λlt) · · · tnl−1E (nl−1)

α (λlt)
LDαEα(λlt) LDα(tE ′

α(λlt)) · · · LDα(tnl−1E (nl−1)
α (λlt))

LD2◦αEα(λlt) LD2◦α(tE ′
α(λlt)) · · · LD2◦α(tnl−1E (nl−1)

α (λlt))
...

...
. . .

...
LD(nl−1)◦αEα(λlt) LD(nl−1)◦α(tE ′

α(λlt)) · · · LD(nl−1)◦α(tnl−1E (nl−1)
α (λlt))


(157)
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is upper-triangular at t = 0, with non-zero elements at the diagonal. Its determinant is then
non-zero, so necessarily β0 = β1 = . . . = βnl−1 = 0.

To conclude the proof, consider a linear combination of elements in the complete set B:

n1−1

∑
k=0

βk,1tkE (k)
α (λ1t) + . . . +

nr−1

∑
k=0

βk,rtkE (k)
α (λrt) = 0, (158)

where βk,l ∈ C. Suppose that there are coefficients βki ,li ̸= 0 for i = 1, . . . , I ≤ r, I ≥ 2,
1 ≤ li ≤ r distinct, 0 ≤ ki ≤ nli − 1, that is, at least one non-zero coefficient for each root λli .
Then, (158) can be rewritten as

I

∑
i=1

βki ,li ei = 0,

where ei ∈ ⟨Bλli
,nli

⟩. We know that ei is a generalized eigenfunction of LDα associated with
λli ; see (155). Since λ1, . . . , λr are distinct, {e1, . . . , eI} are linearly independent by standard
theory. Therefore, the assumed condition with I ≥ 2 is impossible. Then, I = 1 and the
linear combination (158) is actually for a single group Bλl ,nl , for some l ∈ {1, . . . , r}. But
the elements within Bλl ,nl are linearly independent, as already proved above. Hence, all of
the coefficients of (158) are zero, and we are finished.

Remark 4. Analogously to the standard theory on linear ordinary differential equations, the
determinant of the matrix (157) is the L-fractional wronskian of the elements in Bλl ,nl . In general,
we define the L-fractional wronskian of n real analytic functions ϕ1, . . . , ϕn as

LWα(ϕ1, . . . , ϕn)(t) = det


ϕ1(t) ϕ2(t) · · · ϕn(t)

LDαϕ1(t) LDαϕ2(t) · · · LDαϕn(t)
...

...
. . .

...
LD(n−1)◦αϕ1(t) LD(n−1)◦αϕ2(t) · · · LD(n−1)◦αϕn(t)

.

If there is a point t1 where

LWα(ϕ1, . . . , ϕn)(t1) ̸= 0,

then {ϕ1, . . . , ϕn} are linearly independent. This fact was justified in the previous proof. Recipro-
cally, if m functions in S are linearly independent, then their L-fractional wronskian is non-zero at
t = 0, because dimS = m, and the map Ξ in (117)–(118) is an isomorphism by Proposition 10.
The wronskian appears when the coefficients of a linear combination in the basis B are found: if
B = {ei}m

i=1 and x(t) = ∑m
i=1 ciei(t) ∈ S with initial conditions (112), where ci ∈ C, then

LWα(e1, . . . , em)(0) ·


c1
c2
...

cm

 =


x0

x0,1
...

x0,m−1

.

For example, the coefficients in (128) came from the linear system(
1 1

λ1 λ2

)(
c1
c2

)
=

(
x0

x0,1

)
,

and in (130), from (
1 0
λ 1

)(
c1
c2

)
=

(
x0

x0,1

)
.
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Example 1. If λ ∈ C, let us see that the solution of

(LDα − λ)x = tlE (l)
α (λt), (159)

with l ≥ 0 and x(0) = x0 ∈ C, is

x(t) = Eα(λt)x0 +
1

l + 1
tl+1E (l+1)

α (λt) ∈ ⟨Eα(λt), tl+1E (l+1)
α (λt)⟩,

which makes sense with Theorem 8.
By (140),

ϑ(t) = tlE (l)
α (λt) =

∞

∑
n=l

n(n − 1) · · · (n − l + 1)
tnλn−l

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

.

Considering (102), if ϑn denotes the n-th term of this power series, we have

ϑn−k−1 = (n − k − 1) · · · (n − k − l)
λn−k−1−l

Γ(2 − α)n−k−1 ∏n−k−1
j=1

Γ(j+1)
Γ(j+1−α)

(160)

for n − k − 1 ≥ l, and
ϑn−k−1 = 0

for n − k − 1 < l. By Theorem 6, the solution of (159) is

x(t) = Eα(λt)x0 +
∞

∑
n=l+1

n−1−l

∑
k=0

λk ∏n
j=n−k Γ(j − α + 1)

Γ(2 − α)k+1 ∏n
j=n−k Γ(j + 1)

tnϑn−k−1

= Eα(λt)x0 +
∞

∑
n=l+1

n−1−l

∑
k=0

(n − k − 1) · · · (n − k − l)
∏n

j=1 Γ(j − α + 1)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tnλkλn−k−1−l (161)

= Eα(λt)x0 +
∞

∑
n=l+1

λn−1−l ∏n
j=1 Γ(j − α + 1)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tn
n−1−l

∑
k=0

(n − k − 1) · · · (n − k − l)

= Eα(λt)x0 +
1

l + 1
tl+1

∞

∑
n=l+1

n(n − 1) · · · (n − l)λn−1−l ∏n
j=1 Γ(j − α + 1)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tn−1−l (162)

= Eα(λt)x0 +
1

l + 1
tl+1E (l+1)

α (λt).

The equality in (161) comes from (160). The equality in (162) follows from the identity

(l + 1)
n−1−l

∑
k=0

(n − k − 1) · · · (n − k − l) = n(n − 1) · · · (n − l), (163)

which is easy to prove by computing from k = n − 1 − l to k = 0, adding term by term and taking
common factors.

Example 2. For 0 ̸= λ ∈ C, let us see that the solution of

(LDα − λ)x = tlE (l)
α (0) =

l!

Γ(2 − α)l ∏l
j=1

Γ(j+1)
Γ(j+1−α)

tl , (164)

with l ≥ 0 and x(0) = x0 ∈ C, is



Fractal Fract. 2024, 8, 411 41 of 55

x(t) = Eα(λt)x0 +
l!

λl+1 (Eα(λt)− ql(λt))

∈ ⟨Eα(λt), Eα(0 · t), tE ′
α(0 · t), . . . , tlE (l)

α (0 · t)⟩,

where

ql(λt) =
l

∑
n=0

λntn ∏n
j=1 Γ(j + 1 − α)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

(165)

is a polynomial of degree l. This result agrees with Theorem 8.
Considering the forcing term

ϑ(t) = tlE (l)
α (0)

and (102), we have

ϑn−k−1 = E (n−k−1)
α (0) =

(n − k − 1)!

Γ(2 − α)n−k−1 ∏n−k−1
j=1

Γ(j+1)
Γ(j+1−α)

(166)

for n − k − 1 = l, and
ϑn−k−1 = 0

for n − k − 1 ̸= l. By Theorem 6, the solution of (164) is

x(t) = Eα(λt)x0 +
∞

∑
n=l+1

n−1−l

∑
k=0

λk ∏n
j=n−k Γ(j − α + 1)

Γ(2 − α)k+1 ∏n
j=n−k Γ(j + 1)

tnϑn−k−1

= Eα(λt)x0 + l!
∞

∑
n=l+1

∏n
j=1 Γ(j − α + 1)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tnλn−1−l (167)

= Eα(λt)x0 +
l!

λl+1 (Eα(λt)− ql(λt)) (168)

The equality in (167) is due to (166). In (168), the definition (165) is used. Notice that ql(λt)
is the l-th partial sum of Eα(λt).

Corollary 2. In the context of this section, consider the non-homogeneous equation

(LDα − λ1)
n1 ◦ · · · ◦ (LDα − λr)

nr x(t) =
J

∑
j=0

β jtjE (j)
α (µt), (169)

where β j, µ ∈ C and J ≥ 0.
If µ ̸= λl for every l = 1, . . . , r, then

x ∈ ⟨B ∪ {tjE (j)
α (µt) : j = 0, . . . , J}⟩. (170)

On the contrary, if µ = λl0 for some l0 ∈ {1, . . . , r}, then

x ∈ ⟨

⋃
l ̸=l0

Bλl ,nl

 ∪ {tkE (k)
α (λl0 t) : k = 0, . . . , J + nl0}⟩. (171)

Recall that B = ∪r
l=1Bλl ,nl is the basis of the homogeneous part of (169); see (138) and (139).

Proof. The uniqueness of solution for (169) (given m = n1 + . . .+ nr initial conditions (112))
is known by Proposition 9 and Proposition 8.

Consider the linear map Λ from (115) and (116), which represents the homogeneous
part of (169).
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If µ ̸= λl for every l = 1, . . . , r, then (169) is equivalent to

(LDα − µ)J+1Λx = 0, (172)

for adequate initial conditions, by Theorem 8. By Theorem 8 again, the solution to (172)
satisfies (170).

On the other hand, if µ = λl0 for some l0 ∈ {1, . . . , r}, then (169) is equivalent to

(LDα − λl0)
J+1Λx = 0, (173)

for adequate initial conditions, by Theorem 8. Notice that (LDα − λl0)
J+1Λ has the factor

(LDα − λl0)
J+1+nl0 . By Theorem 8 again, the solution to (173) satisfies (171).

Example 3. We work with a specific numerical case of (169):

LD2◦αx − 2 · LDαx + x = 3Eα(2t), (174)

with initial states
x(0) = 3, LDαx(0) = −1. (175)

According to Corollary 2,

x(t) = β1Eα(t) + β2tE ′
α(t) + γEα(2t),

where β1, β2, γ ∈ R are values to be determined. Since γEα(2t) is a particular solution of (174),
we have

4γEα(2t)− 4γEα(2t) + γEα(2t) = 3Eα(2t) ⇒ γ = 3.

The other two coefficients are determined from the initial conditions (175). First, since Eα(0) = 1,

3 = x(0) = β1 + γ ⇒ β1 = 0.

Second, since LDα(tE ′
α(t))|t=0 = 1 (see (137)),

−1 = LDαx(0) = β1 + β2 + 2γ ⇒ β2 = −7.

Example 4. Now, we deal with the numerical example (169)

LD2◦αx − 2 · LDαx + x = 3Eα(t), (176)

with initial states (175). By Corollary 2,

x(t) = β1Eα(t) + β2tE ′
α(t) + γt2E ′′

α (t),

where β1, β2, γ ∈ R are values to be determined. We have the fact that γt2E ′′
α (t) is a particular

solution of (176), which satisfies

3Eα(t) = (LDα − 1)2(γt2E ′′
α (t)) = 2γEα(t),

by the previous computation (154). Thus,

γ =
3
2

.

By employing (175), we determine β1 and β2:

3 = x(0) = β1,



Fractal Fract. 2024, 8, 411 43 of 55

−1 = LDαx(0)

= β1 · LDαEα(t)|t=0 + β2 · LDα(tE ′
α(t))|t=0 + γ · LDα(t2E ′′

α (t))|t=0

= β1 + β2

⇒ β2 = −4.

We used (140) to compute LDα(t2E ′′
α (t))|t=0 = 0 and (137) for LDα(tE ′

α(t))|t=0 = 1.

Example 5. Finally, in the complex field, consider (169) given by

LD2◦αx − 2i · LDαx − x = 3Eα(t), (177)

with initial conditions (175) and the imaginary unit i =
√
−1. Corollary 2 states that

x(t) = β1Eα(it) + β2tE ′
α(it) + γEα(t),

where β1, β2, γ ∈ C. Since γEα(t) is a particular solution of (177), we have

γEα(t)− 2iγEα(t)− γEα(t) = 3Eα(t) ⇒ γ =
3
2

i.

For β1 and β2, we use (175), as in the other two examples:

3 = x(0) = β1 + γ ⇒ β1 = 3 − 3
2

i,

−1 = LDαx(0) = β1i + β2 + γ ⇒ β2 = −5
2
− 9

2
i.

Remark 5. In the context of Examples 1 and 2, let us try to solve

(LDα − λ1)x = tlE (l)
α (λ2t) (178)

in closed form in general, where λ1 ̸= λ2 and λ2 ̸= 0 in C and l ≥ 0. We will see that the fact of
changing of space, from ⟨Bλ1,n1⟩ to ⟨Bλ1,n1 ∪ Bλ2,n2⟩, complicates computations. According to the
previous results (see Theorem 8 or Corollary 2), the solution of (178) takes the form

x(t) = Eα(λ1t)c +
l

∑
i=0

βitiE (i)
α (λ2t), (179)

where c, βi ∈ C. These parameters need to be determined. On the one hand,

tlE (l)
α (λ2t) =

∞

∑
n=l

n(n − 1) · · · (n − l + 1)
λn−l

2

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

tn, (180)

see (140). On the other hand, some computations on (179) with power series yield
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(LDα − λ1)x = c · LDα(Eα(λ1t)) +
l

∑
i=0

βi · LDα(tiE (i)
α (λ2t))

− cλ1Eα(λ1t)− λ1

l

∑
i=0

βitiE (i)
α (λ2t)

= β0

∞

∑
n=0

λn+1
2

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

tn

+
l

∑
i=1

βi

∞

∑
n=i−1

(n + 1)n · · · (n − i + 2)
λn+1−i

2

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

tn

− λ1

l

∑
i=0

βi

∞

∑
n=i

n(n − 1) · · · (n − i + 1)
λn−i

2

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

tn

= β0

∞

∑
n=0

λn+1
2

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

tn

+
∞

∑
n=0

1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

[
min{n+1,l}

∑
i=1

βi(n + 1)n · · · (n − i + 2)λn+1−i
2

]
tn

− λ1

∞

∑
n=0

1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

[
min{n,l}

∑
i=0

βin(n − 1) · · · (n − i + 1)λn−i
2

]
tn.

(181)

After equating (180) and (181), we obtain the relations

β0λn+1
2 +

n+1

∑
i=1

βi(n + 1)n · · · (n − i + 2)λn+1−i
2

− λ1

n

∑
i=0

βin(n − 1) · · · (n − i + 1)λn−i
2 = 0

(182)

for 0 ≤ n < l, and

β0λn+1
2 +

min{n+1,l}

∑
i=1

βi(n + 1)n · · · (n − i + 2)λn+1−i
2

− λ1

min{n,l}

∑
i=0

βin(n − 1) · · · (n − i + 1)λn−i
2

= n(n − 1) · · · (n − l + 1)λn−l
2

(183)

for n ≥ l. The linear equations (182) can be rewritten, for 0 ≤ n < l:

βn+1 =
1

(n + 1)!

[
−β0λn+1

2 +
n

∑
i=0

βin(n − 1) · · · (n − i + 2)λn−i
2 (λ1(n − i + 1)− λ2(n + 1))

]
. (184)

To determine β0, because it cannot be a free parameter, the equation (183) is employed for n = l:

β0λl+1
2 +

l

∑
i=1

βi(l + 1)l · · · (l − i + 2)λl+1−i
2

− λ1

l

∑
i=0

βil(l − 1) · · · (l − i + 1)λl−i
2 = l!

(185)
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For c, one simply uses the initial condition,

x0 = x(0) = c + β0.

The l + 1 Equations (184) and (185) cannot be decoupled, in general, for symbolic variables.
If Theorem 6 is employed to directly deal with (178) based on power series, as in

Examples 1 and 2, we have the expression

x(t) = Eα(λ1t)x0

+
∞

∑
n=l+1

∏n
j=1 Γ(j + 1 − α)

Γ(2 − α)n ∏n
j=1 Γ(j + 1)

tn
n−1−l

∑
k=0

(n − k − 1) · · · (n − k − l)λk
1λn−k−1−l

2 .

Compared to (163), the sum

n−1−l

∑
k=0

(n − k − 1) · · · (n − k − l)λk
1λn−k−1−l

2

does not seem to be solvable in explicit form for λ1 ̸= λ2.

Remark 6. An alternative development to Theorem 8 may be carried out, based upon the Jordan
form of A in (114), to compute the solution

x̂(t) = Eα(At)x̂0, (186)

where
x̂0 = x̂(0) = (x0, x0,1, . . . , x0,m−1)

⊤ ∈ Cm.

First of all, we notice in this remark that care must be exercised, since some methods for
the standard case α = 1 do not apply when α < 1. For example, the new Mittag–Leffler-type
function (40) (the same occurs for the classical Mittag–Leffler function (17)) does not satisfy the
product property of the exponential

eA1+A2 = eA1eA2 , (187)

Eα(A1 +A2) ̸= Eα(A1)Eα(A2), (188)

Eα(A1 +A2) ̸= Eα(A1)Eα(A2), (189)

when the matrices A1 and A2 commute, in general. The property (187), which is based on the bino-
mial expansion and canceling out the factorial, is key to compute eA when A is not diagonalizable.
For example, a Jordan block

J = µId +N ,

where µ ∈ C is an eigenvalue and N is a nilpotent matrix, satisfies

eJ = eµeN ;

hence, eJ is a finite sum. However, in general,

Eα(J ) ̸= Eα(µ)Eα(N ).

Indeed, if N N0 = 0, then
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Eα(J ) =
∞

∑
n=0

J n

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

=
∞

∑
n=0

(µId +N )n

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

=
∞

∑
n=0

1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

n

∑
k=0

(
n
k

)
µn−kN k

=
N0

∑
n=0

1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

n

∑
k=0

(
n
k

)
µn−kN k

+
∞

∑
n=N0+1

1

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

N0

∑
k=0

(
n
k

)
µn−kN k,

which is an infinite series. Likewise, if v is a generalized eigenvector of A associated with an
eigenvalue µ ∈ C, then

eAv = eµId+(A−µId)v = eµe(A−µId)v

is a finite sum again. Nonetheless, in general,

Eα(A)v = Eα(µId + (A− µId))v ̸= Eα(µ)Eα(A− µId)v.

When α = 1, Liouville’s formula states that

det eA = etraceA.

For α < 1, this is not the case in general, not even for diagonalizable matrices A, on account
of (188) and (189).

Another procedure can be followed to avoid the problematic fact that (189).
When the eigenvalues λ1, . . . , λr of A are distinct, then A is diagonalizable. Let A = PDP−1,

where D is the diagonal matrix of eigenvalues and P is the invertible matrix of eigenvectors, of size
m × m. If ŷ = P−1 x̂, then LDαŷ = Dŷ and ŷ0 = ŷ(0) = P−1 x̂0. Therefore,

ŷ = Eα(Dt)ŷ0 =

Eα(λ1t)
. . .

Eα(λrt)

ŷ0.

This implies that
x̂ ∈ ⟨Eα(λ1t), . . . , Eα(λrt)⟩.

From
(LDα − λi)(Eα(λit)) = 0,

it is clear that Eα(λit) solves the sequential problem (120). Since the cardinality of

{Eα(λ1t), . . . , Eα(λrt)} ⊆ S (190)

is m and dimS = m—see Proposition 10—we obtain that (190) is a basis for S .
When there are repeated eigenvalues, the matrix A in (114) cannot be diagonalizable because

the minimal polynomial coincides with the characteristic polynomial here. Then, A is expressed
with Jordan blocks J1, . . . ,Jr of size n1 × n1, . . . , nr × nr, respectively. Let A = PJP−1, where
J is the Jordan form and P is the invertible matrix of generalized eigenvectors. If ŷ = P−1 x̂, then
LDαŷ = J ŷ and ŷ0 = ŷ(0) = P−1 x̂0. Therefore,
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ŷ = Eα(J t)ŷ0 =

Eα(J1t)
. . .

Eα(Jrt)

ŷ0.

For each Eα(Jit), where Ji = λiId +Ni, we use a matrix Taylor development:

Eα(Jit) = Eα(λitId +Nit)

=
∞

∑
n=0

1
n!
E (n)

α (λit)tnN n
i

=
ni−1

∑
n=0

1
n!
E (n)

α (λit)tnN n
i .

Hence
x̂ ∈ ⟨{tnE (n)

α (λit) : n = 0, . . . , ni − 1, i = 1, . . . , r}⟩.

Nonetheless, to prove that

{tnE (n)
α (λit) : n = 0, . . . , ni − 1, i = 1, . . . , r} ⊆ S , (191)

one needs to establish
(LDα − λi)

ni (tnE (n)
α (λit)) = 0

for n = 0, . . . , ni − 1. Then, one should proceed as in the proof of Theorem 8, from (140) until (155)
and (156). For α = 1, it is more or less straightforward that (191) holds, but further computations
are needed for the fractional case. Once (191) is known, the fact that dimS = m from Proposition 10
entails that (191) is a basis for S .

I decided to conduct the methodology based on scalar power series because of the following facts.

• It uses the decomposition (120) and scalar first-order linear problems iteratively, which en-
lightens the underlying structure of the problem. This is specially true for the order m = 2.

• Essentially, one needs to prove (155) and (156) in any case, to ensure that the functions belong
to S . That is the difficult part.

• With (120), only the upper bound dimS ≤ m is needed, which can be established from
uniqueness or from the first isomorphism theorem; see (125). For (125), previous existence-and-
uniqueness theory or results for linear differential systems are not
a prerequisite.

• Although well known, the equality between the minimal polynomial and the characteristic
polynomial of A is a key step to distinguish between multiplicities equal to one and repeated
eigenvalues. With our methodology, no Jordan forms, generalized eigenvectors or minimal
polynomials are needed. Matrix Taylor series are not required either.

• Our theory, based on (120), immediately gives the method of undetermined coefficients as a
consequence; see Corollary 2. Non-homogeneous equations with certain forcing terms—see
Examples 1 and 2—can be addressed.

• Power series have gained importance in the study of fractional models in recent years; see the
Introduction section. We show their use for arbitrary sequential problems.

7. Sequential Linear Equations with Analytic Coefficients and Order Two: Context
and Solution

The aim of this section is the study of non-autonomous linear L-fractional equations
of sequential type to extend the analysis conducted in the earlier section. We focus on the
case of order two, with analytic functions. First, we provide the context of the problem,
and then we solve it.
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7.1. Context

In the previous section, we solved the autonomous linear equation (113), with the
operator’s decomposition (120). When the coefficients are not constant, such a procedure
cannot be carried out.

In this part, we address the following non-autonomous linear equation in dimension
d = 1:

LD2◦αx(t) + p(t) · LDαx(t) + q(t)x(t) = c(t), (192)

where

p(t) =
∞

∑
n=0

pntn, q(t) =
∞

∑
n=0

qntn, c(t) =
∞

∑
n=0

cntn (193)

are any power series that are convergent on an interval [0, T], with terms pn, qn, cn ∈ C.
Again, LD2◦α is understood sequentially, as LDα ◦ LDα. Like in the classical model with
ordinary derivative, we seek a power-series solution for (192). Compared to Theorem 8,
the coefficients of this power series will not be given in the closed form (see (195)).

By Proposition 9, the equation (192) can be written as a first-order equation of di-
mension 2. If S is the vector space of solutions of the homogeneous part of (192), then
dimS ≤ 2, by the uniqueness Proposition 8. Indeed, the linear map

Ξ̃ : S → C2,

Ξ̃x = (x(0), LDαx(0))

is injective. Since we have not tackled non-autonomous equations of the type LDαz(t) =
Ã(t)z(t), where Ã is a continuous matrix function, we cannot ensure the surjectivity of Ξ̃
for the moment. In what follows, we will establish two linearly independent power series
that form a basis for S .

For (192), initial data are defined by (127).

7.2. Results

The main theorem of this section is the following. After discussing it, we will discuss
two examples, the L-fractional Airy’s equation and the L-fractional Hermite’s equation.

Theorem 9. Given (192) with coefficients (193) on [0, T], the general solution on [0, T) is given by

x(t) =
∞

∑
n=0

xntn, (194)

where

xn+2 =
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)2

[
−

n

∑
l=0

pn−l xl+1
Γ(l + 2)Γ(2 − α)

Γ(l + 2 − α)
−

n

∑
l=0

qn−l xl + cn

]
. (195)

The coefficients x0 and x1 correspond to x(0) = x0 and LDαx(0) = x0,1, respectively. A basis of
the homogeneous part (cn = 0) is obtained for (x0, x0,1) = (1, 0) and (x0, x0,1) = (0, 1), respectively.

Proof. Given (194), the following L-fractional derivatives apply:

LDαx(t) =
∞

∑
n=0

xn+1
Γ(n + 2)Γ(2 − α)

Γ(n + 2 − α)
tn,

LD2◦αx(t) =
∞

∑
n=0

xn+2
Γ(n + 3)Γ(n + 2)Γ(2 − α)2

Γ(n + 3 − α)Γ(n + 2 − α)
tn,
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see Corollary 1. Placing these derivatives into (192), with Cauchy products, and matching
terms of the expansions, the recurrence relation (195) is obtained. It remains to check that
the series (194) actually converges on [0, T).

Concerning (193), the coefficients are controlled as follows:

|pn| ≤
C
Tn , |qn| ≤

C
Tn , |cn| ≤

C
Tn ,

where C > 0 is a constant. By the triangular inequality and induction, the sequence {xn}∞
n=0

is “majorized” by

Hn+2 =
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)2
C
Tn

(
n

∑
l=0

Tl
[

Hl+1
Γ(l + 2)Γ(2 − α)

Γ(l + 2 − α)
+ Hl

]
+ 1

)
, (196)

for n ≥ 0,
H0 = |x0|, H1 = |x1|.

By splitting the sum ∑n
l=0 in (196) into ∑n−1

l=0 and the n-th term, one derives

Hn+2 =

(
Γ(n + 3 − α)Γ(n + 1)

Γ(n + 3)Γ(n + 1 − α)T
+ C

Γ(n + 3 − α)

Γ(n + 3)

)
Hn+1

+ C
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)
Hn,

for n ≥ 1. Then, if we pick any v ∈ (0, T),

Hn+2vn+2 =

(
Γ(n + 3 − α)Γ(n + 1)

Γ(n + 3)Γ(n + 1 − α)T
v + C

Γ(n + 3 − α)

Γ(n + 3)
v
)

Hn+1vn+1

+ C
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)
v2Hnvn.

By letting
Kn = max

0≤l≤n
Hlvl ,

one has the bound

Hn+2vn+2 ≤
(

Γ(n + 3 − α)Γ(n + 1)
Γ(n + 3)Γ(n + 1 − α)T

v + C
Γ(n + 3 − α)

Γ(n + 3)
v

+ C
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)
v2
)

Kn+1.

Since

lim
n→∞

(
Γ(n + 3 − α)Γ(n + 1)

Γ(n + 3)Γ(n + 1 − α)T
v + C

Γ(n + 3 − α)

Γ(n + 3)
v

+ C
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)
v2
)
=

v
T

< 1,

by (42), we deduce that Kn+2 = Kn+1 = K from a certain n ≥ 0. As a consequence, if we
take any 0 ≤ w < v < T, then

Hnwn ≤ Hnvn
(w

v

)n
≤ L

(w
v

)n
.

Therefore,
∞

∑
n=0

Hnwn < ∞.

This proves that (194) converges on [0, T), as wanted.
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Concerning the basis of the homogeneous part (with cn = 0 for n ≥ 0), let y and z
be series in S with initial terms (x0, x0,1) = (1, 0) and (x0, x0,1) = (0, 1), respectively. If
β1y + β2z = 0 on [0, T), for β1, β2 ∈ C, then

0 = β1y(0) + β2z(0) = β1

and
0 = β1 · LDαy(0) + β2 · LDαz(0) = β2,

so {y, z} are linearly independent and form a basis of S .

Example 6. Let
LD2◦αx(t) + atx(t) = 0 (197)

be the L-fractional version of Airy’s equation, where a ∈ C. Here, p = c = 0 and q(t) = at.
By (195),

x2 = 0

and

xn+2 = −a
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)2 xn−1,

for n ≥ 1. This difference equation can be solved as follows:

x3n−1 = 0,

x3n = (−1)nan ∏n
j=1 Γ(3j − α)Γ(3j + 1 − α)

Γ(2 − α)2n ∏n
j=1 Γ(3j)Γ(3j + 1)

x0,

x3n+1 = (−1)nan ∏n
j=1 Γ(3j + 1 − α)Γ(3j + 2 − α)

Γ(2 − α)2n ∏n
j=1 Γ(3j + 1)Γ(3j + 2)

x0,1,

for n ≥ 1. Hence,

y(t) =
∞

∑
n=0

(−1)nan ∏n
j=1 Γ(3j − α)Γ(3j + 1 − α)

Γ(2 − α)2n ∏n
j=1 Γ(3j)Γ(3j + 1)

t3n

and

z(t) =
∞

∑
n=0

(−1)nan ∏n
j=1 Γ(3j + 1 − α)Γ(3j + 2 − α)

Γ(2 − α)2n ∏n
j=1 Γ(3j + 1)Γ(3j + 2)

t3n+1

form the basis of solutions of (197), on [0, ∞).

Example 7. Let
LD2◦αx(t)− 2t · LDαx(t) + ax(t) = 0 (198)

be the L-fractional Hermite’s equation, where a ∈ C. The input polynomials are p(t) = −2t,
q(t) = a and c(t) = 0. According to (195),

xn+2 =
Γ(n + 3 − α)Γ(n + 2 − α)

Γ(n + 3)Γ(n + 2)Γ(2 − α)2

[
2

Γ(n + 1)Γ(2 − α)

Γ(n + 1 − α)
− a
]

xn,

for n ≥ 0. In closed form,

x2n+1 = x1
∏2n+2

i=3 Γ(i − α)

Γ(2 − α)2n ∏2n+2
i=3 Γ(i)

n

∏
i=1

(
2

Γ(2i)Γ(2 − α)

Γ(2i − α)
− a
)
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and

x2n = x0
∏2n+1

i=2 Γ(i − α)

Γ(2 − α)2n ∏2n+1
i=2 Γ(i)

n

∏
i=1

(
2

Γ(2i − 1)Γ(2 − α)

Γ(2i − 1 − α)
− a
)

.

As a consequence, the functions

y(t) =
∞

∑
n=0

t2n+1 ∏2n+2
i=3 Γ(i − α)

Γ(2 − α)2n ∏2n+2
i=3 Γ(i)

n

∏
i=1

(
2

Γ(2i)Γ(2 − α)

Γ(2i − α)
− a
)

and

z(t) =
∞

∑
n=0

t2n ∏2n+1
i=2 Γ(i − α)

Γ(2 − α)2n ∏2n+1
i=2 Γ(i)

n

∏
i=1

(
2

Γ(2i − 1)Γ(2 − α)

Γ(2i − 1 − α)
− a
)

form the basis of solutions of (198), on [0, ∞). Notice that, if

a = 2λ,

where

λ =
Γ(i)Γ(2 − α)

Γ(i − α)
, i ≥ 1, i ∈ Z,

then there exists a polynomial solution of (198):

Ny(t) =
N

∑
n=0

t2n+1 ∏2n+2
i=3 Γ(i − α)

Γ(2 − α)2n ∏2n+2
i=3 Γ(i)

n

∏
i=1

(
2

Γ(2i)Γ(2 − α)

Γ(2i − α)
− a
)

,

Nz(t) =
N

∑
n=0

t2n ∏2n+1
i=2 Γ(i − α)

Γ(2 − α)2n ∏2n+1
i=2 Γ(i)

n

∏
i=1

(
2

Γ(2i − 1)Γ(2 − α)

Γ(2i − 1 − α)
− a
)

,

for N ≥ 0. These polynomials extend, in a fractional sense, the classical Hermite’s polynomials.

8. Open Problems

We broadly list some questions, which also highlight the limitations of the work:

• Would the L-fractional derivative have better performance than the Caputo fractional
derivative in specific modeling problems? According to Section 2 and Table 1, the
L-fractional derivative and its associated differential equations have many appealing
properties. For example, the solution is smooth, its ordinary derivative at the initial
instant is finite, the vector field of the equation is a velocity with units of time−1, and
a differential can be associated with the fractional derivative. The appropriateness of
the L-fractional derivative shall be checked with applied models, simulations, and
fitting to real data, beyond purely theoretical work.

• Is it possible to derive more formulas, improper/contour integral representations, applica-
tions, and numerical algorithms for the new Mittag–Leffler-type function (40)? Obviously,
the classical Mittag–Leffler function (17) is much more developed theoretically.

• Can the “almost everywhere” condition in the fundamental theorem of L-fractional cal-
culus (and in Caputo fractional calculus) be weakened? (See Lemma 1 and
Proposition 1.) We know that, for analytic functions and variations of them, the
fundamental theorem of L-fractional calculus holds at every point t, not just almost
everywhere (Corollary 1 and Lemma 3). Analogously, for fractional analytic functions,
the fundamental theorem of Caputo fractional calculus is satisfied at every point t, not
only almost everywhere (Remark 1), hence the potential of power-series expansions
in fractional calculus, both for applications and theory. However, it would be of
relevance to investigate whether there exists a larger class of functions for which there
is equality at every t. We highlight the need to conduct rigorous computations in
fractional calculus to make it clear what kind of solutions one obtains (an everywhere
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solution, an almost-everywhere solution, a solution to the fixed-point integral problem,
a solution to the modified Caputo equation, etc.; see Remark 3, for example).

• Is it possible to find closed-form expressions for the composed integral operator
LJm◦α? A probabilistic structure was given to LJm◦α depending on beta-distributed
delays (Section 5.2), and expressions were obtained for source terms based on power
functions (Section 5.3). We wonder whether LJm◦α could be given as a convolution,
like in the Caputo case, and whether the solution x(t) would depend on some new
two-parameter Mittag–Leffler-type function.

• Would the Laplace transform have any role when solving L-fractional differential
equations? The power-series method is a powerful tool for L-fractional differential
equations, by the analyticity of the solutions. However, the use of the Laplace trans-
form has not been checked. The increase in the nonlinearity in the equation with t1−α

may complicate the applicability or the usefulness of the transform. Furthermore, the
use should be precise, under appropriate hypotheses.

• Can the probability link (Section 5.2) established in the paper help understand and
generalize the concept of fractional derivative more? The L-fractional derivative
and the associated integral operator distribute the past time with a beta distribution.
Hence, the L derivative includes history’s effects on the model, according to a fixed
probability law. For the fractional order 1, the ordinary derivative is local, while the
time of the Riemann integral is distributed uniformly. Given an interval, the uniform
distribution maximizes the Shannon entropy, so the benefits of the fractional derivative
in terms of memory terms shall be investigated.

• Can the new Mittag–Leffler-type function (40) be used in other settings as a substitute for
the exponential function, for example, to define novel probability distributions, such as
a “Poisson distribution” with mass function related to the Mittag–Leffler-type function,
or to study partial differential equations with exponentials involved, such as the heat
equation? In the fractional case, the new Mittag–Leffler function would emerge.

• Can we expect (Section 5.2) a better characterization of the finiteness of the fractional
moment-generating function of random variables? One would probably need to apply
the Cauchy–Hadamard theorem adequately, instead of the ratio test. Since the new
Mittag–Leffler-type function is defined with products of gamma functions, the ratio
test is the most straightforward tool to analyze the convergence of the series. On the
other hand, the fractional moment-generating function may be of use to study some
stochastic/random fractional differential equations.

• Can the theory on m-th order autonomous linear equations be generalized to variable
coefficients? Is it possible to find a variation-of-constants formula when forcing terms
are present? This new research would continue the results from Section 6.

• Can we build a theory about L-fractional dynamical systems? The corresponding
fractional exponential, which is the proposed Mittag–Leffler-type function (40), should
play a key role, as it solves the linearized problem. The monotonicity and asymptotic
properties of the new function shall be investigated. Relevant applications, such as the
study of the L-fractional SIR (susceptible–infected–recovered) epidemiological model,
would come up.

• Is the theory on linear L-fractional differential equations with analytic coefficients
extensible to the case of regular singular points? The problems are that changes in
the variable and the product rule for the fractional derivative are not amenable to
computing. This new research would continue the results from Section 7.

• What are the properties of the fractional Hermite’s polynomial defined in Example 7?
Do they satisfy certain formulas or orthogonality conditions? A similar analysis would
yield fractional Legendre’s polynomials, fractional Laguerre’s polynomials, and so on.

• Does it make sense to rescale other fractional derivatives? For example, we commented
that the Λ-fractional derivative normalizes the Riemann–Liouville derivative, and it
shall be investigated mathematically. Would fractional operators Dα with continuous
or bounded kernels improve their applicability if a factor (Dαt)−1 is included?
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• Can we explicitly solve other models, with nonlinearities, under the L-fractional
derivative? With the experience of the Caputo derivative, the main tool shall be the
power-series method, under analytic inputs. The solution will be local, as predicted by
the Cauchy–Kovalevskaya theorem. It will be well defined and pointwise, according
to Lemma 1, Proposition 1, Corollary 1, and Remark 1.

• Finally, what about fractional partial differential equations? There are no studies
for the L-fractional derivative. In the Caputo context, formal solutions have been
found in terms of bivariate fractional power series, but rigorous theorems are yet to
be investigated.
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