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Abstract: Self-similarity is a common feature among mathematical fractals and various objects of our
natural environment. Therefore, escape criteria are used to determine the dynamics of fractal patterns
through various iterative techniques. Taking motivation from this fact, we generate and analyze
fractals as an application of the proposed Mann iterative technique with h-convexity. By doing so, we
develop an escape criterion for it. Using this established criterion, we set the algorithm for fractal
generation. We use the complex function f (x) = xn + ct, with n ≥ 2, c ∈ C and t ∈ R to generate and
compare fractals using both the Mann iteration and Mann iteration with h-convexity. We generalize
the Mann iterative scheme using the convexity parameter h(α) = α2 and provide the detailed
representations of quadratic and cubic fractals. Our comparative analysis consistently proved that
the Mann iteration with h-convexity significantly outperforms the standard Mann iteration scheme
regarding speed and efficiency. It is noticeable that the average number of iterations required to
perform the task using Mann iteration with h-convexity is significantly less than the classical Mann
iteration scheme. Moreover, the relationship between the fractal patterns and the input parameters of
the proposed iteration is extremely intricate.

Keywords: Mann iteration with h-convexity (MIH); escape criterion; complex polynomial function;
Mandelbrot set (M-set)

1. Introduction

The word ‘fractal’ originates from the Latin word ‘fractus’, meaning broken or frac-
tured. This concept was introduced by Benoît Mandelbrot, who is widely recognized as the
pioneer of fractal geometry [1]. Our environment is full of systems having a fractal nature.
Reiterating their shapes at increasingly finer magnifications results in an ironic complexity.
Trees, clouds, and mountains are examples of such fractals with medium complexity. The
natural world exhibits fractal patterns in global as well as microscopic systems [2]. A
Science Design Lab (SDL) [3] is established to create patterns relevant to environmental
psychology, as our eyes can adapt to them utilizing the “fractal fluency” paradigm. The
“relaxation floors” were built using fractals, which reflect the positive effects of gazing
at nature. This initiative delved into the positive effects of the geometry of our natural
environment. Furthermore, fractals have a wide range of applications across multiple
scientific fields. In particular, they are used in science to study and understand various
biological phenomena, such as the growth cycles of microbes (e.g., bacteria, syphilis mi-
croorganisms, and unicellular organisms) and the patterns of nerve fibers. In cryptography,
fractal theory is a useful tool for reducing the size of images [4] and securing images with
cryptography [5]. In physical science, fractals are utilized to explore and comprehend the
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fluid dynamics of turbulent flows. They are also employed in telecommunications for
antenna design [6], as well as in modeling architectures [7], computer networks, and radar
systems [8], all of which are an application of fractals.

In the early twentieth century, P. Fatou and G. Julia were the first researchers to
investigate the iterative calculation of G : m −→ m2 + r , where m, r ∈ C. However, they
were unable to plot the function’s graph. This work was continued in 1985 by B. Mandelbrot,
who successfully plotted the graph of F : x −→ m2 + r . He created the Mandelbrot set by
changing the values of m as well as r [9]. The M-set for G : m → ms + r where s ≥ 2 and
m, r ∈ C is explained in ref. [10]. The J-set and M-set images for complex functions that are
both rational and transcendental in nature were analyzed in ref. [11]. The anti-J-sets and
anti-M-sets were later established by Crow et al. [12]. As a result, they created visuals that
illustrate m2 + r where m, r ∈ C have a tricorn shape.

Fractals are generated through iterative fixed-point schemes, and in this process, the
theory of fixed points plays a crucial role. The fractals of higher dimensions were analyzed
in refs. [13–15]. Different iterative schemes, such as the Ishikawa iterative scheme [16], the
Mann iterative scheme [17], the Noor iterative scheme [18], the S-iterative scheme [19], the
Picard–Thakur hybrid [20], and the four-step iteration [21], have been used to generate
some beautiful fractals. Both the Mandelbrot set and the Julia set for complex logarithmic,
exponential, and trigonometric functions produced by multiple iterations are discussed in
refs. [22,23] and the references therein. Furthermore, CR-iteration [24] and SP-iteration [25]
are utilized to create generalized J-sets and M-sets. The discussion pertains to fractals
generated through complex polynomials and new orbits are generated in [26]. A compar-
ative analysis of fractals produced by the hybrid Picard S-iteration is presented in [27].
According to generalized Jungck–Mann orbit, the explanation of filled J-sets has been given
in [28]. The discussion pertains to fractals generated through the extended Jungck–Noor
orbit in ref. [29]. Certain biomorphs are discussed in refs. [30–33].

The above review of the literature demonstrates that researchers were inspired by
different iteration schemes because each new technique was better than the previous one
in efficiency to generate fractals. Therefore, we create M-sets for the complex polynomial
function f (x) = xk + ct, where k ≥ 2, c ∈ C using Mann-iteration with h-convexity. To
explain the results, we need some fundamental definitions of M-sets and J-sets, as well as
several iterative schemes that are stated in Section 2. The main results are presented in
Section 3. Section 4 contains the newly generated fractals with a comparison investigation
that continuously demonstrated that the Mann iteration with h-convexity (MIH) performs
better than the normal Mann iteration (MI) scheme in terms of speed and efficiency. We
conclude that there is a very complex interaction between the input parameters of the
suggested iteration and the fractal designs, which is discussed in Section 5.

2. Preliminaries

This section of the paper involves basic definitions and terminology required to present
fractals and iterative methods.

Definition 1 (J-Set [34]). Suppose that Gk refers to the collection of points within C so that
k : C → C be a polynomial function of complex numbers with degree ≥ 2. When the orbit of
Gk ↛ ∞ as i → ∞ , the set Gk is known as a filled Julia set i.e.,

Gk = {y ∈ C : {| ki (y)|}∞
i=0 is con f ined}. (1)

The collection of points along Gk is a called simple J-set.

Definition 2 (Mandelbrot Set [34]). Mandelbrot’s (M-set) set is the collection of all points c for
which the corresponding Julia set (i.e., J-set) Gk is connected, i.e.,

M = {c ∈ C : Gk is connected}, (2)
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As a result M-set is stated as [35]:

M =
{

c ∈ C :
{

ki(0)
}
↛ ∞asi → ∞

}
, (3)

where the only particular point is 0, such that ḱ(0) = 0. Thus, picking 0 as the starting point is the
ideal research option.

Consider the case where C is a set of complex numbers that contains at least one
element and ψ : C → C be a complex transformation. Then, with respect to every x0 ∈ C,
the following iterative schemes can be defined as:

Definition 3 (Mann iterative method [36]). In 1953, W. Robert Mann proposed a fixed-point
iterative scheme known as the Mann-iterative scheme. The Mann-iterative scheme was subsequently
defined for complex spaces as:

xi+1 = (1 − α)xi + αψ(xi), (4)

where α ∈ (0, 1] as well as i = 0, 1, 2, · · · .

Definition 4 (Ishikawa Iterative Method [37]). A two-step fixed-point iterative scheme known
as the Ishikawa iteration was introduced by Shero Ishikawa in 1974. It can also be defined for
complex spaces as: {

ri+1 = (1 − α)ri + αψ(si),
si = (1 − β)ri + βψ(ri),

(5)

where α, β ∈ (0, 1] and i = 0, 1, 2, · · · .

Definition 5 (h-convexity [38]). A group of h-convex functions was introduced by Varosanec
(2007), extending the ideas of s-convex functions, convex, P-function, and Godunova–Levin func-
tions. These h-convex functions are characterized as non-negative functions, ψ : K → R that
convinces the given condition.

ψ(βs + (1 − β)t) ≤ h(β)ψ(s) + h(1 − β)ψ(t) (6)

where h is a function that has non-negative values, β ∈ (0, 1) and s, t ∈ K.

For further such details and fixed points, see [39].

3. Escape Criterion

The escape criterion plays a crucial role in the generation of fractals. This section
presents the escape criterion for the Mann iterative scheme with h-convexity for the pro-
posed complex function.

Theorem 1. Suppose that F(xk) = xk + ct is a complex function with |x| ≥ |c|>
(

2+|θ|
1−α2

) 1
n−1 ,

where α ∈ (0, 1] and c ∈ C. The sequence of successive approximations {xk}k∈N is described as

xk+1 = h(α)xk + h(1 − α) f (xk)

where h(x) = x2, for k = 0, 1, 2, 3 . . .. Then |xk|→ ∞ as k → ∞ .

Proof. Since F(xk) = xk + ct, where c ∈ C, t ∈ R then by the definition of the Mann-
iterative scheme with h-convexity;

xk+1 = α2xk +
(

1 − α2
)

F(xk)
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Initially, choosing k = 0, we have the following.

x1= α2x0 +
(

1 − α2
)

F(x0)

x1= α2x0 +
(

1 − α2
)(

xk
0 + ct

)

|x1|=|α2x0 +
(

1 − α2
)(

xk
0 + ct

)
|

|x1|=|
(

1 − α2
)(

xk
0 + ct

)
+ α2x0|

≥
(

1 − α2
)
|xk

0 + ct|−α2|x0|

≥
(

1 − α2
)
|xk

0|−α2|x0|−
(

1 − α2
)∣∣ct∣∣

≥
(

1 − α2
)
|xk

0|−α2|x0|−
(

1 − α2
)
|cθ| as θ =

ct

c

Continuing in this way, we obtain

x1≥
(

1 − α2
)
|xk

0|−α2|x0|−|cθ|+α2|cθ|

≥
(

1 − α2
)
|xk

0|−α2|x0|−|x0 θ|+α2|x0 θ| as |x0|≥|c|

≥
(

1 − α2
)
|xk

0|−α2|x0|−|x0 θ| as α2|x0| > 0

≥|x0|(
(

1 − α2
)
|xk−1

0 |−α2 − |θ|)

≥|x0|(
(

1 − α2
)
|xk−1

0 |−1−|θ| as α ∈ (0, 1]

≥|x0|(
(

1 − α2
)
|xk−1

0 |−(1+|θ|))

Since |x0| >
(

2+|θ|
1−α2

) 1
k−1 , this implies that

(
1 − α2)|xk−1

0 |−(1 + |θ|) > 1. Therea f ter, there is

λ > 0 s that,
(
1 − α2)|xk−1

0 |−(1+|θ|) > 1 + λ . Thus, |x1|> (1 + λ)|xk−1
0 |. Specifically,

|x1|>|x0| we repeat this process up to kth iterates to achieve |xk|> (1 + λ) k
∣∣∣xn−1

0

∣∣∣
Hence, |xk|→ ∞ as k → ∞ . □

Corollary 1. Let us suppose that |c|>
(

2+|θ|
1−α2

) 1
k−1 , then Mann’s iterative orbital strategy via

h-convexity jumps to infinity.

Corollary 2. Let us suppose that |x| > max[|c|,
(

2+|θ|
1−α2

) 1
k−1

]; therefore, there exists λ > 0, so

that |xk|> (1 + λ) k|x|, and xk → ∞ when k → ∞ .

Corollary 3. Let us suppose that |xk|>|x|> max[|c|,
(

2+|θ|
1−α2

) 1
k−1

], then for any k ≥ 0, there are

λ > 0, so that |xk+l |> (1 + λ) k+l |xk+l | and |xk+l |→ ∞ when k + l → ∞ .

4. Applications in Fractals

Perhaps the most well-known object in fractal theory is the Mandelbrot set. It is
regarded to be both the most beautiful and the most complicated thing ever made visible.
This set explains how the dynamics of a quadratic polynomial alter depending on the
complex parameter. The placement of the parameter relative to the Mandelbrot set reveals
a lot about the polynomial’s dynamical features. The Mandelbrot set is represented by a
cubic polynomial with two critical orbits. As a result, their analysis of cubic polynomials is
substantially more sophisticated than quadratic polynomials. In this section, Mandelbrot
sets are presented using the proposed iteration method. To generate these Mandelbrot
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sets, it is essential to establish an execution criterion for the algorithm. There are several
common algorithms used for generating such fractals, including the following:

• Distance measure [40];
• An algorithm by using potential functions [41];
• Escape criteria [42].

To visualize the Mandelbrot sets graphically, we use the escape criterion described in
Algorithm 1. The visualizations were produced via computer “Intel(R) Core(TM) i7-7500U
CPU @ 2.70GHz 2.90 GHz” in Matlab R2013a.

Algorithm 1: Geometry of Mandelbrot-Set
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• Escape criteria [42].

To visualize the Mandelbrot sets graphically, we use the escape criterion described in
Algorithm 1. The visualizations were produced via computer “Intel(R) Core(TM) i7-7500U
CPU @ 2.70GHz 2.90 GHz” in Matlab R2013a.

Algorithm 1: Geometry of Mandelbrot-Set

Input: F(x) = xn + ct proposed function with n ≥ 2 complex function,
A ⊂ C-occupied area, L-fixed number of iterates, α ∈ (0, 1], t ∈ R, c ∈ C
and Coloursmap [0...C-1].

Output: M-Set
1 for c ∈ A do

2 R =
(

2+|θ|
1−α2

) 1
k−1 , where θ = ct

c

3 k = 0
4 x0–critical point
5 while k ≤ L do
6 xk+1 = h(α)xk + h(1 − α) f (xk), where h(α) = α2

7 if |xk+1| > R then
8 break

9 k=k+1

10 j = ⌊(C − 1)k/L⌋
11 colour x0 with colurmap[j]

Mandelbrot Set

Here, we presented a discussion of several M-sets related to the function f (x) = xn + ct

at various n, within the trajectory of the suggested iteration. Here, M-sets have been
generated for n = 2, 3 via Mann-iteration with h-convexity. In every graph, we set K = 35
(i.e., number of iterations is fixed ) in the Algorithm 1.

Example 1. In Figure 1, we visualize how M-sets follow the function f (x) = xn + ct at n = t = 2
by varying the other parameters to attain attractive M-sets.

Furthermore, in Figure 2 by fixing the parameter α = 0.70 and varying the value of the other
parameters, we attain attractive M-sets using Mann iteration with h-convexity.

Example 2. In Figure 3, we use the function f (z) = zn + ct at n = 3; t = 2.00, and vary the
other parameters to produce cubic M-sets using Mann iteration.

Moreover, in Figure 4, by fixing the parameter α = 0.70 and varying the other parameters to
produce cubic M-sets using Mann iteration with h-convexity. It can be observed that the position
of the parameter relative to the Mandelbrot set informs a lot about the polynomial’s dynamical
properties. The Mandelbrot set is represented by a cubic polynomial (n = 3) with two critical orbits.
As a result, the apparel beauty of the Mandelbrot set using cubic polynomials (n = 3) is far more
intricate than quadratic polynomials (n = 2).

We continue this way, and discuss the following examples by considering various
values of α and t for simple and convex functions. We observe the number of iterations and
the amount of time to generate fractals.
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at various n, within the trajectory of the suggested iteration. Here, M-sets have been
generated for n = 2, 3 via Mann-iteration with h-convexity. In every graph, we set K = 35
(i.e., number of iterations is fixed) in the Algorithm 1.

Example 1. In Figure 1, we visualize how M-sets follow the function f (x) = xn + ct at n = t = 2
by varying the other parameters to attain attractive M-sets.

Furthermore, in Figure 2 by fixing the parameter α = 0.70 and varying the value of the other
parameters, we attain attractive M-sets using Mann iteration with h-convexity.

Example 2. In Figure 3, we use the function f (z) = zn + ct at n = 3; t = 2.00, and vary the other
parameters to produce cubic M-sets using Mann iteration.

Moreover, in Figure 4, by fixing the parameter α = 0.70 and varying the other parameters to
produce cubic M-sets using Mann iteration with h-convexity. It can be observed that the position
of the parameter relative to the Mandelbrot set informs a lot about the polynomial’s dynamical
properties. The Mandelbrot set is represented by a cubic polynomial (n = 3) with two critical orbits.
As a result, the apparel beauty of the Mandelbrot set using cubic polynomials (n = 3) is far more
intricate than quadratic polynomials (n = 2).

We continue this way, and discuss the following examples by considering various
values of α and t for simple and convex functions. We observe the number of iterations and
the amount of time to generate fractals.
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Figure 1. M-set for f (x) = xn + ct via the Mann-iterative scheme; t = 2; n = 2.
Figure 1. M-set for f (x) = xn + ct via the Mann-iterative scheme; t = 2; n = 2.
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Figure 2. M-set for f (x) = xn + ct via the Mann-iterative scheme with h-convexity; α = 0.7; n = 2.
Figure 2. M-set for f (x) = xn + ct via the Mann-iterative scheme with h-convexity; α = 0.7; n = 2.
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Figure 3. M-set for f (x) = xn + ct via the Mann-iterative scheme; t = 2; n = 3.
Figure 3. M-set for f (x) = xn + ct via the Mann-iterative scheme; t = 2; n = 3.
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Figure 4. M-set for f (x) = xn + ct via the Mann-iterative scheme with h-convexity; α = 0.7; n = 3.

Example 3. In the first ten figures of this example, we illustrate how the Mandelbrot sets follow
the function f (x) = xn + ct at n = 2. In Figures 5–14, we fix the parameter t = 1 and vary α to
achieve visually appealing Mandelbrot sets. In these figures, the color bar represents the average
number of iterations (ANI) required to generate each graph. It is evident from Table 1 that the Mann
iterative scheme with h-convexity (MIH) outperforms the standard Mann iterative (MI) scheme.

This table shows that the maximum number of iterations required for a simple Mann iteration
is 810, which is significantly larger than 23 in the case of the proposed Mann iteration with h-
convexity. Similarly, the time required to perform many iterations is also comparatively higher.
Moreover, the images generated by our newly proposed Mann iteration with h-convexity are far
better than the usual ones.

Figure 4. M-set for f (x) = xn + ct via the Mann-iterative scheme with h-convexity; α = 0.7; n = 3.

Example 3. In the first ten figures of this example, we illustrate how the Mandelbrot sets follow
the function f (x) = xn + ct at n = 2. In Figures 5–14, we fix the parameter t = 1 and vary α to
achieve visually appealing Mandelbrot sets. In these figures, the color bar represents the average
number of iterations (ANI) required to generate each graph. It is evident from Table 1 that the Mann
iterative scheme with h-convexity (MIH) outperforms the standard Mann iterative (MI) scheme.

This table shows that the maximum number of iterations required for a simple Mann iteration
is 810, which is significantly larger than 23 in the case of the proposed Mann iteration with h-
convexity. Similarly, the time required to perform many iterations is also comparatively higher.
Moreover, the images generated by our newly proposed Mann iteration with h-convexity are far
better than the usual ones.
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Table 1. Comparison table when t = 1 and A = [−3, 3]2.

α ANI for MI ANI for MIH Time (s) for MI Time (s) for MIH

0.1 810 23 3.81 2.70

0.2 190 20 4.72 3.25

0.3 74 19 6.52 3.26

0.4 36 18 9.00 5.15

0.5 25 17 10.23 6.15
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Figure 13. M-set using MI for α = 0.5.

Figure 14. M-set using MIH for α = 0.5.

Example 4. In the next figures, we demonstrate how the Mandelbrot sets correspond to the function
f (z) = xn + ct with n = 3. This is shown in Figures 15–24, where we fix the parameter α = 0.0.03
and vary the other parameter t to achieve visually appealing Mandelbrot sets. Again, from Table
2, we observe that the Mann iterative scheme with h-convexity outperforms the standard Mann
scheme.

Table 2. Comparison table when α = 0.03 and A = [−3, 3]2.

t ANI for MI ANI for MIH Time (Sec.) for MI Time (Sec.) for MIH

1.2 11,500 100 6.17 4.74

1.4 13,500 98 5.62 4.61

1.6 16,000 96 5.58 4.57

1.8 18,500 68 4.83 4.38

2 23,000 23 4.16 3.35

This table shows that the maximum number of iterations required for a simple Mann iteration
is 23,000, which is significantly larger than 100 in the case of the proposed Mann iteration with
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Example 4. In the next figures, we demonstrate how the Mandelbrot sets correspond to the function
f (z) = xn + ct with n = 3. This is shown in Figures 15–24, where we fix the parameter α = 0.0.03
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This table shows that the maximum number of iterations required for a simple Mann iteration
is 23,000, which is significantly larger than 100 in the case of the proposed Mann iteration with
h-convexity. Similarly, the time required to perform many iterations is also comparatively higher.
Moreover, the images generated by our newly proposed Mann iteration with h-convexity at n = 3
are far better than the usual ones.
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Figure 23. M-set using MI for t = 2.
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The Mandelbrot set, generated using the Mann-iterative scheme with h-convexity,
holds significant potential across various scientific disciplines. Fractals, including the Man-
delbrot set, are not merely mathematical curiosities; they provide profound insights and
applications in several areas of science and technology, such as natural phenomena and geo-
physics, art and design, physics, biology and medicine, materials science and engineering,
computer graphics and image processing, chaos theory and dynamical systems. High-
lighting such significance, these findings will also be a road to quixotic research in diverse
directions such as using fractal dimension analysis to describe the three-dimensional asso-
ciation of biomolecules. Such insights have incredible potential to transform the modeling
and understanding of essential developments in biophysics [43].

5. Further Discussion and Conclusions

We introduced the Mann orbit with h-convexity and established a novel escape crite-
rion for a complex function f (x) = xn + ct, where n ≥ 2, c belongs to the set of complex
numbers, and t is a real number. Our work resulted in Algorithm 1 for generating Mandel-
brot sets. We provided detailed presentations of quadratic and cubic fractals, particularly
Mandelbrot sets, with illustrative examples. Our comparative analysis, as demonstrated in
the previous examples, consistently shows that the Mann iterative scheme with h-convexity
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computer graphics and image processing, chaos theory and dynamical systems. High-
lighting such significance, these findings will also be a road to quixotic research in diverse
directions such as using fractal dimension analysis to describe the three-dimensional asso-
ciation of biomolecules. Such insights have incredible potential to transform the modeling
and understanding of essential developments in biophysics [43].

5. Further Discussion and Conclusions

We introduced the Mann orbit with h-convexity and established a novel escape crite-
rion for a complex function f (x) = xn + ct, where n ≥ 2, c belongs to the set of complex
numbers, and t is a real number. Our work resulted in Algorithm 1 for generating Mandel-
brot sets. We provided detailed presentations of quadratic and cubic fractals, particularly
Mandelbrot sets, with illustrative examples. Our comparative analysis, as demonstrated in
the previous examples, consistently shows that the Mann iterative scheme with h-convexity
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outperforms the standard Mann iterative scheme because MIH takes less time and generates
higher-quality fractals as compared to the MI.

Analyzing the relationship between the Mandelbrot set and the input parameters of
iteration is extremely intricate. In this part, we visualized the graphs of the Mandelbrot
set through the implementation of escape time algorithm for the Mann iterative scheme
with h-convexity and we investigated the variation in the average visual time required for
execution by adjusting two factors (α, t) for Mann iterative scheme with h-convexity. We
expressed the parameters t ∈ [1, 1.99] and α ∈ (0, 1] as intervals for further analysis. To
obtain the desired outcomes, we perform calculations for both “ α” and “t” using a step size
of 0.01 within each interval. In total, we compute 100 values for “ α” and 100 values for “t”.
It should be noted that all calculations and visual analyses were performed on a computer
equipped with the following configuration: an Intel(R) Core(TM) i7-7500U CPU running
at 2.70 GHz, 8 GB of RAM, and a 64-bit Windows 10 Pro Education operating system. To
determine the mean image processing time, we employed Mathematica 10 software and
executed the algorithm. Investigating the influence of input parameters t and α on the
Mandelbrot set during the Mann-iteration with h-convexity orbit, we fixed the number
of iterations at 15. The color map used to depict the time values was constrained within
the interval of 4.287 to 43.858 s. The visualization uncovers intriguing insights into the
execution time of the algorithm when applied to various parameter values in Figure 25.

Figure 25. M-set for f (x) = xn + ct via Mann-iterative scheme having image visual period.

Overall, our research lays the foundation for the further exploration and development
of iterative schemes for fractal generation, with potential applications in various scientific,
artistic, and computational fields. It is remarkable that usually, for h-convex functions,
researchers use h(x) = x or h(x) = 1 − x, but in this study, we use h(x) = x2 to generalize
the Mann-iterative scheme.
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Abbreviations

The following abbreviations are used in this manuscript:

M-Set Mandelbrot set
J-Set Julia set
ANI Average number of iterations
MI Mann-iterative scheme
MIH Mann-iterative scheme with h-convexity
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