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G R W N

Abstract: This manuscript investigates the existence, uniqueness, and different forms of Ulam stability
for a system of three coupled differential equations involving the Riemann-Liouville (RL) fractional
operator. The Leray-Schauder alternative is employed to confirm the existence of solutions, while the
Banach contraction principle is used to establish their uniqueness. Stability conditions are derived
utilizing classical nonlinear functional analysis techniques. Theoretical findings are illustrated with
an example. The proposed system generalizes third-order ordinary differential equations (ODEs)
with different boundary conditions (BCs).

Keywords: fractional derivatives; differential equations; nonlinear equations; nonlinear systems;
existence theory; Ulam stability

1. Introduction

Fractional differential equations (FDEs) have become essential tools for modeling
real-world phenomena. These equations are particularly effective in capturing the memory
and hereditary properties of various materials and processes, making them indispensable
in several fields. Numerous fundamental phenomena in diverse areas such as physics and
polymer technology [1], fitting of experimental data [2], blood flow [3], biology [4], capacitor
theory [5], fluid mechanics [6], aerodynamics [7], viscoelasticity [8], thermodynamics [9],
control theory [10], electrodynamics [11], electrochemistry [12], electrical circuits [13], etc.,
are well described by the aforementioned equations.

In recent times, there has been significant focus on investigating the existence and
uniqueness of solutions to FDEs, considering a wide range of BCs, such as Dirichlet [14],
nonlocal [15], integral [16], periodic [17], anti-periodic [18], and multi-point [19]. Many
researchers have studied fractional differential systems due to their extensive applica-
tions in modeling diverse physical and engineering phenomena, including diffusion and
reactions [20], chaos theory [21], fluid dynamics [22], heat equations [23], and Burgers
equations [24]. For more details about applications, refer to [25].

The study of stability in functional and differential equations has become a key area
in mathematical analysis. The literature covers various types of stability, including ex-
ponential [26] and Lyapunov [27] stability. A notable type is Ulam—-Hyers (UH) stability,
which links exact and numerical solutions. Ulam introduced this problem in 1940 [2§],
and Hyers provided a partial solution for linear functional equations in the following year
using Banach spaces [29]. In 1978, Rassias extended these results to linear mappings [30].
Rassias’s work has inspired many researchers to extend his results to ODEs and FDEs, such
as functional equations in several variables [31], linear differential equations of the first
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order [32], advection-reaction diffusion system [33], biology and economics [34], impulsive
switched coupled evolution equations [35].

In recent years, the existence theory and various forms of Ulam stability for coupled
systems of FDEs with two equations have garnered significant attention, particularly
with different fractional order operators. Examples include coupled systems utilizing the
Caputo operator [36], RL operator [37], Hadamard-type operator [38], Atangana—Baleanu
fractional derivative [39], Langevin equations using the Caputo operator [40], coupled
p-Laplacian systems of FDEs [41], generalized Hilfer derivatives [42], sequential FDEs [43],
Riesz—Caputo operator [44], and y-Caputo operator [45], among others.

Based on the literature on the existence and stability of FDEs, it is evident that there
currently exists no similar model involving a system of three or tripled FDEs, as will be
studied in this article. Furthermore, this system represents a generalization of third-order
ODEs and includes various boundary conditions. Motivated by the above discussion,
this manuscript aims to examine the existence, uniqueness, and stability, including UH
and generalized UH stability, of the following three FDEs systems incorporating the RL
operators:

DI u(t fl (t,u(t),w(t),y(t));, te g,
= h(tu(t), w(t), y(t); t€d,
f3 (t,u(t), w(t),y(t)); t€ Y,
3 3 2 . 1 1)
DI~ u(()) = 00@9 w(T), DI2u(0) = ¢o DI 2u(T), DI u(0) = DI 1u(T),
D3 w(0) = DV 3w (T), DV 2w(0) = 1 DV 2w(T), D 1w(0) = D1 w(T),
D 2y(0) = D Py(T), D 2y(0) = 2D y(T), D 'y(0) = D" 'y(7),

where g, #,0 € (2,3],4 =1[0,7], T > 0and 04,6y, 7y # 1 (¢ = 0,1,2). The functions
£ (i=1,2,3): 9 x R3 — R are continuous and D9, D, Dt are RL fractional derivatives.

This manuscript addresses FDEs as described in Problem 1, which generalizes third-
order ODEs. These ODEs have numerous applications in various fields of applied sci-
ences, including fluid mechanics [46], physics and engineering [47], pseudospherical sur-
faces [48], resonance [49], biology [50], optimal control problems [51], and nuclear spin
generators [52], among others. One prominent application of the third-order ODEs is
the jerk-type equation, which is widely used in various fields, including economic sys-
tems, electrical engineering, chaos theory, and secure communication, [53]. Furthermore,
foroy =gy =1 = —1 (£ =0,1,2), we obtain anti-periodic BCs, which frequently arise in
models of several physical processes, such as ordinary and partial differential equations,
impulsive differential equations, anti-periodic wavelets [54], anti-periodic trigonometric
polynomials [55], and shunting inhibitory cellular neural networks [56]. For more details,
see [57].

This manuscript is organized as follows: Section 2 covers key preliminaries to prove
the theoretical results. Section 3 focuses on demonstrating the existence and uniqueness of
solutions to system (1). Section 4 outlines the necessary conditions for the Ulam stability of
problem (1). An example illustrating the practical application of these results is provided in
Section 5. The conclusion and special applications of the study are presented in Section 6.

2. Preliminaries

Foundational concepts and materials are presented in this section.

Consider C(J) as the Banach space with the norm specified as ||u| = max,cg |u(#)].
For t € ¢, define w,(t) = t"u(t) forr > 0. Let 5 = G () be the space of all functions u
such that #, € $;, which becomes a Banach space when endowed with the norm [|u||5, =
max;cg t'|u(t)|. Similarly, we can define Banach spaces $, and S3 endowed with norms
lwlls, = maxceq ¢'|w(e)] and [[y]l5, = maxicq ]y(¢)
specified on the product space is ||(x, w, y)|| = [|uls, + [|wlls, + [|ylls,- Clearly, (§ =
S1 X 5 % 83, || (#, w,y)||) is a Banach space.
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Gy(t,0) =

Definition 1 ([58]). The RL integral of order g > 0 of a continuous function u € (R*,R)) is
expressed as:

vt~ L [f_u(o)
UuO) = 157 ) (o gre

assuming the integral is well-defined.

Definition 2 ([58]). The g > 0 order RL derivative of u € (R, R), which is continuous, is
given by:

g B 1 d\m rt u(o)
(1) = =5y (), T gt

where m = [g] + 1. We note that for ¢ > =1, ¢ #g9g—1,9 —2,...,g9 — m, we have

I'(p+1)

DILY = —*+ 7
I(p—g+1)

t?9 and DI =0, i=1,2,...,m.

Lemma 1 ([58]). The unique solution of the differential equation D9u(t) = @(t) is
FDIu(t) =1o(t) +kot! ™+ kit ™ Vb oo bk ot9 2 4k 897,

where m = [g] + 1and k; € R fori=1,2,...,m.

Theorem 1 ([59]). Consider an operator F : S — S that is completely continuous. Define the set
B(F)={uecS:u=AF(u), Ac[0,1]}.

Then either the operator F possesses at least one fixed point, or the set ‘B(F ) exhibits unbounded-
ness.

3. Existence Theory
Lemma 2. Given py € C() and g € (2,3], the unique solution of FDE:

DIu(t) = po(t); t€ G, (2)
DI34(0) = oD 3 u(T), DI 2u(0) = ¢oD? 2u(T), DI 'u(0) = 1o D! 1u(T)
is expressed as
T
u(t) = [ Gy(t,0)mole)de
where
0093 (T—0)" ot [e(1—00)+onT(g-2)] (T—0)
2[ 2(1*00)1"(9*2)] (1*170)3(12*(90)1"(9)*1)
Tt~ t(17g0)+go‘f(g71) 0Tt 3T 1+co
(1-c0)(1-1)T(g) t o)) 1w (g-2)" O<e<e=d, 3)
oo t9~3 (,I_Q)Z cot93 [t(l—a(,)-»-ao‘f(g—z)] (‘T—Q)
2(1-09)I(g-2) (I-00)(1—¢0)T(9—1)
w0192 [£(1-co)+6o T (9-1)] o009 372 (140 )

(1=60)(1-1)T'(g) 2(1-00)(1—6o) (1-1)T'(g-2)"
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Proof. By Lemma 1, we have [59]:

1

t
u(t) = (9) /0 (t—0)9 up(o)do +kot? ! + kg t9 2 + kot 3. (4)

Using given boundary conditions on Equation (4), we will obtain

o 1 7 coT T
fo = (1- Uo)lg(g —-2) [5 /0 (T~ @)*mo(e)de + (1 = <o) /0 (T —0)po(o)de

70T > cotoT? T
+ (2(10— To) + (1 — goo)o(l — TO)) ‘/0 ]’lO(Q)dQ:|/
G T wT T
e 90)19(9 ~1) (/0 (T = Q)mle)de+ 7 . ) /O #ole)de),

. T
m /0 to(@)de.

Put the values of kg, k1 and k; in Equation (4), we obtain

ky =

u(e) = o ) (=) ale)de

+ 2(1 —?0391"_(?’9 —2) /OT (T — 0)*o(0)de
g0t9(13_[té3)(—10_0);0r)(;0(;r(_g 1_) 2) /OT (T = 0)po(e)de
e e e | g

e a5 e

T
= /0 Gy(t,0)po0)de, (5)

where G, (t, ) is provided in (3). [
Lemma 3. Assume yy € C(J) and h € (2,3], the unique solution of FDE:

Drw(t) =m(t); tey,
DESBw(0) = DV 3w (T), D 2w(0) = 1DV 2w(T), D 1w (0) = q D 1w (T)

is represented by the integral formula:

T
w(t) = [ Galt,0m(e)de,

where Gy, (t, 0) is:

(t=0)" " i3 (T—0)" | cth[e(1—o) o1 T(A-2)] (T—o)

T i 2(1)—01);(2—21))] <1—gl)3<;8)r<ﬁ)—1>
Tttt t(l=61)+61 - ottt +c1
RN o) (e ()T (A2 0<e<t<T,
Gs(t,0) =
o th3(T—0)" | et 3 [e(1-o)+n T(A-2)] (T—0)
A=) (A—2) (=) (1= T (A1)
7 th 2 [t(1-61)+c1 T (A1) o t4372 (144 )

A-e)(—I®) T 2= (—¢) (- (A=2)’



Fractal Fract. 2024, 8, 416

50f19

Proof. The proof reflects the strategy used in Lemma 2. O
Lemma 4. Assume yy € C(J)and ¢ € (2,3], the unique solution of FDE:

D w(t) = po(t); t €Y,
D' Bw(0) =

is represented by the integral equation:
T
w(t) = [ Gelt,0)pa(e)de,
where G¢(t, 0) is:

(t—Q)H aztt;s(‘r—e)z ot 3 [t(1-0) 4 T(-2)] (T—0)

T i zufoz)r(rfz)] (1*‘[722(12*52)r(f)*1)
Tttt t(1—62)+62 T (£-1) ot T (146
A=) I o) )0 ) T2 0<e<t=<T,
Ge(t,0) = )
ot (T—0)" | ot ?[t1-0)+nT(c-2)] (T-0)
2(1—f;z>2rfr—2> <1Tz><1—gz>r<r—[1)3 )
ot 2| t(1—g2)+62 T (€-1) Tt 2T (1462
Ty (o e (3 R vy [ Beros [ Ry g 0<t<e=<T.

Proof. The proof reflects the strategy used in Lemma 2. [

For clarity and ease of understanding, the following notations are introduced:

T3 +‘ NVE ‘4_’ G073[1+|00|(9_3)] ‘
F(g+1) 16(1-00)T(g—2)1 12(1—00)(1—¢go)I(9—1)
‘70‘1‘3[1+|g0|(g—2)] ‘ ’ o073 (14 go) }

(1-¢0)(1—1)l(g) 2(1—09)(1—6o)(1 —)l(9—2) 1)’
T3 " T3 G173 [1+ |o|(R —3)] ’

Th+1) & )6(1 TR —2) |+ ‘2(1 o) - T(h-1)
‘T1T3[1+|g1|(ﬁ2)] ‘ ‘ T3 (1+¢1) }
(1-61)(1—7)I(A) 21-0)(1—¢)(1—n)T(A-2) 1)

Cy = max{

Cp = max{

s T3 62 T3 [1 4 || (€ —3)]

NET ‘6(1 — ) T(C—2) |+ ‘2(1 o) (1=l =1) |

‘T2‘I3 [1 + |6 |(€ — 2)} ‘ ‘ 02T273(1 + gz) ‘}
(1-62)(1—w)I(¢) 2(1-02)(1—62)(1 —)I(¢ —2)

Cr = max{

and

Co=min{1—9y,1—9,1— 9y},
where

Qy = Coy}. + Chy, + Cotp,

Qy = 699]’}1 + 6,19]*(2 + 6[9*3,

Qy = GgYJ*(l + GﬁYJ*[Z + G[YJ*(S.

D' Bw(T), D' 2w(0) = D 2w(T), D 'w(0) = D 1w (T)

)
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Suppose u, w, y represent solutions to problem (1), and t € ¢, then

() = o5 [ (6= )" file, o), w(e), y(e))de

I'(g)
g3 T
b (- 9o ule), w(@), y(e)de

cot? 2[t(1— o) + 00T (9 —2)] (7T
T A —c)Tg =1 /0 (T —0)fi(0, u(e), w(0), y(o))de

wotd ?[t (1*€0)+go‘f 71
" (1-¢o)(1—1)T / (e u(e), w(e) y(e))de
0Tt 3T2(1+go
2(1—00)(1—¢o)(1 — )T (g — 2/ Ao, u(e), w(e), y(o))de,

w(t) = 755 b (6= 0" o u(0) wio), yle))de

o A3 T
e (T - %l u(e), w(e) y(e))de

ath [t —o) + T (R —2)] [T
oA e T E =Ty (T QA e wle) yle)de

T th=2[¢ (1*61)+€1‘T *1
d—c)(d—m)T / f(0,u(0), w(e), y(e))de
o th 372(1+g
+2(1_Ull)(11_gl)(1_T11 T(h—2) / fa(e,u(e), w(e), y(e))de

and

9 = 57 [ (=0 hlou(e) wlo) yle)de

(-3 T
o ) (79l (@), w(e) y(e)de

Gttt — ) + T (¢ -2)] (7
(1—0)(1—c)l(€—1) /0 (T — o) f(0, u(0), w(0), y(e))do

Tt 72 [t(1—g) +gﬂ 5—1
(1-6)(1—1)T /J[?’Qu de
0’2T2t[ 3T2(1+g2

20— (1—ca)(A—)T(f—2 / S0, u(e), w(0),y(e))de.

Now, to reformulate problem (1) as a fixed-point problem, introduce the operator
F .S — S defined as follows:

Ge(t,0)f(0 u(0), w(e), y(e))de

T

[ Gy(t,0)fi(0, ul0), w(0), y(0))de

gL Ty, w,y)(t)
F(u,w,y)(t) = | [ Ga(t 0)falo u(0), w(a), y(o))de | = | Faluw w,y)(t) |. (10)

) Fe(u,,9) (1)

/

Then, the solution to problem (1) corresponds to the fixed point of #, where
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Folww,9)(6) = o5 [ (£=0)" file ule) wle) le))de

- T
ot [ (T - 0l ule) wle) y(e)e

cot? 2[t(1 — o) + 007 (9 —2)] /T (
(1-00)(1-60)T(g—1) 0

—0)A(0, u(0), w(0),y(0))de

Tot9 2 — T(g—
= <£ <1go>fi)+£° 2 / fi(e, u(e), (o), y(e))de
ogTotd ™ 3T2(1+g0
30— (1 — o)1 — )l (g —2) / file, u(e), w(e), y(e))de,

Falu, w,y)(t) = Nl,i) (6= 0" Al ule), w(@), y(@)de

+

A—3 T
S (T~ o) hle u(e), w(@), y(@)de

C1 tﬁ_3 [t(l — 0'1) + Ulq(ﬁ — 2)] /‘T (
(I—01)(1—c)I( 1) 0

—0)f2(0, u(0), w(e),y(0))deo

h—2 - T(h
- (1[ Elgl)?jrf] / f2(e,u(e), w(e), y(o))de
UlTltﬁ_3T2( —|—g1
+2(1—01)(1—g1)(1—~r1 T(h—2) / f2(0,u(e), w(e), y(e))de

and

Felu,,)(0) = 55 ) (=) e, ul) w(e), yl0)de

-3 T
= (T~ @) hle u(o), w(e) yle)de

th[*:)’[t(l —(72) —|—UQT([ —2)] /‘T(
1-0)(1-¢)IT(¢—-1) o

—0)f3(0, u(0), w(e), y(0))deo

ot 2t (1—92)+g2T —1
1—c)(1—)T / f3(e, u(e), w(e), y(e))de
0’2T2t[ 372(1+§2
A1) )1 - )T -2) / e ule) w(e) y(e))de

Incorporating the Leray—Schauder alternative theorem (1), the following theorem

proves the existence of at least one solution to the given system (1).

Theorem 2. Let Aﬁ,lpﬁ,eﬁ,Yﬁ; (i=1,2,3): § — R be functions, where for all u, w,y € R,

the following conditions hold:

it u(e), w(t), y(1)] < A (8)+ 9 (8) ()| + 6, (6)]w(t)

with sup,. ¢ Afi(t) = A]*fi, SUp;cq lpfi(t) = 1/1;%, Sup;cq Ofi(t) = 9)’%, Sup,cg Yf,-(t)

* * *
andAfl,Afz,Af3 > 0.

:Y*

fi

In addition, it is supposed that Qy, Qg, Qy < 1. The system (1) under these conditions admits at

least one solution.
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Proof. To begin with, we establish the complete continuity of ¥ : § — S. Given the conti-
nuity of ; (i = 1,2,3), ¥ also exhibits continuity. Let set B C S be defined as bounded.
Consequently, there exist constants Alz > 0, implying that fi(t,u(t), w(t), y(t))| <
9\&, (i=1,2,3), Y(u, w,y) € B. Consequently, for any (u, w, y) € B, it follows that

79| Fy(u, w, y)(¢)]
St?’g[r(lg)/ot(t—e)gldeﬂz UOUO = ‘/OT

t(1—0o) + (1—¢o) + 607 ( —1
’gol - 0’0)(8 — gzo ‘ / ‘TOt[(l — gs)o(l —gTOO 9 ‘ /
T%(1
i ’2(1 —ffo)?iTE Qo)((lJr—ggo))r(g 2) ’ / Mfl ¢ u(e) wle) g,

S [L/t(t_g)gi dQJF‘z 1—Uot§%g 2)‘/ (T~ e)"de

t(1— 0o) (1—¢0) +¢oT (g —1)]
T e A e e A
T2(1
+ae ao;(fﬁ 90)( <1+—g2>r<g =1 / dQ}'

which implies that

1% (1,0, )| < NG € a1
Similarly, we obtain
I (e, w0, )] < A 12)
and
| 2w, w,5)]| < NCr. (13)
Hence, the inequalities (11), (12), and (13) collectively establish the uniform bounded-
ness of F.
Following, the equicontinuity of ¥ is demonstrated. Consider 0 < t, < # < 7. Then
we obtain

16779 Fy (, w, ) (1) — 69 Fy (1, w, ) ()|

_ ’r(lg) /Ot1 (579t —0)? ™ — 5 9 (t— 0)? ] Alo, ule), (o), y(0))do
_ F(lg)/: %t —0)? il u(e), w(0), y(0))de
S0

TN _‘7‘20}‘(707% 2” [ (7~ 0)file ule), wle), y(e))de

(th — &) [(h— &)(1—co) +60T (g —1)]
et Ao wle o]

So, we obtain
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16879 F (w,w, ) (6) — 5 Fy (1, w, 1) (1)]
<% (|57 | 16— = 57 (= 07 o -

QO tl — tz)(l — 0'0) + U'O{I(g — 2)]

| e [
(- )[(a— ) (1—¢co) +c0T(g—1)] (7

+| (1= co)(1 — )T (a) fy ) =0 e a—e

Analogously, we can obtain

t
(19) /ﬂ 5 7(b =) g

—0)do|

!t?—ﬁfﬁ (w,w,y)(1) — & " Fa(u,w, y)(t2)|

= 9‘45( / ) G (b o) de— o [ 8 (6~ o) dg

W 4
61 tl—tz)(l—(ﬁ)—i—o'lT(ﬁ,—z)] T
’ (1—0)(1—¢)I(h—1) /O (‘T—Q)del

Tt — 6)[(t — ) (1 —c1) + 1T (A —1)]
+’ (1-¢1)(1—m)T(R) /0 dQD —0 as H — B
and

|87 Fe(u,w,y) (1) — 6 Fe(w,w,y) (1)

< (o [ 8 =0 = B (-0 o — s [7 B (-0 e
QZ tl — tz)(l — 0'2) +0’7_‘T(f — 2)} T

+| (I—o)(1— )T 1) fy (=0

vt~ 0)[(h~ 6)(1- ) + T (¢ ~1)
+' (1—g2)(1—)T(¢) /O de!) —0 as f — b

Hence, F (1, w, y) demonstrates equicontinuity, establishing it as completely continu-

ous.

Ultimately, we confirm the boundedness of the set B = {(u, w,

AF(w,w,y), A € [0,1]}. Let us assume (u, w,y) € B, then (u,

For t € ¢, we have u(t) = Afy(uw, w,y)(t), w(t) = AFs(n,
AFe(u, w,y)(t). Then

379 u(t)|

)
, W, Y

 y)(1) and y(1)

coT3[1+|ool(g —3)]

< t3—9{ 7° 00>

T(g+1) * 6(1—09)l'(g —2) ‘ 2(1—=09)(1 —6o)I'(g —

‘To‘f3 1+ lcol(g —2)] 001073 (1+ go)

(1*€0)(1*T0)r(9)’ ‘2(1*00)(1*60)(1*%)“
x (Mg (0) + ¢4 (0)ule)| + 04 (0)|w(0)| + Yy (0)]y(0)])-

Hence from (14), we have

lull < € (A% +pj l1ull + 65 ]| + Y5 151).

~—

(14)
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Similarly, we obtain

lwll < €a(A) + 3 lull + 0 @]l + Y5 51,

and

Iyl < € (A% + v llull + 0% [l + Y yll),

which imply that
[l + Nl + [yl =(CoA% + Cany + CoAy) + Qyllull + Qollw| + vl yll-

As a result, we have

CyA% + CuA% + CoA*
I,y <« —I—cF—b.

For each t € ¢, where C is provided in (9), signifying the boundedness of B. There-
fore, by virtue of the Leray—-Schauder alternative, F possesses at least one fixed point,
thereby ensuring the existence of at least one solution to problem (1). O

The second outcome hinges on the utilization of Banach’s contraction principle (BCP).

Theorem 3. Given the continuity assumption of functions f; (i =1,2,3) : § x R® — R, and
(Hy ) the existence of constants Ky, Ly, My, such that for u, w, y, u*, w*,y* € R, and t € §, it
holds true that:

fi(t w0, y) = fi(t, w0, w0, )|
< K llw— 'l + L llw — ™| + M|y — y|l.

In addition, suppose that
Gngl + eﬁNfz + G[Nﬂ <1,

where

N, =K + Ly + M,
Ny :792+Lf2+Mf2,

Under these circumstances, the solution to problem (1) will be unique.

Proof. Let us define suptegfl(t,0,0,0) = pg < 0, suptegfz(t,0,0,0) = pp < o0, and
suptegfg,(t, 0,0,0) = pr < oo, such that

. ©g9Cg + 9aCr + prCr '
—1- [Gngl + eﬁNﬁ + G[Nﬂ]

We prove that F (x») C xr, where
xr={(wwy eS:|(n,wy)l <r}.

For (1, w,y) € x;, we have
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£579| Fg (u, w, ) (¢)]

3— 1 f _ 91 (70 T
st g{r(g)/o(t o) dQ“L’z —o0)l(g — 2’/

’go (1—09p) +¢7ng 2 ‘/‘ Tot[(l—go —I—go‘I —l ‘/
1—0’0)1—g0 (1—g0 1—T0

+’ 0'0T0T2 1+§0 ’/ d
2(1 —00)(1 - o) 1—T0 (9—-2) Q

x (Ao, u(0), w(0), y(0)) — A1(0,0,0,0)| + |f1(e,0,0,0)|),

<{ 73 N crO‘I3 ’ ‘ 60T [1+ |oo|(g —3)] ‘
“T(g+1) 16(1-00)T(g—2)1 [12(1—-00)(1—c0)T(9—1)
T3 [1+ |gol(g —2)] ‘ ‘ 00107 (1+ ¢o) ‘}
(1-¢0)(1—10)I(g) 2(1—00)(1 —go)(1 —10)I'(9 —2)
< (K llull + Ly 2] + My 1yl + 0g),
< Gg[Nﬁr+pg].

+17

Hence,

175 (@, y)|| < Cg[Rpr+ ). (15)

Similarly, we can obtain

[ Fa (1, w, y)|| < Ca[Rpr+ 4] (16)
and

1 Fe(u, w, y)|| < Cc[Ryr+ pr]. (17)

Combining the aforementioned inequalities (15), (16), and (17), we derive the follow-
ing:

||T(ul W,y)H S T.

Considering (v, w, y), (u*, w*, y*) € S, and for any t € ¢, it follows that

79| Fy(u, w,y)(t) — Fo(u*, w*, y*) (¢ )!
1 gt i
= g{@/o (£ =) dQ“L’z 1—(70 (g —2) ’/

t(1—o09) + (1—c¢o)+60T(g—1)]
’gol—(ro)ai—g? ‘/ TOt[(l—gsol—groo i ‘/
T?(1+ T
" ’2(1 - ffo)((TiTE 90)((1 —ggo))r(g -2) ’ /0 dQ}

< file, (@), w(e), 9(0)) —file, ' (o) w' (o), "(0))|de,
< € (% 1w — "+ Lyl — ]| + 9y 1y = 7]

and hence, we obtain

1Fg(w, w,y) — Fo(w", w, y")[| < CoRp ([lu— u’| + lw — @™ + |y —y*ll). (18)
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Similarly,
1% (w, w0, y) = Fa(u”, ", y*) || < CaRp (Ju—u'|| + |w—w | +[ly—y"[), (19)
and
1Fe (w0, y) = Fe (", @™, )| < CoRp ([ — wl| + [w — @[+ ly —y7[]).  (20)
The inequalities (18), (19), and (20) lead us to conclude that
I1F () = F (", w7, g7l < [CoRy + Calp + CRY I (w, w, y) — (w7, w7, 7).

As Gngl + eﬁN](Z + G[Nﬁ < 1, ¥ qualifies as a contraction operator. By BCP, F
possesses a unique fixed point, implying the uniqueness of the solution to system (1). O

4. Stability Results

Let us review definitions associated with Ulam stability:
Let ®fi (i =1,2,3) : § — R be non-decreasing functions, and let €r > 0. We
consider the set of inequalities given below:

|Dou(e) — filt,u(e), w(e), y(e)| < e, te g,
|Drw(t) — fo(t, u(t), w(t), y(t))| < e t €Y, (21)
| DRy(e) — St ult), w(t), y(t)] <eg, te€Y.

Definition 3 ([60]). The system (1) is identified as UH stable if certain positive constants Cg 4 0 =
(Cq,Ch, Cr) exist. These constants, along with € = (eg,€p,€¢) > 0, guarantee that for every
solution (1, w,y) € S of (21), there exists a unique solution (v, x, z) € S. This solution satisfies

|(w, w,y)(t) — (v,x,2)(t)| < Cypuce, t€Y. (22)

Definition 4 ([60]). The system (1) is identified as generalized UH stable if a function @, 4 €
C(R*,R") with @, p¢(0) = 0 exists. This function, given a solution (u, w,y) € S of (21),
ensures the existence of a unique solution (v, x, z) € S for problem (1). Moreover, this solution
satisfies

’(ulw'y>(t)_(7}/7(/z)(t)| Scbg,ﬁ,,l’(e)/ tGg. (23)

Remark 1. We designate (1, w, y) € S as a solution to inequality (21) provided that there exist
functions Yy (i=1,2,3) € C(9,R), hinging on u, w, y, respectively, satisfying the conditions

(A1) ]‘I’fi(t)\ <€, teY;

(Ag)For t € g, the system of equations is described as follows:
DIu(t) = fit,u(t), w(t), y(£) + ¥4 (1),
Dhw(t) = fo(t, u(t), w(t), y(t)) + ¥4 (¢),
Dy(t) = fo(t,u(t), w(t), y(t)) + ¥4 ().

Lemma 5. If (u, w, y) € S constitutes a solution to inequality (21), then we obtain

- mll < Cpep, te g,
Hw—n2|| < (i’ﬁefz, ted,
Hyfll?,H < 6[6](3, t e g
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Proof. Using (A;) from Remark 1 and considering t € ¢, it follows that
DIu(t) = fi(t, u(t), w(t),y(t)) +¥ 4 (¢),
*fz (6, u(e), w(t), y(£)) + ¥4 (2),
= (b 18 w240 X5 (0 o
Do 3u( ) = D! *u(T), DY2u(0) = ¢oD? *u(T), D 'u(0) = D7 'u(T),

D3 w(0) = D P w(T), D 2w(0) = 61D 2w(T), D 'w(0) = n D w(T),
D 3y(0) = D 3y (T), D 2y(0) = 2D 2y(T), D~ 'y(0) = D" 'y (7).

Therefore, considering Lemma 1, we can express the solution to the first equation
in (24) as follows:

u(t) = o5 [ (4= 0" Ao u(o), w(e), y(e) + ¥ (o)) de

9)

g9-3 T
b ) (T il u(e), w(@), 5(e) + ¥ ()] de

cot93[t(1 — o) + 00T (9 -2)] (7
(1 — 0'0)(1 — QO) ( 1) /é ( - Q) [][1(@ u(Q)/ W(Q),y(g)) “r"Fﬁ(Q”dQ

Totg_z[ (1*g0>+§0{1‘ 71
(= co)(1— )T L e

), w(e),y(e)) +¥(0)]de

ooTotd ™ 3T2(1+g0
ot S [ e ute) wle) 50 + ¥4 (@) e 9

From Equation (25), we have

3—g rt
79| u(t) —m(t)| Sﬁfo (t—g)971|‘1’fl(q)|dg

o T ’
Go [t(l — (70) + 007 (g — 2)] /-‘T (
(1—00)(1=60)T(g—1) Jo
Tt [t(1—co) + 60T (9 —1)]
(1—60)(1—10)I'(g) / ¥ (e)|de
(T()T()Tz (1 —|—g0)
A=) —c0) (T - ) (g -2) / [¥5(e)|de. (26)

T —0)[¥f(0)|de

Here, n1(t) represents terms devoid of ¥, Utilizing (6) alongside (Aq) from Remark 1,
(26) transforms into:

[u—m| < Cgey.
Applying a similar approach to the second equation of (25), we arrive at
lw— nal| < Cheg,
and

ly — sl < Ccey,
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Theorem 4. Under the hypothesis (Hy) and if

A=1—[QpMOQp Ly + O Ly (O Ky + Qg K O M) + O My (Qp K

+Qf27§(20f3£/f3)] > 0. (27)
Then problem (1) is UH stable, where Qfl = (175%’ sz = (175% and Qf3 =
7N yl
Ce
(=€, Mg )"

Proof. Let (u, w,y) € S represent the solution to (21), while (7, x, z) € S denote the
unique solution to the provided system:

Dio(t) = f(t v(t) x(t) 2(t)), t€Y,
@ﬁ?c(t) = h(tv(t),x(t),2(t), t€ g,

t) = fa(t, v(t), x(t), 2(t)), ted,
DI~ 3 v(0) —(701)9 39(T), DI20(0) = ¢oD? 20(T), D! 1v(0) = D! o(T),
DE3%(0) = oy DA% (T), DF2x(0) = 1D 2x(T), D 1x(0) = u D" 'x(T),
D 32(0) = D 32(T), D 22(0) = oD 22(T), D ~12(0) = D 12(T).

(28)

In light of Lemma 1, for ¢ € ¢, the solution to the first equation of (28) takes the form:

o(t) = 15 [ (1= 0" file, vle), x(e), (@) de

-3 T
g [ (T~ 9 Al v, 1e), 2(0)de

got? 3 [t(1—00) + 00T (9 —2)] /T (
(1-00)(1—go)T(g—1) 0

—0)fi(e,7(0), x(0), 2(0))do

Tt *[t(1 - go) + GO‘T -1)]
I cdd—a]T L7 e v(e), x(a), () de
oot 372 (1 + co)
, ) , do. 29
+2(1,%)(HO)(140 ) [ A e e @)
Consider
279 u(t) —o(t)| < 79| u(t) —m ()| + 279 |m(£) — v(¢)|. (30)
Using Lemma 5 in the above inequality (30), we obtain
279 u(t) — o(t)]|
3 1 o a1 00 T N2
< Cgep +t g[F(g)/()(t 0) dg+‘21—ao)l"g—2)‘/o (T —0)"do
go (1—o09) +0’0‘Tg 2 Tot[t(l—go +§0{I —l
’ (I—00)(1—go)l ‘/ (1-60)(1—1)T ‘/ a0
0'0T0T2(1 + Go
+'2(1—(70)(1—g0)1—’r0 ’/ do|
x [file, u(e), w(e), y() — Aile v(e), x(0), 2(e))]- (31)

Using (H;) and (6) in (31), we have

lu— o]l < €pep + Co (Kl — 0l + L |w — ) + M |y — 2]])-
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So, we obtain
lu—oll < Qples + Lgllw — xll + M|y — 2]]. (32)
Similarly, we can obtain
lw —xll < Qpleg + Ky llu— vll + M|y — 2], (33)
and
Iy — 2l < Qg leg + K llu— vl + Lgllw — xll].- (34)
We write Equations (32)—(34) as:
L Oty —OgMe 11 Jlu—o] Qe
0%y SOM || fw -l | <] Qpep
Given the preceding matrices, the result is
[u— 7 a1 Ay 413 Qpeq
|w—xl | <| a1 an a2 Qpey |, (35)
ly — 2l as1 43 4s3 Qﬁefa
where A is given in (27) and
1O M Op Ly _ OpLy + O MO Ly O My + O L O My
an = N a1 = A ;413 = A ,
_Op R H O MO K 1 O MO Ky O My + O MO Ky
a1 = A , ap = I a3 = A ,
o 2R O ROy L _ OpLn T O L Ry I e bl
31 = A ;432 = A , azs = A .
From (35), we obtain
||ll — T/H < allelefl —1—11120](26](2 +1113Qf36f3,
||Z(/ — ?(|| < 021Qﬁ€ﬁ + azzﬂfze‘fz + 61230](36f3,
ly — 2ll < az1Qpep +a3Qpes +asQpeg,
Following this, we obtain
lu—oll+llw—xll + [ly — 2ll < Qpeq (a1 +an +a31) + Qpep (a12 + a2 +as)
+Qfé€f3(a]3 + a3 + asz). (36)
Let € = max {€f1 €40€8 }. Consequently, by (36), we arrive at
||(l£, w/y) - (7}/ X, Z)” < Cg,ﬁ,fef (37)
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where
Cyne = [Qp (a1 + a2 +a31) + Qp (@12 + az +az2) + Qg (a13 + a23 + a33) .
O

Remark 2. Ifwe set @, 4 ¢(€) = C, 4 € with @y 4 ¢ (0) = 0 in (37), system (1) exhibits general-
ized UH stability, in accordance with Definition 4.

5. Example

Example 1. Let us examine the FDEs systems given below:

Du(t) = *M%u( {)eos(t) + wlt) + S sing(n),

Fa(e) = e/ 3+ a0 tan (0 + s sinw(e) + (e sin),
Diy(t) = §+%smu<t>+ i)+ eyl cos (1) -
D7 u(0) = %zﬁu(l), D u(0) = %a) u(1), DIu(0) = —D3u(1),

D7 w(0) = 70T w(l), Diw(0) = ;Diw(l), DHw(0) = ~Diw()
D7 y(0) = ;D7 4(1), Diy(0) = 3 Dy(1), Diy(0) = ~Diy(1)

where t € [0,1]. From problem (38), we have g = 5/2, A =7/3, € =9/4, T =1, 0p =
om=0=1/2, co=¢1=¢»=1/3and 1p = 11 = T» = —1. Moreover, A]*[1 =1/é3, 1/]}"[1
1/11, Bf = 1/20e, Yf = 1/12e, Af =2, l’bfz =1/16, (sz =1/9, Y2 =1/13, Af3 =
1/5e, l/)f =1/12e¢, 0 f =1/17,and Y]*( = 1/15e. Then the conditions of the Theorem 2:

Qy = Co¥}, + Cay}, + Coy, = 031519492 < 1.
Qy = €407 + €40, + CrO ~ 0.31558696 < 1.
Qy = €Y} + €Y} +CrY], = 022346367 < 1.

are satisfied. For Theorem 3, we can see in problem (38), that ‘]91 =1/11, Lf] =1/20e, 9\/[](1 =
1/12e, ‘]92 =1/16, Lﬁ =1/9, 9\/[](2 =1/13 and 793 =1/12e, Lfs =1/17, 91/[f3 = 1/15e.
Therefore,

CgNﬁ + GﬁNfz + G[Nfs ~ 0.85424557 < 1.

Thus, the system (38) possesses a unique solution.
Moreover, the condition of Theorem 4:

A ~0.95104343 > 0

is also fulfilled. Consequently, the problem (38) demonstrates UH stability and generalized UH
stability.

6. Conclusions

This manuscript has effectively demonstrated the existence and uniqueness of solu-
tions for problem (1) using the fixed point theory. Moreover, it has derived the essential
criteria for UH and generalized UH stability. By illustrating an example, the practical
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implications of these findings have been highlighted, underscoring the significance of the
research in broader applications.

The findings are new and intriguing. Specifically, by setting oy = ¢, =17, =0 (¢ =
0,1,2) and g, A, ¢ = 3 in the proposed system (1), the following third-order ODEs system
alongside initial conditions, is derived.

u( f1 (¢, u( (t)y(t); ted,
W (t) = fH(t, u( t), (t); ted,
”( = f3(t,u(t), w(t),y(t); te g,
u(0) =0, u'(0 )—0 u"(0) = 0,

w(0) =0, @'(0) =0, w”(O) =

y(0) =0, ' (0) =0, y'(0) =

Similarly, by setting 0y = ¢y = 77 = —1 (¢ = 0,1,2) and g,4,L = 3 in system (1),
a system of ODEs of third-order alongside anti-periodic BCs is obtained, given as

w"(t) = filt u(t ) w(t), y(t)); tey,
w"(t) = fo(t,u(t), w(t), y(t); t€ 9,
”( t) = fa(t u(t ) w(t),y(t)); teg

u(0) = —u(7T), u'(0) = —u'(T), u"(0) = —u"(T),
w(0) = —w(T), w'(0) = —a/(T), w"(0) = —w"(T),
y(0) = —y(7), y'(0) = -4/ (T), 4" (0) = —y" (7).

As far as we know, this is the first manuscript addressing a nonlocal generalized
fractional order BVP involving a tripled system of nonlinear FDEs. Furthermore, this
manuscript is the first to obtain solutions for a third-order ODEs system alongside initial
and anti-periodic BCs involving three equations using the RL fractional derivative. Future
research directions include exploring alternative fractional operators, integrating fractal-
fractional derivatives for more comprehensive modeling, examining other types of stability,
and extending the study to multi-point boundary conditions.
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